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1 Introduction

A system may be characterized as dilute based on the “average” spacing between its
molecules

δ ∼ 3

√

1

n
or
δ

σ
∼ 3

√

1

nσ3

where n is the number density (number of atoms per unit volume) and σ is the effective
“diameter” of the molecule (referring to, for example, a Lennard-Jones model). We
see that the relevant quantity here is the non-dimensional number density n∗ = nσ3.
If n∗ ≪ 1 , then the system can be described as dilute, in other words, the volume per
particle (∼ n−1) is much larger than the volume of the particle (∼ σ3), or alternatively,
the relative spacing δ/σ is large.

Consider a simple (monoatomic gas) at atmospheric pressure with

ρ ∼ 1Kg
m3
, σ ≈ 3.6× 10−10m

The number density n is given by

n =
ρ

M

Kmoles

m3
=
ρ× 6.023× 1026

M

molecules

m3

where M =molecular weight. Plugging in,

M ∼ 30 Kg
Kmole

⇒ n ≃ 2× 1025 molecules
m3

or n∗ ≈ 0.001

As we can see from the example studied here, simple gases at atmospheric condi-
tions meet the dilute gas criterion. Air, although made from diatomic gases, can for
a number of applications, be thought of as a simple, dilute gas.
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In a dilute system one expects collisions between particles to be infrequent and,
because of the absence of other interactions, particles to travel most of the time
in straight lines. We will show below that in a dilute system the average distance
traveled by molecules between successive collisions with other molecules, known as
the mean free path λ, is given by

λ = 1/
(√
2πnσ2

)

For the particular gas we are studying here we get λ ≈ 5 × 10−8m. This number is
significantly larger than σ and thus we see that our assumption that particles travel
in straight lines most of the time seems to be justified. To generalize the above result
to all dilute gases, we write

λ

σ
=

1√
2πnσ3

Thus, λ≫ σ if n∗ ≪ 1.
From this simple analysis and the observation that in the absence of electrostatic

interactions the force-field between molecules decays to negligible levels within 3−4σ,
we conclude:

1. Molecules in a gas to a good approximation most of the time do not feel forces
from other molecules (δ ≫ σ). As a result, they travel in straight lines until
they have an “encounter” with another molecule.

2. Since λ ≫ σ, the time taken by the encounter (more generally the time that
the molecules are in the force-field of each other) is negligible, compared to the
motion timescale (time between collisions).

3. A condition for all of the above to be true is nσ3 ≪ 1, that is, the average
volume available to a particle is much larger than the volume of a particle.

The above conclusions support the use of a “billiard-ball” or hard-sphere model
in which particles of diameter d ≈ σ only interact during hard-sphere collisions.
Note that in liquids ρℓ ∼ 103ρg ⇒ nσ3 ∼ 0(1) i.e. δ ∼ σ

2 The Hard Sphere Gas in Equilibrium

The hard sphere gas is a very useful and powerful model. We can analyze very
complex phenomena in gases by using this model which is a good approximation of
physical reality.

We will first find the probability distribution of molecular velocities in equilibrium.
We will use the general statistical mechanical result that for a system in equilibrium
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at temperature T , the probability, P (S), of a particular state S of the system is
proportional to

P (S) ∝ exp{−E(S)/(kT )}
where E(S) is the energy of the system in state S and k = 1.38 × 10−23J/K is
Boltzmann’s constant. For our N -molecule billiard-ball model,

E =
N
∑

i=1

1

2
mU2i

where
U2 = |~U |2 = U2x + U2y + U2z .

We immediately see that the lack of interaction between molecules manifests itself in
the independence of the probability distribution functions of the N molecules i.e.

P
(

~U1, ~U2, . . . , ~UN
)

= C exp

{

−m (U
2
1
+ U2

2
+ U2

3
+ . . .+ U2N )

2kT

}

=

= P
(

~U1
)

· P
(

~U2
)

· P
(

~U3
)

. . . P
(

~UN
)

where C is a normalization constant.

This property allows us to define and use the single-molecule distribution function

f
(

~U
)

= A e−
mU

2

2kT

where

A =
(

m

2πkT

)3/2

is the appropriate normalization such that

∫

All ~U
f(~U) d~U =

∫

∞

−∞

∫

∞

−∞

∫

∞

−∞

f(~U) dUx dUy dUz = 1.

This is the famous Maxwell-Boltzmann distribution of velocities (in equilibrium).
Note that since the distribution is isotropic the angular parts can be integrated to
obtain the probability distribution of molecular speeds (U = |~U |) which is given by

f̂(U)dU = 4π
(

m

2πkT

)3/2

U2 e−
mU

2

2kT dU.
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2.1 Pressure in a dilute gas

As a simple example of the usefulness of f , consider the pressure in a dilute gas.
The pressure is the force per unit area exerted on a surface (real or imaginary) in
contact with the gas. Let us assume, without loss of generality, that the normal to
the surface coincides with the x-direction. We will consider particles striking the
surface moving from left to right (Ux > 0). The number of such particles of velocity
Ux that will collide with this surface in time ∆t, is equal to the number of particles in
a volume AUx∆t where A is the area of the surface. Since the particles are uniformly
distributed in space, this number can be written as nfAUx∆t. To find the total
momentum exchange per unit time we need to consider the change of momentum
(−2mUx) upon impact and integrate over all velocity classes i.e.,

1

∆t

∫

∞

0

∫

∞

−∞

∫

∞

−∞

−2mUxUxnfA∆tdUx dUy dUz

where the integration in Ux goes from 0 to ∞ because we are only integrating over
particles traveling from left to right (Ux > 0). The pressure is given by the negative
of this quantity (force by particles on wall is equal and opposite to force of wall on
particles) divided by the surface area, i.e.

P =
1

A∆t

∫

∞

0

∫

∞

−∞

∫

∞

−∞

2mUxUxnfA∆tdUx dUy dUz = nkT

We have obtained the ideal gas law.

In the above calculation we have used the following: If

In =
∫

∞

0

xne−αx
2

dx

then

I0 =
1

2

(

π

α

)1/2

, I1 =
1

2α
, I2 =

1

4

(

π

α3

)1/2

Note that in the above discussion we assumed that the molecules are specularly
reflected at the wall, that is, the velocity of the particle in the direction normal to
the wall is simply reversed by the collision with the wall. This is possible because
in equilibrium this model is equivalent to a diffuse reflection model where molecules
are re-emitted from the surface with a new velocity drawn from the wall distribution.
This is because, for the gas and the wall to be in equilibrium, to a good approximation,
the wall distribution fw(~U) is such that the gas perceives an infinite expanse of the

same gas behind the wall, i.e. fw(~U) = f(~U). Writing the pressure as the sum of the
momenta imparted by the incoming and emitted particles,

P =
∫

∞

0

∫

∞

−∞

∫

∞

−∞

mUxUxnfdUx dUy dUz +
∫

0

−∞

∫

∞

−∞

∫

∞

−∞

mU ′xU
′

xnf
′

wdU
′

x dU
′

y dU
′

z

=
∫

∞

0

∫

∞

−∞

∫

∞

−∞

2mUxUxnfdUx dUy dUz = nkT
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3 Collision Frequency and Mean Free Path in equi-

librium

Clearly one of the most important quantities in understanding the behavior of a gas
is the mean free path and the collision frequency or its inverse, the time between
collisions. To find these we will look at the motion of one “test” molecule in time ∆t.
Let us assume that all other particles are stationary, and that, although the moving
test particle will be scattered by collisions, its trajectory is still linear. As the test
molecule moves, it will experience a collision with any molecule in a tube of radius d.
Then the number of collisions experienced is:

Ncoll = nπd
2 〈U〉∆t

where 〈U〉 is the test molecule velocity. This expression is obviously an approximation
to the true number of collisions because the volume covered (πd2〈U〉∆t) neglects the
“elbows” of the true trajectory of the particle. We can account for the fact that all
other particles are moving by using the relative velocity between the test molecule
and all other molecules by replacing 〈U〉 with the average relative velocity between
two particles

〈Ur〉 =
∫

All ~U1

∫

All ~U2
f
(

~U1
)

f
(

~U2
) ∣

∣

∣

~U1 − ~U2
∣

∣

∣ d~U1d~U2

=
4√
π

√

kT

m

so the number of collisions per unit time is given by

Ncoll
∆t
= nπd2〈Ur〉

and the mean time between collisions is τ = 1/ (nπd2〈Ur〉). The number of collisions
taking place per unit time per unit volume in the gas is

Γ =
1

2
n
1

τ
(1)

The average distance traveled between collisions, i.e., the mean free path, is then
given by λ = 〈U〉τ where

〈U〉 =
∫

All ~U
f
(

~U
)

|~U |d~U =
∫

∞

0

f̂ (U)UdU =

√

8kT

πm

is the average particle speed, and therefore,

λ =
1√
2πnd2

.
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4 Molecular Simulation of Hard-Sphere Systems

The simulation of “hard” systems is different from the standard methods used in
molecular dynamics. There are two main reasons for this. First, hard spheres spend
most of their time traveling in straight lines so it is very inefficient (and pointless) to
integrate straight-line trajectories

(

m
d2~r

dt2
= 0

)

numerically. Second, when a collision occurs it is instantaneous and the force exerted
between the spheres is impulsive. The best way to handle the diverging (instanta-
neously) force is to apply convervation principles relating particle velocities before
and after the collision.

For these reasons the approach typically taken, known as hard-sphere molecular
dynamics, can be summarized as follows. Let the position and velocity of particle i
at some time (initially) be ~ri and ~vi respectively.

1. Locate the next collsion in the system (found by solving |~ri−~rj+(~vi−~vj)δt| = d
for the shortest δt for all pairs (i, j) of molecules)

2. Move all particles forward (in straight lines) until this collision occurs

3. Process the collision for the colliding pair (calculate post-collision velocities)

4. Go to 1.

Although this method is significantly faster than “regular” molecular dynamics,
it is not as efficient as the method discussed in the next section. Note that the above
algorithm is an O(N2) algorithm, that is, by doubling the number of particles in the
system the work that needs to be done quadrouples. This is because there are 1

2
N2

possible collision pairs that need to be checked in step 1 above.

An order N algorithm may be obtained by only recomputing future collision times
(with all the molecules in the system) for the pair that has just collided. This provides
substantial savings, but the method remains inefficient: The most significant disad-
vantange of the improved method comes from the fact that although each molecule on
average will travel freely for time τ before it has a collision, collisions happen in the
system continuously and the simulation proceeds at a much smaller timestep ∆t≪ τ .
An efficient simulation method which addresses this disadvantage is described in the
next section.
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5 The Direct Simulation Monte Carlo

The Direct Simulation Monte Carlo is an efficient algorithm that uses the fact that
although the time between subsequent collisions in the system is small, the time
between collisions of the same molecule is τ . The main idea behind DSMC is to
decouple collisions and particle motion to achieve efficiency.

We expect that if we were to “discretize” particle motion in time (timestep ∆t)
and space (cell size ∆x) these would need to be small compared to the characteristic
timescales and lengthscales of the gas behavior, τ and λ respectively. However, now
∆t can be such that ∆t < τ rather than ∆t ≪ τ that we had in the hard-sphere
molecular dynamics method.

The DSMC algorithm that follows this idea is given below:

1. Advance particles from {~ri} to
{

~ri + ~Ui∆t
}

ignoring collisions. Here { } means
“set of all.”

2. Apply boundary conditions (wall, inlet/outlet. . .)

3. Sort particles in cells of size ∆x

4. Apply collisions that should have taken place in time ∆t in each cell by randomly
choosing collision partners from the given cell. This is given by Γne∆t Vcell where
Vcell is the volume of the cell and Γne is the non-equilibrium collision rate (per
unit volume and time). [An implementation of the collision routine without
explicitly calculating Γne can be found in the book by Bird given below.]

5. Repeat

The stochastic nature of the collision process (collision pairs are chosen randomly)
makes this an O(N) algorithm. Additionally particles in the system may be inter-
preted as computational particles, each representing a large number (Neffective) of
real particles. This reduces the computational cost significantly.

This simple algorithm has beeen shown to capture gaseous hydrodynamics with
great reliability and accuracy. For examples see Bird, “Molecular Gas Dynamics and
the Direct Simulation of Gas Flows,” (1994). Simple DSMC codes can be down-
loaded from http://www.algarcia.org/nummeth/Programs2E.html. A visual DSMC
program can be downloaded from www.gab.com.au.

Of particular importance to the accuracy of this method is the use of small
timestep ∆t and cell size ∆x. The effect of the time step is obvious: the longer
particles move without collsions the higher the probability of reaching places that
they would normally not have reached because of the scattering effect of the colli-
sions. The effect of the cell size is similar: since collision partners are chosen from the
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same cell, large cells allow collisions between particles that would have never collided
because they are simply too far apart.
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