XPS and TEM analysis of Multi-elemental Nanocomposites in Diamond-like amorphous carbon films

Abstract
Multielemental nanocomposite DLC films were deposited using KrF pulsed laser deposition system and the films were studied using XPS and TEM. Two case studies are reported here: First, ZnO were successfully incorporated into the diamond-like carbon matrix. Second, a combined alloy Ti and Ni metals were successfully doped into ultrahard Diamond-like carbon.

Introduction
Non-hydrogenated high sp³ (>85%) content diamond-like amorphous carbon films have physical and material properties approaching that of crystalline diamond. In order to further enhance its properties, many researchers attempt to incorporate metals such as Ni, Ti, Co, W, Cu into the DLC films.

Case Study 1: ZnO incorporated into DLC
TEM analysis confirmed the presence of nanosized ZnO clusters (~5nm) in carbon matrix. High resolution TEM confirmed ZnO (0002) planes in each cluster.

PL spectra of 10at% ZnO (strongest) followed by 5at% ZnO
XPS confirmed stiochiometric ZnO and minor Zn-C-O peaks. The latter may be due to ZnO-carbon interface bonds. Monochromatic emission at 380nm observed with no other defect state emission. Possibly due to quantum size effects.

Conclusion
Incorporation of metals and metal/oxide can give additional material properties which pure DL-aC films will not be able to provide. For example, monochromatic photoluminescence were observed from embedded ZnO at 380nm. In addition, controlled growth of carbon nanotubes were observed from Ti/Ni films embedded in DLC.

Case Study 2: Ti/Ni incorporated into DLC
TEM analysis showed nanosized Ni clusters (~5nm) in carbon matrix. XPS analysis confirmed Ti was bonded with carbon to form ultrahard yet less electrically resistive carbon-rich TiC material.

Experiment and Characterization
Case Study 1: Targets with different concentration of Zn (1, 5, 10 & 15at%) were mixed with carbon.
Carbon-based ZnO nanocomposite films were deposited using 248nm KrF pulsed excimer laser system (20Hz, 30J/cm²) under 40sccm O₂ flow rate.

Case Study 2: Targets with different concentration of Ti/Ni (2.5/2.5, 5.0/5.0, 7.5/7.5 & 10/10at%) were mixed with carbon. PLD deposition similar to above except no gas flow.

XPS Analysis – Shimadzu Kratos Ultra DLD with Monochromatic Al Kα @ 250W, CAE 10eV
TEM Analysis – Joel 2010F @ 200keV

Acknowledgement
Partial funding from grants R-284-000-028-112/133
R-284-000-046-123

The people involved in the work presented:-
Ms Jovan Hsieh
Ms Angel T.T. Koh
Asst Prof Daniel Chua*
*msechcd@nus.edu.sg

Ecos 2008
The 25th European Conference on Surface Science
Liverpool, England
27th July -1st August 2008