INSTRUCTIONS TO STUDENTS

1. Please write your student number only. Do not write your name.
2. This assessment paper contains 5 questions and comprises 3 printed pages.
3. Students are required to answer ALL the questions.
4. Students should write the answers for each question on a new page.
5. This is a CLOSED BOOK examination.
6. Each question carries 20 marks.
1. For each of the following multiple choice questions, indicate one only from among A to E as the best answer.
 i. In a classical micro-canonical ensemble the phase space distribution function
 A. ρ is a constant on a hypersurface $H(p, q) = E$.
 B. ρ is a constant in the region $H(p, q) < E$.
 C. ρ is proportional to energy E.
 D. ρ is proportional to $\exp(\beta H)$.
 E. ρ is proportional to $\delta(H(p, q) - E)$.

 ii. The Jarzynski relation connecting work W with Helmholtz free energy F is
 A. $\langle e^{-\beta W} \rangle > e^{-\beta \Delta F}$.
 B. $\langle e^{-\beta W} \rangle < e^{-\beta \Delta F}$.
 C. $\langle e^{-\beta W} \rangle = e^{-\beta \Delta F}$.
 D. $\langle e^{-\beta W} \rangle = e^{-\beta F}$.
 E. $\langle e^{\beta W} \rangle = e^{\beta \Delta F}$.

 iii. With the scaling hypothesis, $f(b^Y t, b^X h) = b^D f(t, h)$, for the singular part of the free energy per degree of freedom near critical point, which one of the following statements is not true or not implied?
 A. D is the dimension of the system.
 B. $t = T - T_c$.
 C. Widom’s scaling law, $\beta(\delta - 1) = \gamma$.
 D. Fisher’s scaling law, $\gamma = (2 - \eta)\nu$.
 E. Rushbrooke’s scaling law, $\alpha + 2\beta + \gamma = 2$.

 iv. In a quantum ideal Bose gas, the critical Bose-Einstein condensation temperature T_0 at which the occupation number of the ground state acquired an average value $\langle n_0 \rangle$ of order N (the number of particles of the system) can be estimated approximately by
 A. $k_B T_0 \approx \hbar \omega$.
 B. $k_B T_0 \approx \hbar^2 / \left(2m \left(\frac{V}{N}\right)^{\frac{3}{2}}\right)$.
 C. $k_B T_0 \approx \hbar^2 / (2mV^{\frac{3}{2}})$.
 D. $k_B T_0 \approx \langle m v^2 \rangle$.
 E. $k_B T_0 \approx 8a / (27b)$.

 v. Einstein equation is
 A. $E = mc^2$.
 B. $\langle x^2 \rangle = 2Dt$.
 C. $D = k_B T \/(6\pi \eta a)$.
 D. $D = \mu k_B T$.
 E. All of the above.
2. The eigen-energies of a single quantum particle in a one-dimensional box is \(E_n = \frac{\pi^2 \hbar^2 n^2}{2mL^2} \), where \(n = 1, 2, 3, \ldots \), and \(m \) is mass, \(L \) is the length of the interval where the particle is confined. Working in canonical ensemble:

 i. Determine the force that the particle exerts to the wall of the box, in the high-temperature limit, i.e., \(\beta = 1/(k_B T) \) is small.

 ii. Determine the same force, but in the opposite limit, i.e., temperature \(T \) is small. The answer should be accurate to the first order of a suitable small low-temperature expansion parameter.

Define \(\alpha = \frac{\pi^2 \hbar^2}{2m} \), then \(E_n = \alpha n^2/L^2 \), the partition function is \(Z = \sum_{n=1}^{\infty} e^{-\beta \alpha n^2/L^2} = x + x^4 + x^9 + \cdots \), where \(x = e^{-\alpha \beta /L^2} \). For low temperatures, \(\beta = 1/(k_B T) \) is large, and \(x \) is small, we just keep the first two terms in the Taylor expansion of \(x \) as a good approximation. For higher temperature, the summand varies slowly with \(n \) we approximate the sum by integral, \(Z \approx \int_0^{\infty} e^{-\alpha \beta n^2/L^2} \, dn = L \sqrt{2\pi m k_B T} / \hbar \), (exactly the same result as for in classical particle, i.e., \(\iint \frac{dx dp}{h} e^{-\frac{\beta p^2}{2m}} \) and the free energy is \(F = -k_B T \ln Z \).

 Using force \(f = -\frac{\partial F}{\partial L} \) we obtain, for i) high temperature \(f = k_B T / L \) (ideal gas law), ii) for low temperature \(f = \frac{2\alpha}{L^3} (1 + 3x^3 + \cdots) \).

3. For exact results in two-dimensional Ising models, duality plays an important role.

 i. Explain the meaning of duality in a topological sense and demonstrate that square lattice is self-dual.

 ii. State the duality relation, which relates high-temperature expansion with low-temperature expansion.

 iii. Give the duality argument that the critical temperature of the two-dimensional Ising model on a square lattice with nearest neighbor interaction is determined by \(\tanh K_c = \exp(-2K_c) \), where \(K_c = J/(k_B T_c) \).

 Exactly the same as in my notes, or at the elearning-week recordings.

4. Consider the Langevin equation in the case where the acceleration term \(mdv/dt \) is negligible, \(-k \frac{dx}{dt} + R(t) = 0 \), with a standard white noise for the random force, i.e., \(\langle R(t) \rangle = 0, \langle R(t) R(t') \rangle = C \delta(t - t') \).
i. Solve the stochastic differential equation assuming the initial condition $x(0) = 0$; determine the mean-square displacement $\langle x(t)^2 \rangle$ as a function of time t.

ii. Derive the Fokker-Planck equation for the probability density $\langle P(x, t) \rangle$ for the random variable x.

i) Integrate, we get $x(t) = \frac{1}{k} \int_0^t R(t')dt'$. Perform a two-dimensional integral over a square of $[0, t]^2$ and use the delta function correlation, we obtain, $\langle x(t)^2 \rangle = 1/k^2 \int_0^t dt_1 \int_0^t dt_2 \langle R(t_1)R(t_2) \rangle = Ct/k^2$.

ii) Probability conservation means $\frac{\partial p}{\partial t} + \frac{\partial}{\partial x} (xp) = 0$. Using the expression for the rate of x, and moving the second term to the right and solving the equation formally, then taken average over noise, or alternatively, using analogy to the standard Fokker-Planck equation, we obtain (skipping steps), $\frac{\partial \langle P(x,t) \rangle}{\partial t} = \frac{C}{2k^2} \frac{\partial^2}{\partial x^2} \langle P(x,t) \rangle$, which is a diffusion equation.

5. Consider a simplified Boltzmann equation of the form $\frac{\partial f}{\partial t} + \frac{p}{m} \cdot \nabla r f = -\frac{f - f_{eq}}{\tau}$, where f_{eq} is local equilibrium distribution having the property $\langle \ln f_{eq} \rangle_f = \langle \ln f_{eq} \rangle_{f_{eq}}$. m is mass of the particle, $\tau > 0$ is relaxation time constant, and the distribution function $f = f(r, p, t)$ is a function of (three-dimensional) position r, momentum p, and time t. The Boltzmann H-function is defined as $H = \int \int dr dp f \ln f$. Prove the H-theorem: $\frac{dH}{dt} \leq 0$.

The key steps are: $\frac{dH}{dt} = \int dr \int dp \frac{\partial f}{\partial t} (1 + \ln f)$. This is because, t, r, p are independent variables. Use Boltzmann equation $\frac{\partial f}{\partial t} = -\frac{p}{m} \cdot \nabla r f - \frac{f - f_{eq}}{\tau}$, the first momentum term can be dropped, because, it can be written as $\int dr \nabla r (f \ln f)$ and can be changed to a surface integral using Gauss theorem. The 1 can also be dropped because particle number conservation, $\int dr \int dp f = N$. We are left with $\frac{dH}{dt} = -\frac{1}{\tau} \int dr \int dp (f - f_{eq}) \ln f$. To proceed further, we use the given local equilibrium condition, which means $\int dr \int dp (f - f_{eq}) \ln f_{eq} = 0$. Dividing by τ, adding into dH/dt, we get $\frac{dH}{dt} = -\frac{1}{\tau} \int dr \int dp (f - f_{eq}) \ln \frac{f}{f_{eq}} \leq 0$. This problem is an example in the book of R. Zwanzig, page 93-96.