CZ3272 MC \& MD, Tutorial 5 \& 6
 (for week 12 \& 14, Wed 1 \& 15 Nov 06)

1. Show that the Metropolis transition probability

$$
W\left(X \rightarrow X^{\prime}\right)=T\left(X \rightarrow X^{\prime}\right) \min \left(1, P\left(X^{\prime}\right) / P(X)\right)
$$

satisfies detailed balance as long as matrix $T(\ldots)$ is symmetric.
2. Consider the Ising model. One way to simulate the Ising model is to pick a site at random and flip the spin with probability $\min [1, \exp (-\Delta E /(k T))]$. Show that the detailed balance is satisfied also for
(a) (Glauber dynamics) Flip the spin with probability

$$
\frac{1}{2}\left[1-\sigma_{i} \tanh \left(\frac{J}{k T} \sum_{\langle i, j\rangle} \sigma_{j}\right)\right],
$$

where site i is the center site whose spin is to be flipped; the summation is over the nearest neighbors of the center site.
(b) (Heat-bath algorithm) Reset of the center spin as

$$
\sigma_{i}=\operatorname{sign}\left(\xi-\frac{e^{-\Delta}}{1+e^{-\Delta}}\right), \quad \Delta=\frac{2 J}{k T} \sum_{\langle i, j\rangle} \sigma_{j}
$$

where ξ is a uniformly distributed random number between 0 and 1 .
3.
(a) Show that the symplectic algorithm C ,

$$
\begin{aligned}
& \hat{q}=q+\frac{h}{m} p+\frac{h^{2}}{2 m} F(q), \\
& \hat{p}=p+\frac{h}{2}[F(q)+F(\hat{q})],
\end{aligned}
$$

is a second order algorithm - that is, the local truncation errors are of order $\mathrm{O}\left(h^{3}\right)$. Here p and q are current values of position and momentum at time t and hat(ed) version are new values at $t+h$. [Hint, compare Taylor expansion of exact result and the above formula]. (b) Show that the algorithm is exactly time-reversible. (c) Show that the algorithm viewed as a transformation preserves the phase space volume (assuming a 2 D phase space).
4. Show that for the Nosé-Hoover dynamics

$$
m \dot{\mathbf{v}}_{i}=\mathbf{F}_{i}-\zeta m \mathbf{v}_{i}, \quad \dot{\zeta}=\frac{1}{\tau^{2}}\left[\frac{K}{K_{0}}-1\right], \quad K=\sum_{i=1}^{N} \frac{1}{2} m \mathbf{v}_{i}^{2},
$$

the quantity

$$
C=K+V+K_{0}(\tau \zeta)^{2}+2 K_{0} \int_{0}^{t} \zeta\left(t^{\prime}\right) d t^{\prime}
$$

is indeed a constant of the motion, namely $\mathrm{d} C / \mathrm{d} t=0$.
5. Discuss on numerical methods to solve the one-dimensional Lengevin/Brownian dynamics equation

$$
m \frac{d^{2} x}{d t^{2}}=-\gamma \frac{d x}{d t}+\xi(t),
$$

where ξ is a stochastic variable with mean zero and delta-correlated:

$$
\left\langle\xi(t) \xi\left(t^{\prime}\right)\right\rangle=k T \gamma \delta\left(t-t^{\prime}\right) .
$$

CZ3272 MC\&MD, Lab 5 (for week 11-13, 23 Oct - 10 Nov 2006)

Due 10 Nov 2006

1. Consider a one-dimensional system of length L of N Lennard-Jones particles. The potential energy between pair of particles is

$$
V(r)=4 \varepsilon\left[(\sigma / r)^{12}-(\sigma / r)^{6}\right],
$$

$\mathrm{r}=\left|x_{i}-x_{j}\right|$. Compute the equation of states, pressure P vs particle density $\rho=N / L$ for a fixed temperature $T=300$ Kelvin using molecular dynamics and from the virial equation

$$
P=N k T / L+\frac{1}{L}\left\langle\sum_{i<j}\left(x_{i}-x_{j}\right) F_{i j}\right\rangle,
$$

where x_{i} is the one-dimensional coordinate of the particle and $F_{i j}$ is the force between the two particles. The angular brackets mean average over molecular dynamics trajectories. Write the simulation program in reduced units. However, report your result (a plot of P vs ρ) in physical units with parameters $\varepsilon=$ $1.67 \times 10^{-21} \mathrm{~J}$ and $\sigma=3.40 \AA$ suitable for the Ar gas. The mass of Ar is 40 a.m.u. The Boltzmann constant is $\mathrm{k}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$.

