
Chapter 4 Molecular Dynamics and Other Dynamics

Molecular dynamics is a method in which the motion of each individual atom or molecule is computed
according to Newton’s second law. It usually involves a large number of particles, from few tens to a thousand,
or even several millions of particles. Macroscopic quantities are extracted from the microscopic trajectories
of particles. It is a tool which we can use to understand macroscopic physics from an atomic point of view.
Molecular dynamics has many applications—the thermodynamic properties of gas, liquid, and solid; phase
transitions; structure and dynamics of macromolecules (e.g., polymers, DNA, proteins); hydrodynamical fluid
flow; plasma and electrons, transport phenomena, etc.

1. Integration Schemes

Solving differential equations is one of the major topics in numerical analysis. We’ll first review some of
the methods and then introduce some of the algorithms particularly suitable for molecular dynamics.

1–1. Runge-Kutta method

Our task is to solve the differential equation

dy

dt
= f(t, y), y(t0) = y0. (1)

That is, given the function f(t, y), find the function y(t) such that it passes through the point (t0, y0), whose
derivative is the given function. Any set of ordinary differential equations can be cast in this form if we allow
y to be a vector of certain dimensions. For example, a second-order differential equation can be rewritten as a
set of two first-order differential equations. Thus it is suffice to just discuss how to solve the above equation,
keeping in mind that y could mean (y1, y2, · · · , yd).

Clearly, the most obvious scheme to solve the above equation is to replace the differential by finite
differences, dt → h and dy → y(t + h) − y(t). We then get the Euler method or first-order Runge-Kutta
formula

y(t+ h) = y(t) + hf
(
t, y(t)

)
+O(h2). (2)

The term first order refers to the fact that the equation is accurate to first order in the small step size h, thus
the (local) truncation error is of order h2. The Euler method is not recommended for practical use, because
it is less accurate in comparison to other methods and it is not very stable.

The accuracy of the approximation can be improved by evaluating the function f at two points, once
at the starting point, and once at the midpoint. This lead to the second-order Runge-Kutta or midpoint
method.

k1 = hf
(
t, y(t)

)
,

k2 = hf
(
t+

1

2
h, y(t) +

1

2
k1

)
,

y(t+ h) = y(t) + k2 +O(h3). (3)

However, the most popular Runge-Kutta formula is the following fourth-order one:

k1 = hf
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t, y(t)

)
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k2 = hf
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h

2
, y(t) +
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2

)
,
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(
t+

h

2
, y(t) +
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2

)
,

k4 = hf
(
t+ h, y(t) + k3

)
,

y(t+ h) = y(t) +
k1

6
+
k2

3
+
k3

3
+
k4

6
+O(h5). (4)

The fourth-order Runge-Kutta method is suitable for many applications for systems involving few degrees of
freedom. But it is almost never used for molecular dynamics involving many degrees of freedom. Not only
because it is computationally demanding—four evaluations of the right-hand side of the equations—it also
lacks the time-reversal symmetry of the Newton’s equations.
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1–2. Verlet algorithm

This algorithm is particularly suited for molecular dynamics. It has been widely used in many areas
from simulation of liquids and solids to biological molecules. Our problem is to solve the set of Newton’s
equations

mi
d2ri
dt2

= Fi, (5)

where ri is the position vector of the i-th particle, mi is the mass of this particle, and Fi is the total force
acting on this particle. We’ll discuss the form of the forces later on.

To get approximate difference formula for derivatives, let’s look at the Taylor expansion of the function
y(t):

y(t+ h) = y(t) + hy′(t) +
1

2
h2y′′(t) +

1

6
h3y′′′(t) +O(h4). (6)

Replacing h by −h, we get

y(t− h) = y(t)− hy′(t) +
1

2
h2y′′(t)− 1

6
h3y′′′(t) +O(h4). (7)

If we subtract Eq. (7) from the earlier Eq. (6), we get an approximation for the first derivative,

y′(t) =
y(t+ h)− y(t− h)

2h
+O(h2). (8)

When we add the equations, we found for the second derivative,

y′′(t) =
y(t+ h)− 2y(t) + y(t− h)

h2
+O(h2). (9)

The same formula applies if y is a vector. Replacing the second derivative by a difference using the above
approximation, Newton’s equation can be written as

ri(t+ h) = −ri(t− h) + 2ri(t) +
h2

mi
Fi(t) +O(h4). (10)

This equation was used long time ago in 1791 by Delambre, and rediscovered many times, most recently by
Verlet in 1960s for molecular dynamics. It is also called Stoermer algorithm. It has the property that it is
exactly time-reversible. That is, if you let the system develop according to this equation for some number
of steps, you can go back to your starting point exactly by reversing the time. This is the property of the
original Newton’s differential equation. If you were using the fourth-order Runge-Kutta, you do not have
time-reversal symmetry exactly. This property is very important for long-time simulation.

The velocity of the particles can be computed from

vi(t) ≈
ri(t+ h)− ri(t− h)

2h
. (11)

One problem with Verlet algorithm is how to get started, since one needs the values at two previous times.
Usually, the second-order differential equation will have a unique solution if the variables and their first
derivatives are given. In our case, if the initial positions ri(0) and velocities vi(0) are given, our solution r(t)
is uniquely determined. One way to start the simulation is to use

ri(h) = ri(0) + hvi(0) +
h2

2mi
Fi(0). (12)

The subsequent values ri(2h), ri(3h), etc, are obtained from the Verlet difference equation.

1–3. Symplectic algorithms

In the Verlet algorithm, our basic dynamic variables are the coordinates of the particles. And we have
a somewhat inconvenient situation that the initial conditions are specified as the initial positions and initial
velocities, while the difference scheme involves position only. As you may have learned from mechanics, it is
possible to reformulate the Newtonian mechanics so that both positions and momenta are the basic dynamic
variables. This formulation is called Hamiltonian dynamics (which is equivalent to Newtonian dynamics).
A Hamiltonian system is completely described by the Hamiltonian function (kinetic energy plus potential
energy)

H(p, q) = K + V, (13)
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together with Hamilton’s equations of motion

ṗi = −∂H
∂qi

, q̇i =
∂H

∂pi
, (14)

where H is considered to be a function of the generalized coordinates qi and generalized momentum pi.
The index i labels the degree of freedom, not the particle. The symplectic algorithm can be derived if the
Hamiltonian takes a simple form (see Ref. 3)

H =
∑

i

p2
i

2mi
+ V (q1, q2, · · ·). (15)

This is certainly the case if we use Cartesian coordinates and the interactions between particles depend only
on the positions of the particles. With this particular form of Hamiltonian, Hamilton’s equations can be
written as

ṗi = −∂V
∂qi

= Fi, q̇i =
∂K

∂pi
=

pi
mi

. (16)

The above equations reduce to Newton’s equations if one eliminates the variable pi. However, we’ll use these
equations to get integration schemes.

Algorithm A

We use an Euler type approximation for the momentum derivatives, and then a similar Euler algorithm
for the position derivatives. However, for the positions, we use immediately the new result for the momenta.
Thus, it is not exactly an Euler algorithm. For brevity, we’ll use a vector notation p = (p1, p2, · · · , pn)
and similarly for qi and Fi, and assume that all particles have the same mass m. With these notations and
assumption, we have

p(t+ h) = p(t) + hF
(
q(t)

)
, q(t+ h) = q(t) +

h

m
p(t+ h). (17)

Clearly, the algorithm is accurate to first order in h.

Algorithm B

We do exactly the same thing as in algorithm A, except that we reverse the order of calculation. The
new position is found first.

q(t+ h) = q(t) +
h

m
p(t), p(t+ h) = p(t) + hF

(
q(t+ h)

)
. (18)

If you compare algorithms A and B, you will find that it is not exactly the same. It is very interesting to note
that both algorithm A and B are in fact mathematically equivalent to the Verlet algorithm if you eliminate
the momenta from the equations. However, they have better roundoff error control over the plain Verlet
algorithm.

Now the algorithm that we really want.

Algorithm C (second-order symplectic algorithm or velocity form of the Verlet algorithm)

This algorithm is derived by dividing the step size h into two, for the first half step size h/2, we use the
algorithm A, for the second half of the step, we use the algorithm B. In total, we have full step size h. That
is, use the formula for algorithm A but set h/2. We get equations relating the quantities at time t to time
t+ h/2. Then we use the equations for algorithms B with step size again h/2, but the time is for t+ h/2 to
t+ h. We get four equations

p(t+ h/2) = p(t) +
h

2
F
(
q(t)

)
, q(t+ h/2) = q(t) +

h

2m
p(t+ h/2), (19)

q(t+ h) = q(t+ h/2) +
h

2m
p(t+ h/2), p(t+ h) = p(t+ h/2) +

h

2
F
(
q(t+ h)

)
. (20)

Now we eliminate the intermediate quantities evaluated at time t + h/2, we get the final result for the
symplectic algorithm

q(t+ h) = q(t) +
h

m
p(t) +

h2

2m
F
(
q(t)

)
, (21a)

p(t+ h) = p(t) +
h

2

[
F
(
q(t)

)
+ F

(
q(t+ h)

)]
. (21b)
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Note that the coordinates q have to be evaluated first since the new values at time t+h are used to evaluate
the forces.

The algorithm C is also second-order in step size h. From the derivation it is not obvious that it is
necessarily superior than Verlet algorithm. However, the symplectic algorithm has several advantages: (1)
just as the Verlet algorithm, it is time-reversible; (2) the system can be started naturally, with initial position
q0 and initial momentum p0 = mv0; (3) more importantly, the symplectic algorithms A, B, and C have
one important property that share with the original Hamiltonian system—they preserve Poincaré invariants.
This last property of Hamiltonian system is usually discussed in advanced mechanics or dynamical system
courses. It is about the phase space (p, q) flow property. A solution with initial condition (p0, q0) of the
Hamiltonian system p = p(t, p0, q0), q = q(t, p0, q0) can be viewed as a map in the phase space from the point
(p0, q0) to the point (p, q), where the time parameter t is taken as some constant. The map is also called a
canonical transformation, or symplectic transformation. One of the series of Poincaré invariants is the phase
space volume. Certain region of points of volume Ω0 can be mapped to a set of new points forming volume Ω.
Invariance means Ω = Ω0. This is called Liouville theorem. Not only is the volume in phase space invariant
under the mapping of the dynamics, but also there are other lower dimensional objects (hypersurfaces) which
are invariant. The symplectic algorithms preserve this invariant property exactly.

Final comment on integration algorithms: a valid algorithm should be consistent—the difference equation
approaches the differential equation as the step size h → 0. The algorithm should be convergent—the
difference between the exact value and the approximate numerically value approaches zero as h → 0. And
finally it should be stable—the overall error do not grow with iterations. The last condition probably is very
hard to satisfy due to the nature of (chaotic) dynamics. But it should be under reasonable control. From our
experience, one would say that simple algorithm does not mean it is bad algorithm; complicated algorithm
does not mean it is a good one.

2. Few-Body Problem, Planetary Motion

Before studying the more complicated many-body system of fluids, we like to test our numerical algo-
rithms on simpler problem of few-body planetary motion. A two-body problem of the motion of the Earth
and Sun is a classic example of Newtonian mechanics. As is well known, we can reduce the problem so that
the Sun is fixed at the center. The other planet takes three possible types of orbits: ellipse, parabola, and
hyperbola. If we add one more planet, say the Moon, then the three-body problem can no longer be solved
by hand. There is no analytical solution any more.

Let’s consider a numerical solution of the three-body problem consisting of the Sun which is fixed at
the center of coordinate system, with mass M , the Earth with mass m and position r, and the Moon with
mass m′ and position r′. For simplicity, we assume that both the Earth and the Moon move in the same
two-dimensional plane, so that the vectors will be understood as two-dimensional vectors containing just x
and y components. The magnitude of the gravitational force between any pair of objects is

F = G
mM

r2
, (22)

that is, the gravitational force is proportional to the masses of the objects, and is inversely proportional to
the distance square. The direction of the force is always attractive and is towards the other object. The
gravitational constant is G ≈ 6.673× 10−11 m3kg−1s−2. We have two coupled Newton’s equations of motion,
one for the Earth and one for the Moon:

m
d2r

dt2
= −GmMr

r3
− Gmm′(r− r′)

|r− r′|3 , (23a)

m′
d2r′

dt2
= −Gm

′Mr′

r′3
+
Gmm′(r− r′)
|r− r′|3 , (23b)

where r = |r| =
√
x2 + y2. The first term of the both equations on the right-hand side is the attractive

force due to the Sun, the second term is mutual interactions between the Earth and the Moon. The vector
notation takes care of the magnitude as well as the directions of the forces.

Before plugging the equations into a computer, we need to change all the symbols to numbers. If we
want to study the actual motions of the Sun-Earth-Moon system, we’d better use the correct constants for
G, M , m, and m′. However, we should not do this näıvely, since they are very large or very small numbers
that we might get overflow or underflow in calculations. It is better to normalize the basic units so that the
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typical quantities are not very far from 1. For this exercise, which tries to explore the general features, we
can take, say, G = 1, M = 100, m = 1, and m′ = 0.1. This amounts to take different units than second,
meter, and kilometer and to use a particular mass ratios of the objects. With this comment in mind, it is
a straightforward task to implement a numerical integration of the Newton’s equations. For example, if we
use the Verlet algorithm, we can follow the motion of the planets as

r(t+ h) = −r(t− h) + 2r(t) + h2

[
−GMr(t)

r3(t)
− Gm′

(
r(t) − r′(t)

)

|r(t)− r′(t)|3

]
, (24a)

r′(t+ h) = −r′(t− h) + 2r′(t) + h2

[
−GMr′(t)

r′3(t)
+
Gm

(
r(t)− r′(t)

)

|r(t) − r′(t)|3

]
. (24b)

3. Simulation of Lennard-Jones Fluid System

3–1. Potential energy, force, and equations of motion

Lennard-Jones system is a relatively simple system to study by molecular dynamics. The principle
to simulation other systems, e.g., biological molecules, is the same except that the forces between atoms
become more complicated. Consider a box of point particles with equal mass m, any pair of particles has an
interaction which is attractive when the distance is far, and repulsive when the particles are very close. This
is described by the Lennard-Jones potential

V (r) = 4 ε

[(σ
r

)12

−
(σ
r

)6
]
. (25)

r

V(r)

The attractive part with a −1/r6 dependence is called dispersive force (or van der Waals force) which is due
to induced dipole moments of electron clouds of two atoms. The repulsive part is due to Pauli exclusion
principle of electrons, which forbids two electrons to occupy the same state. The atoms behave as if they are
solid balls of diameter roughly σ. The actual form of the repulsive force is not exactly 1/r12, but it is a good
approximation and is also computationally more convenient.

The force acting on the second particle located at r2 due to the presence of the first particle located at
r1 is

F21 = −dV (r)

dr
r̂, r = r2 − r1, (26)

where r = |r| is the distance and r̂ = r/r is a unit vector pointing from r1 to r2. The vector notation takes
care of the direction of the force. This form of force satisfies Newton’s third law—the force acting on the
first particle by the second particle is F12 = −F21. The Newton’s equation for the i-th particle is

m
d2ri
dt2

=

N∑

j=1

Fij . (27)

3–2. Periodic boundary conditions

In a computer simulation, we usually put the particles in a box of size Ld with periodic boundary
condition. We can view the periodic boundary condition as the box repeated infinite number of times in
all directions, so that each particle located at the position ri have images at ri + lLî + mLĵ + nLk̂ (in

three dimensions), where l, m, and n are integers, î, ĵ, and k̂ are mutually perpendicular unit vectors of the
Cartesian coordinate axes. Alternatively, we can put the system on a (three-dimensional) torus, but still use

the Euclidean distance. That is, the distance between two particles is r =
√

∆x2 + ∆y2 + ∆z2, where ∆x is
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the smaller one of |x2 − x1| and L− |x2 − x1|. The shorter one when going from x1 to x2 (in x-direction) on
a ring is used. ∆y and ∆z are similar defined. Care must be taken when calculating the direction of force or
the vector r2 − r1 with periodic boundary condition.

3–3. Conservation laws

From Newtonian mechanics, we know that such a system has several conservation laws. The total
momentum is conserved if there is no external force. This is the case if we simulation the system in a box
with periodic boundary conditions. We should expect

P =
N∑

i=1

mvi =
N∑

i=1

m
dri
dt

(28)

to be a constant. The total angular momentum,

L =

N∑

i=1

mri × vi, (29)

is also conserved if there is no external torque. Unfortunately, this quantity is not conserved if we consider
the system living on a torus, why?

The most important conserved quantity in the simulation is the total energy:

E = K + V =
N∑

i=1

1

2
mv2

i +
N−1∑

i=1

N∑

j=i+1

V
(
|ri − rj |

)
. (30)

This equation can be used to test your algorithm. Deviations from energy conservation will occur in simulation
due to discretization and roundoff error. Note that both the Verlet algorithm and symplectic algorithms do not
conserve energy exactly, even though the original Newton’s differential equations respect energy conservation.
However, there exists quantity which are exactly conserved, and which differs from the total energy by a higher
order term in h. By the way, the total momentum conservation is obeyed exactly for the algorithms (why?).

3–4. Statistical ensembles

In the molecular dynamics simulation scheme outlined above, we have implied that the system has a
fixed number of particles N in a box of volume V = Ld. Also the dynamics is such that the total energy E
is a constant fixed at some value. In statistical mechanics, systems with fixed N , V , and E form so-called
microcanonical ensemble. Our molecular dynamics simulation is thus a microcanonical one. It is possible
to have canonical molecular dynamics, where the temperature T , number of particle N , and the volume are
constants. We’ll study those methods later on.

3–5. Micro-Macro connection

The prefix micro- refers to something that is very small, e.g., microscopic, micro-computer, and microfilm.
The prefix macro- is the opposite, e.g., macroscopic, macrocosm. The ancient Greek natural philosophy is
to interpret all macroscopic phenomena by the smallest constitutes of matter—atoms. This really becomes
possible only in modern times. Back to our molecular dynamics. It is not very useful if you just print out
the positions of thousand particles at each time step. These ‘microscopic’ quantities have to be somehow
analyzed in some way so that we can compare them with real experiments. The theory for this micro-macro
connection is statistical mechanics.

One of the most important feature of physical system (e.g., our molecular dynamical system) is that it
tends to reach a state that the macroscopic quantities do not very with time if we leave the system undisturbed.
This state is called an equilibrium state. Statistical mechanics studies mostly equilibrium systems. If we
start our molecular system with some arbitrary initial condition, it will not be in thermodynamic equilibrium.
However, if we let the system develop according to Newton’s law of motion, it will get into equilibrium after
sometime. Statistical mechanics has many predictions about the equilibrium properties which we’ll just
quote. Read your StatMech text book for more information.

(1). Microcanonical distribution (fundamental distribution)

For system at fixed N , V , and E, the probability density of finding the system in the phase space X =
(p, q) = (p1, p2, · · · , q1, q2, · · ·) is a constant on the energy surface, and zero outside the energy surface. In
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other words, the phase space point X can be anywhere equally likely on the constant energy hypersurface.
The probability being in a particular region is proportional to the volume of the region.

We can view the above statement as the basic assumption of statistical mechanics. Its validity depends
on two important properties of the system: ergodicity and mixing. Complex systems like our Jennard-
Jones particles in a box have these properties, while a simple system like the harmonic oscillator does not.
Ergodicity means that for almost all starting point X0 in phase space, following the dynamics of the system,
it is possible to reach a neighborhood of any other point X . This allows us to replace the trajectory time
average by phase space average or vice versa. This forms the basic link between statistical-mechanical theory
and molecular dynamics simulation. Mixing means that the phase space points spread uniformly in the long
time limit.

(2). Maxwell velocity distribution

If we look at a particular particle, its velocity will change at random. In fact, the values of velocity will
obey some probability distribution. Equivalently, if we look at the velocities of all the particles at a given
time, they should form the same distribution. This is the Maxwell velocity distribution

P (v) ∝ exp
(
−1

2
mv2/(kBT )

)
, (31)

where kB is Boltzmann constant, and T is temperature. The proportionality constant is determined by the
normalization condition ∫

d3vP (v) = 1. (32)

We can also consider the distribution of the speed v = |v|, which is (in three dimensions)

f(v) dv = 4π

(
m

2πkBT

)3/2

v2 exp

(
− mv2

2kBT

)
dv. (33)

(3). Equipartition theorem

If you calculate the average kinetic energy of each degree of freedom using the Maxwell distribution, you
get the equipartition theorem

1

2
kBT =

〈1

2
mv2

ix

〉
=

1

3

〈1

2
mv2

〉
, (34)

where vix is the x-component of the velocity of the i-th particle. This equation can be conveniently used to
calculate the temperature of the system.

(4). Equation of state

The equation of state is a relation between volume, temperature, and pressure. We can calculate the
pressure from

PV = NkBT +
1

3

〈∑

i<j

(ri − rj) · Fij
〉
, (35)

where the summation runs over each pair of interactions exactly once [N(N − 1)/2 terms]; each term is the
scalar (dot) product of the pair interaction force and the distance vector. The above result is known as virial
theorem.

(5). Pair correlation function g(r)

This is an important function which characterizes the system. Given a particle at some position, g(r)d3r
is the average number of particles in the volume element dV = d3r, located at a distance r away from the
given particle. This function can be easily calculated from molecular dynamics, by taken a statistics of
distances between particles.

If we know the pair correlation function, the average total potential energy and equation of state can be
calculated. 〈∑

i<j

V
(
|ri − rj |

)〉
=

2πN2

V

∫ ∞

0

V (r) g(r) r2dr. (36)

PV = NkBT −
N2

6V

∫ ∞

0

dV (r)

dr
g(r) 4πr3dr. (37)
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3–6. Details of molecular dynamics implementation

In any numerical calculation, it is best to reduce quantities to dimensionless numbers. For the Lennard-
Jones system, we have natural scales from the potential. The length can be measured in terms of the parameter
σ. The scale for energy is ε. We measure temperature in unit of ε/kB so that the combination kBT/ε is
a dimensionless number. We use the combination

√
mσ2/48ε as the unit of time, which is proportional to

the vibrational period of a two-body Lennard-Jones particle. In terms of the dimensionless variables, the
Hamilton’s equation for the Lennard-Jones system is

dpi
dt

=
∑

j 6=i
(ri − rj)

[
r−14
ij − 1

2
r−8
ij

]
, (38a)

dri
dt

= pi = vi, (38b)

where the reduced coordinates and time are defined as

ri ≡
ri
σ
, t ≡ t

√
48ε

mσ2
, rij ≡ |ri − rj |. (39)

For each particle we need to calculate the total force acting on it by other particles. In the following
particular implementation, we did not use periodic boundary condition, rather, we put the particles in side
a box with repulsive hard wall. Each particle, besides interacting with every other particles, also interacts
with the walls, by the form of wall potential

Vwall(x) =
a

x9
, (40)

where x is the perpendicular distance to the wall. Clearly, the force quickly decreases to zero away from the
wall. In two dimensions, we have four terms for each of the four walls. This is purely for a better, more
realistic graphic display. It is not done in usual molecular dynamics simulation which typically use periodic
boundary conditions. It is not difficult to modify the program to adopt a periodic boundary condition.

After we calculated the forces due to walls for each particle, we go through each pair of particles (i, j)
exactly once. There are two forces associated with each pair of particles—the force acting on particle i from
particle j and other way around. They are equal in magnitude and opposite in sign. We accumulate this
force for particle i (due to particle j) and for particle j (due to particle i).

To make the program very concise, we use a one-dimensional arrays for positions, momenta (same as
velocity when mass is taken to be 1), and forces. Thus, q[0] is the x-component of the first particle; q[1]
is the y-component of the first particle; q[2] is the x-component of the second particle, and similar for other
quantities. The following function calculates the force f[ ] on each particle when the particles are at locations
specified by q[ ].

int L;

void force( double q[], double f[], int n)

{

double xl, xr, r2, LJforce, dx, dy;

int i, j;

for (i = 0; i < n; ++i) {

xl = q[i];

xr = L - q[i];

f[i] = pow(xl, -9) - pow(xr, -9);

}

for (i = 1; i < n/2; ++i)

for (j = 0; j < i; ++j) {

dx = q[2*j ] - q[2*i ];

dy = q[2*j+1] - q[2*i+1];

r2 = dx*dx + dy*dy;

LJforce = ( pow(r2,-7) - 0.5*pow(r2,-4) );
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f[2*i ] = f[2*i ] - LJforce*dx;

f[2*i+1] = f[2*i+1] - LJforce*dy;

f[2*j ] = f[2*j ] + LJforce*dx;

f[2*j+1] = f[2*j+1] + LJforce*dy;

}

}

The application of the symplectic algorithm is straightforward. The function takes the current values
of positions, momenta, and forces, replaces them by the values when time is elapsed by h. Note that we do
not need to calculate the forces twice. We rewrite the algorithm C in the following equivalent way (assuming
mass mi = 1):

pn+ 1
2

= pn +
h

2
f(qn), (41a)

qn+1 = qn + hpn+ 1
2
, (41b)

pn+1 = pn+ 1
2

+
h

2
f(qn+1). (41c)

In the very start before this function is called, one must call the force() function just once to initialized the
force f[ ].

#define nmax 200

void symplectic(double p[], double q[], double f[], int n)

{

const double h = 0.06;

double t[nmax];

int i;

for (i = 0; i < n; ++i) {

t[i] = p[i] + 0.5 * h * f[i];

q[i] = q[i] + h * t[i];

}

force(q,f,n);

for (i = 0; i < n; ++i)

p[i] = t[i] + 0.5 * h * f[i];

}

We have not discussed how to choose the step size h. Clearly, h can not be too large, otherwise, our
numerical trajectory will deviate greatly from the true path. But more importantly, the algorithm becomes
unstable for large value of h. As a rule of thumb, the value h should be about 1/10 or 1/20 of the smallest
vibrational period of the system. For the Lennard-Jones particle system, this means that the dimensionless
h should be about 0.1 or smaller.

3–7. Phase diagram of simple fluids

The Lennard-Jones model system shows all the common phases of matter—gas, liquid, and solid. The
phase diagrams of the system is sketched here. They can actually computed from the method outlined above.
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4. Nosé-Hoover Molecular Dynamics

In the molecular dynamics discussed in the previous sections, the system has a fixed number of particles
N , fixed volume V , and fixed total energy E. Such a system is called microcanonical. These constraints are
quite natural from Newtonian-dynamical point of view. In statistical mechanics, we deal most conveniently
with canonical ensemble, which has a fixed number of particles N , fixed volume V , and fixed temperature T .
It is also possible to simulate such systems by molecular dynamics. Such algorithms introduce addition forces
to the Newton’s equations. The forces are introduced purely for the seek of producing correct ensemble, they
are not real forces. Thus these systems are somewhat artificial and less fundamental. There are a number
of methods which realizes canonical system, one of them is to rescale velocities at each time step. Here we’ll
just introduce the elegant method of Nosé-Hoover (Ref. 4).

4–1. Isothermal molecular dynamics (canonical ensemble)

The new dynamical equation proposed by Nosé and Hoover in 1984 is the following,

q̇ =
p

m
, (42a)

ṗ = f(q)− ζp, (42b)

ζ̇ =
1

dNτ2

∑

i

[
p2
i

mkBT
− 1

]
. (42c)

The notations p and q stand for the vector (p1, p2, . . .) and (q1, q2, . . .), as before. The frictional coefficient
ζ is a scalar variable introduced to realize the canonical ensemble. Note that if we set ζ = 0, we reduce the
equations to Hamilton’s equations of motion. The temperature T appears in the equation, which sets the
equilibrium temperature of the system. The parameter τ is an arbitrary constant, d is dimension, and N is
the number of particles.

It can be shown that the canonical distribution augmented by a Gaussian distribution in the frictional
coefficient:

P (p, q, ζ) ∝ exp

[
−H(p, q)

kBT
− 1

2
ζ2τ2

]
, (43)

is a steady state distribution of the Nosé-Hoover dynamics. This guarantees that the time average over the
trajectories of the system is equal to the average over the canonical distribution.

We can rewrite the Nosé-Hoover dynamics in a more familiar Newtonian form:

mv̇i = Fi − ζmvi, ζ̇ =
1

τ2

[
K

K0
− 1

]
, (44)

K =

N∑

i=1

1

2
mv2

i , K0 =
1

2
dNkBT. (45)

Here K is total kinetic energy, K0 is average kinetic energy, and d is the dimension of the system. This set
of equations can be solved with an algorithm similar to that of Verlet as

ri(t+ h) = 2ri(t)− ri(t− h) +
h2

m
Fi(t)−

1

2h
ζ(t)

[
ri(t+ h)− ri(t− h)

]
, (46a)

ζ(t + h) = ζ(t) +
h

τ2

[
K(t+ h/2)

K0
− 1

]
, K(t+ h/2) =

m

2h2

∑

i

(
ri(t+ h)− ri(t)

)2
. (46b)

The difference scheme here is also exactly time-reversible, which means that if you start from ri(−h), ri(0),
and ζ(0), the system develops to ri

(
(n− 1)h

)
, ri(nh), and ζ(nh), after n steps with positive h. Now if you

run the system backwards, namely, starting from ri(nh) as the previous position, ri
(
(n−1)h

)
, as the current

position and ζ
(
(n− 1)h

)
, applying the recursion relation after n steps with h negative, you get back exactly

the starting values. This cannot be true if a fourth-order Runge-Kutta method were used. This time-reversal
symmetry is the key ingredient for long-time stability of the algorithm.

In the usual microcanonical molecular dynamics, total energy is a constant. This is no longer so in the
canonical dynamics. Nevertheless, there exists an analogous quantity which is a constant of the motion:

C = K + V +K0(τζ)2 + 2K0

∫ t

ζ(t′) dt′. (47)

57



This equation can be used to check the stability of integration schemes.

4–2. Isothermal-isobaric molecular dynamics

An isothermal-isobaric ensemble is a one with fixed number of particles N , temperature T , and pressure
P0. Most experimental conditions are of this type. In an isothermal-isobaric ensemble volume is a variable.
The canonical distribution is replaced by

P (p, q, V ) ∝ exp

(
−H(p, q) + P0V

kBT

)
, (48)

where H = K + V is total energy, P0 is the constant pressure. In this ensemble, the logarithm of the
(isothermal-isobaric) partition function is −G/kBT , G is Gibbs free energy.

The generalization of the Newton’s equations of motion is

ẍi =
Fi
mL
− (ζ + 2ε) ẋi, (49a)

ε̇ =
V (P − P0)

kBTτ2
V

, ε =
L̇

L
, (49b)

ζ̇ =
1

τ2
T

[
K

K0
− 1

]
, K0 =

1

2
dNkBT, (49c)

where xi = ri/L is the coordinate vector normalized by the length of the box; the volume of the box is
V = Ld; τV and τT are two parameters; P and K are the instantaneous pressure and kinetic energy, defined
by

PV =
2

d

∑

i

1

2
mv2

i +
1

d

∑

i<j

rij · Fij ; (50)

K =
∑

i

1

2
mv2

i . (51)

5. Brownian Dynamics

Brownian dynamics is a combination of molecular dynamics and Monte Carlo. Particles move according
to some equations of motion, just like molecular dynamics. However, from time to time, they subject to
random forces. Those forces represent the influence of the environment. Because the system has thermal
contact with the surrounding, it establishes thermal equilibrium at a fixed temperature. Thus, Brownian
dynamics is another way of simulating canonical ensemble. We’ll introduce the idea of Brownian dynamics
briefly, and will not explain in great details, since this kind of dynamics is less fundamental from the point
of view of physics, and it is also used less frequently.

5–1. A one-dimensional example

Consider a particle moving in one dimension. We may imagine that the particle is moving a medium,
say water, so that there will be a dissipative frictional force −ζmv. In addition, the small water molecules
produce random force R(t) acting on the particle. Thus the particle performs a random motion. This kind
of random motion was first observed experimentally by Brown. We can write down the Newton’s equation
of motion (called Langevin’s equation) as

m
dv

dt
= R(t)− ζmv. (52)

The random force is assumed to be a Gaussian distribution

P (R) =
1√

2πσ2
e−

R2

2σ2 , (53)

The values at different times are uncorrelated
〈
R(t)R(0)

〉
= 2ζmkBTδ(t), (54)

where δ(t) is the Dirac-δ function. Since the differential equation involves random variable, it is called
a stochastic differential equation. Because of the random force, velocity of the particle is also a random
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variable. It can be shown that the velocity in fact obeys Maxwell distribution (in one dimension):

P (v) =
1√

2πmkBT
e
− v2

2mkBT , (55)

5–2. Many particle system

This idea can be generalized to many-particle interacting systems. We add a time-dependent stochastic
force to Newton’s equation,

mv̇i = Fi + Ri(t). (56)

In one possible implementation of the above scheme, the random force is not really dealt with. One simply
replaces the velocity with a different value drawn from a Maxwell distribution from time to time. As in the
usual microcanonical molecular dynamics, the particles move according to Newton’s equations of motion.
After certain time interval, the normal dynamics is interrupted. Some particle is picked up and its velocity is
replaced with a new value from Maxwell distribution. This process of replacing the velocity of the particles
can be thought of as collisions of the particle with another imaginary (virtual) particle, which changes the
velocity. This changes the kinetic energy and thus total energy, leading to a canonical distribution of the
system.
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