Matlab Lab 1

Melvyn Sim *

5 July 2005
(1) Enter matrices:

$$
A=\left[\begin{array}{c}
26 ; 3
\end{array}\right] ; B=\left[\begin{array}{lll}
1 & 2 ; 34
\end{array}\right] ; C=[-5 ~ 5 ; 53] ;
$$

Create a big matrix, that has A, B, C on the diagonal. Delete the last row and last column. Extract the first 4×4 matrix from G. Replace $G(5,5)$ with 4 . What do you get for $G(13)$? What happens if you type $G(12,1)$?
(2) Discuss various approaches for calculating

$$
y_{k}=1-y_{k-1} \times y_{k-2},
$$

for $k=2, \ldots, N$ with $y_{0}=0.1$ and $y_{1}=0.5$. How does the performance of your code vary with N ?
(3) Let

$$
S=X_{1}+\ldots+X_{m_{1}}
$$

where $X_{i}, i=1, \ldots, m_{1}$ are independently distributed uniform distributions in $[0,1]$. Generate 1000000 samples of S and plot the histogram. Let

$$
T=Y_{1}+\ldots Y_{m_{2}}
$$

where $Y_{i}, i=1, \ldots, m_{2}$ are independent two points distributions with

$$
\mathrm{P}\left(Y_{i}=y\right)= \begin{cases}0.01 & \text { if } y=0 \\ 0.99 & \text { if } y=1\end{cases}
$$

Generate N samples of $S+T$ and plot the histogram. Explore difference approaches and discuss their competitive advantages with respect to memory usage and speed.

[^0](4) Generate the following tridiagonal matrix, $A \in \Re^{n \times n}$
\[

A=\left($$
\begin{array}{ccccc}
2 & -1 & 0 & \ldots & 0 \\
-1 & 2 & -1 & 0 & \ldots \\
0 & -1 & 2 & -1 & \ldots \\
\vdots & & & \ddots & \vdots \\
\cdots & & 0 & -1 & 2
\end{array}
$$\right)
\]

Determine the solution of

$$
A x=b,
$$

where $b=[1, \ldots, 1]^{\prime} ;$. What is the maximum size you can solve. (Warning, you may halt the PC if n is too large). Explore matlab sparse matrix commands. Do a help on spalloc. Can you increase the size? Why? Try to map a function to the solution x and justify the function numerically. Could you prove it theoretically?

[^0]: *NUS Business school. Email: dscsimm@nus.edu.sg

