Singapore-MIT Alliance, CME5233 - Particle Methods and Molecular Dynamics

Tutorial 1, Monday 2:30-4:00, 6 Nov 2006

1. (a) Buffon needle problem. Prove the probability of the needle intersecting the equally spaced line is $P=2 L /(\pi d)$, where L is the length of the needle, and d is strip spacing, and $L<d$.
(b) More challenging one (extra credit). If the strips are alternating a and b with $L<$ $\min (a, b)$, what would be the answer for the intersecting probability?
2. Interesting fact. If the modulus $m=2^{\mathrm{e}}$, the low-order bits are much less random than the high-order bits in a linear congurential random number sequence. More precisely, the least significant bit is either constant or strictly alternating. The last two bits cannot have a period of more than 4 ; and the low-order four bits has a period of length 16 or less. To demonstrate this mathematically, let's define

$$
Y_{\mathrm{n}}=X_{\mathrm{n}} \bmod d,
$$

where d is a divisor of m, X_{n} is generated with the usual linear congruential method, $X_{\mathrm{n}+1}=\left(a X_{\mathrm{n}}+c\right) \bmod m$, show that
$Y_{\mathrm{n}+1}=\left(a Y_{\mathrm{n}}+c\right) \bmod d$.
That is Y_{n} is also a linear congruential sequence with modulus d, multiplier a, and increment c. Explain the stated fact.
3. Sampling random variables. A random variable ξ with a uniform probability distribution in the interval $[0,1)$ is given. Work out a method to generate a random integer $\mathrm{k} \geq 0$ from ξ with the probability distribution

$$
P_{\mathrm{k}}=(1-\alpha) \alpha^{\mathrm{k}}, \mathrm{k}=0,1,2,3, \ldots
$$

where α is some constant satisfying $0<\alpha<1$. [Hint, use the inverse distribution function method].

