Quantum Results from Classical Molecular Dynamics

Jian-Sheng Wang

Department of Physics, National University of Singapore

Outline

- Thermal transport problems
- Classical molecular dynamics (MD) for thermal transport – advantages and disadvantages
- Quantum "correction" after MD simulations
- QMD classical MD with quantum baths
 - Derivation & results
- QMD to electron transport and electron-phonon interactions
- Outlook and conclusion

Fourier's law for heat conduction

Fourier, Jean Baptiste Joseph, Baron (1768-1830) $\mathbf{J} = -\kappa \nabla T$

 $\tilde{f}[\omega] = \int_{-\infty}^{+\infty} f(t) e^{i\omega t} dt$

Diffusive transport vs ballistic transport

Thermal conductance

$$I = (T_L - T_R)\sigma$$
$$\kappa = \sigma \frac{L}{S}, \quad I = SJ$$

Experimental report of Z Wang et al (2007)

The experimentally measured thermal conductance is 50pW/K for alkane chains at 1000K. From Z Wang et al, Science 317, 787 (2007).

"Universal" thermal conductance in the low temperature limit

$$\sigma \simeq M \, \frac{\pi^2 k_B^2 T}{3h}$$

Rego & Kirczenow, PRL 81, 232 (1998).

Schwab et al experiments

From K Schwab, E A Henriksen, J M Worlock and M L Roukes, Nature, 404, 974 (2000).

Classical molecular dynamics

- Molecular dynamics (MD) for thermal transport
 - Equilibrium ensemble, using Green-Kubo formula
 - Non-equilibrium simulation
 - Nosé-Hoover heat-bath
 - Langevin heat-bath
 - Velocity scaling heat source/sink
- Disadvantage of classical MD
 - Purely classical statistics
 - Heat capacity is quantum below Debye temperature
 - Ballistic transport for small systems is quantum

Quantum corrections

- Methods due to Wang, Chan, & Ho, PRB 42, 11276 (1990); Lee, Biswas, Soukoulis, et al, PRB 43, 6573 (1991).
- Compute an equivalent "quantum" temperature by

$$Nk_{B}T = \sum_{\omega} \hbar \omega \left(\frac{1}{\exp(\hbar \omega / k_{B}T_{Q}) + 1} + \frac{1}{2} \right)$$
(1)

• Scale the thermal conductivity by

$$\kappa = \kappa_{\rm MD} \frac{dT}{dT_{\rm Q}} \tag{2}$$

But we have a criticism to this method

Thermal conduction at a junction

semi-infinite leads serve as heat baths

Junction Part

Quantum heat-bath & MD

 Consider a junction system with left and right harmonic leads at equilibrium temperatures T_L & T_R, the Heisenberg equations of motion are

$$\begin{split} \ddot{u}_{L} &= -K^{L}u_{L} - V^{LC}u_{C}, \\ \ddot{u}_{C} &= F^{C} - V^{CL}u_{L} - V^{CR}u_{R}, \\ \ddot{u}_{R} &= -K^{R}u_{R} - V^{RC}u_{C} \end{split}$$

• The equations for leads can be solved, given
$$\left(\begin{array}{c} \vdots \end{array}\right)$$

$$u_{L}(t) = u_{L}^{0}(t) + \int_{-\infty}^{t} g_{L}(t-t') V^{LC} u_{C}(t') dt', \qquad (4)$$

where

$$\left(\frac{d^2}{dt^2}+K^L\right)u_L^0(t)=0,\quad \left(\frac{d^2}{dt^2}+K^L\right)g_L(t)=-\delta(t)I$$

 $u = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_j \end{pmatrix}$ (3)

Quantum Langevin equation for center

Eliminating the lead variables, we get

$$\ddot{u}_{C} = F^{C} - \int_{-\infty}^{t} \Sigma(t - t') u_{C}(t') dt' + \xi_{L} + \xi_{R}$$
⁽⁵⁾

where retarded self-energy and "random noise" terms are given as

$$\Sigma = \Sigma_{L} + \Sigma_{R}, \quad \Sigma_{\alpha} = V^{C\alpha} g_{\alpha} V^{\alpha C},$$

$$\xi_{\alpha} = -V^{C\alpha} u_{\alpha}^{0}, \quad \alpha = L, R$$
(6)

(such idea for classical ensemble appears as early as in 1976, Adelman & Doll, JCP.)

Properties of the quantum noise

$$\langle \xi(t) \rangle = 0,$$

$$\langle \xi_{L}(t)\xi_{L}^{\dagger 0}(t') \rangle^{0} = V^{CL} \langle u_{L}(t)u_{L}(t')^{T} \rangle V^{LC}$$

$$= V^{CL}i\hbar g_{L}^{>}(t-t')V^{LC} = i\hbar \Sigma_{L}^{>}(t-t'),$$

$$\langle \xi_{L}^{\dagger}(t')\xi_{L}(t) \rangle^{T} = i\hbar \Sigma_{L}^{<}(t-t'),$$

$$(8)$$

$$\int_{-\infty}^{+\infty} \langle \xi_{L}^{\dagger}(t')\xi_{L}(t) \rangle^{T} e^{i\omega t} dt = i\hbar \Sigma_{L}^{<}[\omega] = -2\hbar f(\omega) \mathrm{Im} \Sigma_{L}[\omega]$$

$$(9)$$

For nonequilibrium Green's function (NEGF) notations, see JSW, Wang, & Lü, Eur. Phys. J. B, 62, 381 (2008).

Quasi-classical approximation, Schmid (1982)

- Replace operators $u_c \& \xi$ by ordinary numbers
- Using the symmetrized quantum correlation, $i\hbar(\sum + \sum)/2$ for the correlation matrix of ξ .
- For linear systems, quasi-classical approximation turns out exact! See, e.g., Dhar & Roy, J. Stat. Phys. 125, 805 (2006).

Delta singularities in self-energy

The surface density of states vs frequency for a 2 unit cell (8 atoms) wide zigzag graphene strip. The delta peaks are consistent with the localized edge modes shown on the left. JSW, Ni, Jiang, Phys. Rev. B 80, 224302 (2009).

Implementation

Generate noise using fast Fourier transform

$$\xi(t = lh) = \frac{1}{hM} \sum_{k} \tilde{\xi}_{k} e^{-i2\pi lk/M}$$
(10)

- Solve the differential equation using velocity Verlet
- Perform the kernel integration using a simple rectangular rule
- Compute energy current by

$$I_{L} = -\left\langle \frac{dH_{L}}{dt} \right\rangle = \left\langle \dot{u}_{C}^{T} \left(-\int_{-\infty}^{t} \Sigma_{L}(t-t')u_{c}(t')dt' + \xi_{L} \right) \right\rangle$$
(11)

Comparison of QMD with NEGF

Equilibrium simulation

1D linear chain (red lines exact, open circles QMD) and nonlinear quartic onsite (crosses, QMD) of 128 atoms. From Eur. Phys. J. B, 62, 381 (2008).

From ballistic to diffusive transport

1D chain with quartic onsite nonlinearity (Φ^4 model). The numbers indicate the length of the chains. From JSW, PRL 99, 160601 (2007).

$$\sigma = \kappa \frac{\mathsf{S}}{\mathsf{L}}, \quad \mathsf{J} = -\kappa \nabla \mathsf{T}$$

FPU-β model

It is not clear whether QMD over or under estimates the nonlinear effect. From Xu, JSW, Duan, Gu, & Li, PRB 78, 224303 (2008).

Conductance of graphene strips

PRB 2009.

22

Zigzag (5,0) carbon nanotubes

Temperature dependence of the thermal conductance (and conductivity) for lengths 4.26 (green), 12.8 (red) and 25.6 (blue) nm, respectively. JSW, Ni and Jiang, PRB 2009.

Electron transport & phonons

• For electrons in the tight-binding form interacting with phonons, the quantum Langevin equations are (set $\hbar = 1$)

$$i\dot{c} = Hc + \int_{-\infty}^{t} \Sigma(t-t')c(t')dt' + \xi + M^{k}u_{k}c, \qquad (12)$$

$$\ddot{u} = -Ku - \int_{-\infty} \Pi(t - t')u(t')dt' + \eta - c^{\dagger}Mc$$
⁽¹³⁾

$$\left\langle \xi(t)\xi(t')^{\dagger\dagger} \right\rangle = i\Sigma^{>}(t-t'), \quad \left\langle \xi(t')\xi(t) \right\rangle^{T} = -i\Sigma^{<}(t-t'), \quad (14)$$
$$\left\langle \eta(t)\eta(t')^{\dagger} \right\rangle = i\Pi^{>}(t-t'), \quad \left\langle \eta(t')\eta^{T}(t) \right\rangle^{T} = i\Pi^{<}(t-t') \quad (15)$$

24

Quasi-classical approximation & NEGF

To lowest order in coupling *M*, quasiclassical approximation is to replace all $G^>$ by $-G^<$.

Ballistic electron transport, NEGF vs QMD

Nearest neighbor hopping model with two sites in the center, lead hopping $-h_{\rm I} = 0.1$ eV, varying the center part hopping term. From Lü & JSW, arXiv:0803.0368. For NEGF method of electron-phonon interaction, see Lü & JSW, PRB 76, 165418 (2007).

Strong electron-phonon interactions

Two-center-atom model with Su, Schrieffer & Heeger electron-phonon interaction. Lines are NEGF, dots are QMD. From Lü & JSW, J. Phys.: Condens. Matter, 21, 025503 (2009).

QMD is exact in low electron density limit

Ballistic to diffusive

σ (e²/2πh)

Electronic conductance vs center junction size *L*. Electron-phonon interaction strength is *m*=0.1 eV. From Lü & JSW, arXiv:0803.0368.

Electrons as a heat bath (Lü, Brandbyge, et al, based on path-integral formulism)

$$\begin{split} \ddot{u} &= F^{C} + F_{e} - \int_{-\infty}^{t} \Pi(t-t')u(t')dt' \\ &- \int_{-\infty}^{t} \Sigma_{e}(t-t')u(t')dt' + \eta + \xi_{e} \end{split}$$

A simplified QMD?

 Consider the following Langevin equation for lattice vibration [Keblinski & JSW, unpublished; see also Buyukdagli, et al, PRE 78, 066702 (2008); Ceriotti, et al, JCTC (2010)]:

$$\ddot{u} = -Ku - \gamma \dot{u} + \xi(t), \qquad (16)$$

$$\langle \xi(t) \rangle = 0, \quad \langle \xi(t) \xi(t')^T \rangle = C(t) I,$$
 (17)

$$\tilde{c}[\omega] = \int_{-\infty}^{+\infty} c(t) e^{i\omega t} dt = 2\gamma \hbar \omega \left[f(\omega) + \frac{1}{2} \right]$$
(18)

 then in the limit of small damping (γ→ 0), the energy of the vibrational modes is given exactly as that of the corresponding quantum system.

Conclusion & outlook

- QMD for phonon is correct in the ballistic limit and high-temperature classical limit
- Much large systems can be simulated (comparing to NEGF)
- Quantum corrections in dynamics?
 - Solve a hierarchical set of Heisenberg equations (Prezhdo et al, JCP)
 - Two-time dynamics (e.g., Koch et al, PRL 2008)?
 - Can we treat the noises ξ & η as operators (i.e. matrices) thus restore ∑[>] ≠∑[<]?

Collaborators/students

- Baowen Li
- Pawel Keblinski
- Jian Wang
- Jingtao Lü
- Jin-Wu Jiang
- Eduardo Cuansing
- Nan Zeng
- Lifa Zhang
- Xiaoxi Ni

- Saikong Chin
- Chee Kwan Gan
- Jinghua Lan
- Yong Xu

- Bijay Kumar Agarwalla
- Thingna Juzar Yahya

Definitions of Phonon Green's functions

$$D_{jk}^{r}(t,t') = -i\theta(t-t') \langle [u_{j}(t), u_{k}(t')] \rangle,$$

$$D_{jk}^{a}(t,t') = i\theta(t'-t) \langle [u_{j}(t), u_{k}(t')] \rangle,$$

$$D_{jk}^{>}(t,t') = -i \langle u_{j}(t)u_{k}(t') \rangle,$$

$$D_{jk}^{<}(t,t') = -i \langle u_{k}(t')u_{j}(t) \rangle,$$

$$D^{t}(t,t') = \theta(t-t')D^{>}(t,t') + \theta(t'-t)D^{<}(t,t'),$$

Relation among Green's functions

 $D^r - D^a = D^> - D^<,$ $D^t + D^{\overline{t}} = D^> + D^<,$ $D^t - D^{\overline{t}} = D^r + D^a,$

$$D^{r} = (D^{a})^{\dagger}$$
$$D^{r} = D^{t} - D^{<}$$
$$D^{<} = f(\omega) \left[D^{r} - D^{a} \right]$$
$$f(\omega) = \frac{1}{e^{\hbar \omega / (k_{B}T)} - 1}$$

Self-energy Feynman diagrams

From self-energy to Green's functions, to heat current

$$G^{r} = \frac{1}{\left(\omega + i\eta\right)^{2} - \mathcal{K}^{C} - \Sigma^{r} - \Sigma_{n}^{r}},$$

$$G^{<} = G^{r} (\Sigma^{<} + \Sigma_{n}^{<}) G^{a},$$

$$I_{L} = -\int_{-\infty}^{+\infty} \frac{d\omega}{2\pi} \omega \operatorname{Re} \operatorname{Tr} \left(G^{r} \Sigma_{L}^{<} + G^{<} \Sigma_{L}^{a}\right)$$