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Chapter 1

Introduction

The electrical resistivity of some materials changes in the presence of external magnetic field, and

such phenomenon is called magnetoresistance effect. If the electrical resistivity of the materi-

als changes dramatically then such magnetoresistance is called colossal magnetoresistance. The

conventional magnetoresistance enables changes of resistivity up to a few percent, whereas the

resistivity of materials featuring colossal magnetoresistance may change by orders of magnitude

[1, 2].

In the past few decades most theoretical studies of colossal magnetoresistance focus on per-

ovskite manganites [3–11]. The most commonly studied perovskite manganites have the chemical

formula R1−xAxMnO3, where R and A are trivalent rare earth (La or Pr for example) and divalent

alkaline ions (Ca or Sr for instance) respectively. In such systems electrons fill the 3d shell of the

Mn. Ca and Sr act as hole dopants here, therefore when the system is doped there would be 4− x

electrons, or x holes, in the 3d shell of the Mn. These holes can hop from a Mn ion to another,

but due to strong Hund coupling on a given Mn ion this hopping process is inhibited if the ionic

spins of Mn ions are antiparallel, i.e., hopping is dependent on the relative orientation of the ionic

spins. Such mechanism is called “double exchange” which was first proposed by Zener [12]. The

effective Hamiltonian presenting double exchange mechanism is usually written in the form of the

Hamiltonian of Kondo model [13, 14].

The early physical explanation of colossal magnetoresistance was based on double exchange

mechanism. However, Millis et al. [3] pointed out that in La1−xSrxMnO3 double exchange alone

can not explain its resistivity, and Jahn-Teller effect must be taken into consideration. Later many

1



2 CHAPTER 1. INTRODUCTION

works [3–11] showed that strong electron-phonon interaction indeed plays an important role in

colossal magnetoresistance.

Reports on magnetoresistance in rare earth titanates of formula RTiO3 are scarce because of

their large resistivities at low temperature. Recently Km Rubi et al. [15, 16] found that the un-

doped perovskite titanium oxide EuTiO3 exhibits colossal magnetoresistance. At low temperatures,

EuTiO3 has very large resistivity and exhibits colossal magnetoresistance: in the presence of ex-

ternal magnetic field its resistivity drops dramatically. Such phenomenon is hard to be explained

without a good theory of strongly correlated systems.

When dealing with a strongly correlated system the dynamical mean-field theory is a powerful

tool which enables us to obtain the electronic structure of the system via non-perturbative proce-

dures. Once the electronic structure has been found, we can calculate the corresponding electrical

transport coefficients via various transport theories.

We find that although the double exchange mechanism is irrelevant, the strong electron-phonon

interaction also plays an important role in colossal magnetoresistance in EuTiO3. In this thesis,

based on the dynamical mean-field theory for small polaron we have calculated the transport

properties of EuTiO3 and explained its colossal magnetoresistance.

This thesis is organized as follows:

• Chapter 2 gives a comprehensive review on transport theories of electron which can collab-

orate with dynamical mean-field theory. We focus on linear response theory, especially the

derivation of Kubo-Greenwood formula which is most suitable for the electrical conductivity

calculation using results obtained by the dynamical mean-field theory.

• Chapter 3 gives an introduction to the general procedures of the dynamical mean-field theory,

and chapter 4 gives an introduction to the dynamical mean-field theory for small polaron.

The latter one is the method adopted to calculate the electronic structure of EuTiO3 in this

thesis.

• Chapter 5 gives the actual calculation of transport properties of EuTiO3. We first introduce

the magnetic properties of EuTiO3 which are of crucial importance to explain the colossal

magnetoresistance. Then a simple fitting is given as an explanation. Such simple fitting

reveals the fundamental reason of colossal magnetoresistance but fails to explain the high
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resistivity of EuTiO3. Finally based on the dynamical mean-field theory and linear response

theory we calculate the electrical conductivity and explain the colossal magnetoresistance in

EuTiO3. The results reach a qualitative agreement with experimental data.

A word about the unit of temperature used in this thesis. In all subsequent formulas the

temperature T is assumed to be, unless otherwise specified, measured in energy units. Accordingly,

the entropy S is a dimensionless quantity. If the temperature is measured in Kelvin, then the

substitutions below need to be made in all formulas:

T → kBT, S → S/kB, (1.1)

where kB is the Boltzmann constant.
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Chapter 2

Transport Theories for Electrons

The movement of electrons can induce electricity current and heat current. Since there would be

no net current in complete equilibrium state, the net current is usually the response to an external

electric field or temperature gradient. The corresponding response coefficients, such as electrical

conductivity, are what we most concern in transport theories. In this chapter, we shall review

various transport theories of electrons.

2.1 Diffusion Phenomena

When particles suspend in a fluid, they do random motion due to their collision with the environ-

ment such as other fast moving particles or random potentials [17]. This random motion is called

Brownian motion, named after the botanist Robert Brown [18]. In 1905 Albert Einstein gave the

first clear theoretical explanation of such phenomena and thus established the basic foundation of

the atomic theory of matter [19]. The theory of Brownian motion was further developed by many

others. The review of classical theory of Brownian motion can be found in Ref [20].

Now let us consider a medium which contains a large number of electrons, and suppose they

are doing Brownian motion. Define particle density as n(r, t). Brownian motion would induce a

net movement of electrons from a region of high concentration (or high chemical potential) to a

region of low concentration (or low chemical potential), and make the distribution of electrons tend

toward uniformity. Such a process is called diffusion [21, 22].

When the density distribution varies smoothly in space, the particle current density is expected

5
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to be proportional to the gradient of the density distribution:

j = −D∇n, (2.1)

where j is the particle current density and D is the diffusion constant. According to the equation

of continuity

∂n

∂t
+∇ · j = 0, (2.2)

we find the equation of the rate of change of the density distribution:

∂n(r, t)

∂t
= D∆n. (2.3)

This is the diffusion equation.

The diffusion constant is related to the electrical conductivity. When there is an uniform electric

field E, the chemical potential µ should be replaced by µ − eφ, where φ = −E · r is the electric

potential and e is the positive electric charge (the electron has a charge of −e). When electrons are

non-degenerate, they obey Boltzmann distribution f(ε) = exp[(µ− ε)/T ]. It should be emphasized

that the local equilibrium is assumed here, which means that although the whole system is not in

complete equilibrium so the intensive parameters like temperature or chemical potential can vary in

space and time, any given point, along with its neighborhood, is in equilibrium. Let n0 denote the

particle density of electrons with no electric field, then the particle density with a uniform electric

field can be written as

n(r) = n0e
−eφ/T = n0e

eE·r/T . (2.4)

Substituting the above expression into equation (2.1) we obtain the formula for the particle current

density of electrons

j = −D∇n = −neD
T
E, (2.5)

and the corresponding electricity current density

−ej =
ne2D

T
E. (2.6)
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According to the definition of electrical conductivity σ we find that

σ =
ne2D

T
, (2.7)

and this formula shows that the electrical conductivity can be expressed by the diffusion constant.

In diffusion theory, there is another important quantity called electrical mobility, here we denote

it by b, which is the ability of electrons to move through a medium in response to an electric field.

According to its definition, when an electron is accelerated by uniform electric field, it would finally

reach a constant drift velocity

−v = bE, (2.8)

there is a minus sign before the velocity because the electron carries negative charge. Then the

electricity current density can be expressed as

−ej = −nev = nebE, (2.9)

and the electrical conductivity is then

σ = neb. (2.10)

Comparing equation (2.7) with (2.10) we find that

b =
eD

T
, (2.11)

and this formula is known as the Einstein relation.

The above diffusion theory states that if the diffusion constant or the electrical mobility is

known, then electrical conductivity can be calculated through the above formulas. However, they

are not easy to obtain. In the rest of this section we shall present the relation between the diffusion

constant and Brownian motion.

Since Brownian motion is a stochastic process, the most important question is that if, a particle

is at position r1 at time t1, what is the probability density of finding it at position r2 at time

t2 which succeeds t1. Let P (r2, t2|r1, t1) be defined as probability density of finding a particle

at position r2 at time t2 while this particle is at position r1 at time t1. This quantity is called
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transition probability. According to this definition, the particle density n(r, t) at position r and at

time t is

n(r, t) =

∫
P (r, t|r0, t0)n(r0, t0)dV0, (2.12)

where n(r0, t0) is the density at r0 and t0, and dV0 is the infinitesimal volume element with respect

to r0, in other words, the volume integration is over r0. Substituting this expression of n(r, t) into

the diffusion equation (2.3) we have

∂

∂t

[∫
P (r, t|r0, t0)n(r0, t0)dV0

]
= D∆

[∫
P (r, t|r0, t0)n(r0, t0)dV0

]
, (2.13)

or ∫
∂P (r, t|r0, t0)

∂t
n(r0, t0)dV0 = D

∫
[∆P (r, t|r0, t0)]n(r0, t0)dV0. (2.14)

From the equation above we can see that if particle density n(r, t) satisfies the diffusion equation

then the transition probability also satisfies the diffusion equation:

∂

∂t
P (r, t|r0, t0) = D∆P (r, t|r0, t0). (2.15)

Because equation (2.15) must be satisfied for an arbitrary initial condition n(r0, t0), it can be simply

written as

∂

∂t
P (r, t) = D∆P (r, t). (2.16)

The simplest transition probability P (r, t|r0, t0) is the solution of equation (2.15) with the initial

condition that the particle is at r0 at t0:

P (r, t0|r0, t0) = δ(r − r0), (2.17)

and it is given by

P (r, t|r0, t0) =

[
1√

4πD(t− t0)

]d
exp

[
− (r − r0)2

4D(t− t0)

]
, (2.18)

where d is the dimension of the space. This is the simplest possible idealization of Brownian motion.

It can be seen that the above formula is a Gaussian distribution in space, so let t0 = 0 and r0 = 0
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we have

〈r2〉(t) =

∫
r2P (r, t)dV = 2dDt. (2.19)

Therefore we reach an important conclusion that in Brownian motion the average of the square

of displacement of a particle is proportional to time, and the coefficient is 2dD. This provides a

way to calculate the diffusion constant. For example, we can obtain the quantity 〈r2〉(t) through a

molecular dynamics simulation first, and then obtain the diffusion constant accordingly.

The gradient of temperature can also induce a net current. Let ρ(ε) denote the density of states,

then the particle number density can be written as

n =

∫
ρ(ε)e(µ−ε)/Tdε, (2.20)

where the temperature is a function of coordinates T (r) now. Hence the particle current density

is

j = −D∇n = −D
[∫

ρ(ε)
ε− µ
T

e(µ−ε)/Tdε
] ∇T
T
, (2.21)

denoting the integral in the square bracket by kT then

j = −DkT
∇T
T
, (2.22)

where kT is called the thermal diffusion ratio and DkT is called the thermal diffusion constant.

For heat current, there is an analog diffusion formula which is known as Fourier’s law. It states

that the heat current density jq is proportional to the gradient of the temperature:

jq = −k∇T, (2.23)

where k is called the thermal conductivity.

2.2 Drude Theory

Drude theory is a phenomenological approach to calculate the electrical conductivity, which is based

on Newton’s second law of motion. It was introduced by Paul Drude in 1900 [23]. In the presence
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of a static electric field there is a drift velocity v, an acceleration force −eE and a friction force

−m∗v/τ for electrons, thus Newton’s equation writes

m∗
dv

dt
= −eE − m∗v

τ
. (2.24)

Here m∗ is the effective mass of an electron in the medium. The last term in equation (2.24)

introduces a phenomenological transport relaxation time τ , which accounts for the damping of the

electron due to its interaction with the medium or other particles. When the acceleration and

friction are balanced, i.e. −eE −m∗v/τ = 0, we find the steady state velocity

v = −eEτ
m∗

. (2.25)

Since the particle current density j can be expressed as nv, the electricity current density is

−ej =
ne2τ

m∗
E, (2.26)

thus the electrical conductivity is just

σ =
ne2τ

m∗
. (2.27)

Comparing this expression with equation (2.10) we reach a relation between the relaxation time

and the electrical mobility:

b =
eτ

m∗
. (2.28)

Now assume the electric field is suddenly terminated at time t = t0. Then for t > t0 the velocity

would be decay exponentially:

v = v0e
−(t−t0)/τ . (2.29)

Thus we see that the relaxation time gives the decay of the average velocity of electrons.

If the electric field is not static but varying with time, we can write down the Fourier components

of equation (2.24) as

−iωm∗vω = −eEω −
m∗vω
τ

, (2.30)



2.2. DRUDE THEORY 11

the solution is

vω = − eτ

m∗(1− iωτ)
Eω, (2.31)

and the corresponding electricity current density in frequency space is

−ejω =
ne2τ

m∗(1− iωτ)
Eω. (2.32)

Thus we obtain the electrical conductivity as a function of frequency:

σ(ω) =
σ0

1− iωτ , σ0 =
ne2τ

m∗
. (2.33)

This form of the electrical conductivity is called the Drude formula.

Because Drude theory is based on a classical theory, at first glance it should be invalid for

electrons in solids where quantum mechanics must be involved. But in fact, the Drude formula

is quite good in many cases. The reason is that although the Drude formula is derived from

Newton’s equation, its key parameters are determined by quantum effects of the system. The

effective mass m∗ is controlled by the band structure of electrons, and the relaxation time τ is in

principle determined by all transport processes. Besides, the Drude formula can be derived from

Boltzmann equation, this is also one of the reasons why it is accurate enough in many cases.

The ultimate reason why Drude theory works so well was established by Lev Landau with the

Fermi liquid theory [24, 25]. Fermi liquid describes the elementary excitations of the interacting

electronic system by weak coupled quasi particles. Thus we can understand the electron in Drude

theory as not a real particle but an elementary excitation.

The transport relaxation time τ is the fundamental quantity in the Drude formula. Here we shall

present the relationship between τ and the retarded Green’s function. Once the energy dependent

retarded Green’s function GR(E) (the k dependence of the Green’s function is not considered here)

is obtained, the corresponding self-energy ΣR(E) is automatically known. The energy E of an

electron state then should be replaced by E + ΣR. According to the general statement of quantum

mechanics, the time evolution phase factor of a definite energy state is e−
i
~Et, in other words, the
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time dependent wave function Ψ(t) is written as

Ψ(t) = ψe−
i
~Et, (2.34)

where ψ is a function with no time dependence. Since ΣR is the self-energy of the retarded Green’s

function, Im ΣR is a negative quantity. Replace E by E + ΣR and the wave function becomes

Ψ(t) = ψe−
i
~ (E+ΣR)t = ψe−

i
~ (E+Re ΣR)te

1
~ Im ΣRt. (2.35)

The square modulus of this wave function is

|Ψ(t)|2 = |ψ|2e 2
~ Im ΣRt, (2.36)

and there is an exponential decay in this expression. Comparing this decay factor with the damping

factor expressed by relaxation time e−t/τ we find that

τ(E) = − ~
2 Im ΣR(E)

. (2.37)

The relaxation time calculated in this way is energy dependent, and in a metal, the values around

the Fermi energy EF are most important. Therefore the Drude formula in a metal can be written

as

σ(ω) =
ne2τ(EF )

[1− iωτ(EF )]m∗
, (2.38)

where n is the corresponding carrier density.

The formulas above enable us to calculate the relaxation time via the retarded Green’s function.

The Green’s function of electrons can be calculated approximately in many ways such as the

perturbative expansion, the coherent potential approximation and the dynamical mean field theory.

2.3 Fermi’s Golden Rule

In this section we shall derive a simple but important formula for the transition rate from one energy

eigenstate into other energy eigenstates under a perturbation. It is usually called Fermi’s golden
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rule, which is named after Enrico Fermi [26]. Although named after Fermi, most work leading to

this formula is due to Paul Dirac [27]. This formula is the basis of all linear approximations in

quantum mechanics, such as linear response theory. It also appears in the Boltzmann equation

approach for electron transport as providing an useful approximation.

Let us first introduce the time dependent perturbation theory developed by Paul Dirac [28].

Consider an unperturbed system of a given time independent Hamiltonian Ĥ0 and energy eigen-

states Ψ
(0)
k with corresponding eigenenergies E

(0)
k . If there is a time dependent perturbation V̂ (t),

the Hamiltonian becomes

Ĥ = Ĥ0 + V̂ (t), (2.39)

and the corresponding equation of the wave functions Ψ(t) is

i~
∂Ψ(t)

∂t
= [Ĥ0 + V̂ (t)]Ψ(t). (2.40)

We shall now seek the solution of the perturbed system in the form of a combination of unper-

turbed wave functions Ψ
(0)
k as

Ψ(t) =
∑
k

ak(t)Ψ
(0)
k (t), (2.41)

where the expansion coefficients ak(t) are functions of time. Substituting (2.41) into (2.40) and

recalling that the function Ψ
(0)
k satisfies the equation

i~
∂Ψ

(0)
k

∂t
= Ĥ0Ψ

(0)
k = E

(0)
k Ψ

(0)
k , (2.42)

we have

i~
∑
k

Ψ
(0)
k (t)

dak(t)

dt
=
∑
k

ak(t)V̂ (t)Ψ
(0)
k (t). (2.43)

Multiplying both sides of this equation on the left by Ψ
(0)∗
m and integrating over the space we obtain

i~
dam(t)

dt
=
∑
k

Vmk(t)ak(t), (2.44)

where

Vmk(t) = 〈m| V̂ (t) |k〉 eiωmkt = Vmke
iωmkt, ωmk =

E
(0)
m − E(0)

k

~
, (2.45)
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are the matrix elements of the perturbation. Note that Vmk = 〈m| V̂ (t) |k〉 are also functions of

time.

Let the unperturbed wave function be the wave function of the nth stationary state Ψ
(0)
n , then

the corresponding values of the coefficients in zeroth order approximation are a
(0)
n = 1 and a

(0)
k = 0

for k 6= n. We seek the solution of first order approximation of ak in the form ak = a
(0)
k + a

(1)
k .

Substituting ak = a
(0)
k + a

(1)
k on the left side of (2.44) and substituting ak = a

(0)
k on the right side

of (2.44) which already contains the small quantities Vmk gives

i~
da

(1)
k (t)

dt
= Vkn(t). (2.46)

Integrating this equation with respect to time gives

a
(1)
k = − i

~

∫
Vkn(t)dt = − i

~

∫
Vkne

iωkntdt. (2.47)

The squared modulus of a
(1)
k determines the probability for the system to be in the kth state per-

turbed from nth unperturbed state. By convention, when transition probabilities are discussed we

denote the initial state by i and the final state by f , and denote a
(1)
f , which is the first order coef-

ficient perturbed from ith unperturbed state, by simply afi. And the corresponding unperturbed

energy E
(0)
i and E

(0)
f are denoted by just Ei and Ef .

Let us focus on one Fourier component of the perturbation V̂ (t), in other words, suppose the

perturbation operator is1

V̂ (t) = V̂ e−iωt. (2.48)

Assuming the perturbation starts at time t = 0, then we have

afi = − i
~

∫ t

0
Vfi(τ)dτ = −Vfi

ei(ωfi−ω)t − 1

~(ωfi − ω)
. (2.49)

Therefore the squared modulus of afi is just

|afi|2 = |Vfi|2
4 sin2[1

2(ωfi − ω)t]

~2(ωfi − ω)2
, (2.50)

1Note that the perturbation operator written in this way is not Hermitian, therefore it does not correspond to a
real perturbation. A real periodic perturbation operator with frequency ω may be written as V̂ (t) = V̂ e−iωt+ V̂ †eiωt.
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and noticing that when t goes to infinity limt→∞ sin2 αt
πtα2 = δ(α), then we have

|afi|2 =
2π

~
|Vfi|2δ(Ef − Ei − ~ω)t. (2.51)

Thus the probability transition rate from initial state i to final state f per unit time is

wfi =
2π

~
|Vfi|2δ(Ef − Ei − ~ω). (2.52)

This is the required formula for the transition rate.

There is another way to derive Fermi’s golden rule. Suppose the perturbation does not start at

time t = 0 but increases slowly from t = −∞ by an exponential law eηt with a positive constant η

which tends to be zero. Such a process is called adiabatic switch-on. In this case the perturbation

operator becomes

V̂ (t) = V̂ e−iωt+ηt, (2.53)

and afi becomes

afi = − i
~

∫ t

−∞
Vfi(τ)dτ = −Vfi

ei(ωfi−ω)t+ηt

~(ωfi − ω − iη)
. (2.54)

Hence the squared modulus of afi is

|afi|2 =
1

~2
|Vfi|2

e2ηt

(ωfi − ω)2 + η2
. (2.55)

The transition rate is given by the time derivative

wfi =
d|afi|2
dt

= 2η|afi|2, (2.56)

recalling that limη→0
η

π(α2+η2)
= δ(α) we obtain the same transition rate formula:

wfi = lim
η→0

2π

~2
|Vfi|2e2ηtδ(ωfi − ω) =

2π

~
|Vfi|2δ(Ef − Ei − ~ω). (2.57)

The time dependent perturbation theory can be written in a more compact form using the

interaction picture formalism. According to (2.40), the formal solution of the wave function Ψ(t)
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is

Ψ(t) = e−
i
~ ĤtΨ(0) = e−

i
~ (Ĥ0+V̂ )tΨ(0). (2.58)

Now define the wave function in interaction picture φ(t) as

φ(t) = e
i
~ Ĥ0tΨ(t) = e

i
~ Ĥ0te−

i
~ (Ĥ0+V̂ )tΨ(0), (2.59)

and the corresponding time evolution equation for φ(t) is

i~
∂φ(t)

∂t
= i~

∂

∂t
[e

i
~ Ĥ0tΨ(t)]

= −e i~ Ĥ0tĤ0Ψ(t) + e
i
~ Ĥ0t(Ĥ0 + V̂ )Ψ(t)

= e
i
~ Ĥ0tV̂ e−

i
~ Ĥ0t[e

i
~ Ĥ0tΨ(t)]

= e
i
~ Ĥ0tV̂ e−

i
~ Ĥ0tφ(t).

(2.60)

Now define e
i
~ Ĥ0tV̂ e−

i
~ Ĥ0t as the perturbation operator in interaction picture and denote it by

V̂0(t), the equation above can be written as

i~
∂φ(t)

∂t
= V̂0(t)φ(t). (2.61)

It can be seen that this equation is just the operator form of equation (2.44), thus the time dependent

theory is equivalent to interaction picture formalism and the wave function in interaction picture

corresponds to the expansion coefficients ak(t) in time dependent perturbation theory.

2.4 Boltzmann Equation

Boltzmann equation approach is more sophisticated than the Drude theory. It was first derived by

Ludwig Boltzmann in 1872 [29–31]. The statistical description of Boltzmann equation is given by

the distribution function f(r,k, t), which is the probability density that an electron with wave vector

k is at position r at time t. This is a semiclassical description since position r and momentum p =

~k are determined at the same time. In this section we shall mainly discuss the three dimensional

Boltzmann equation. If the interactions are entirely negligible, i.e. a non-interacting system is
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considered, then the distribution function obeys Liouville’s theorem, according to which we have

df

dt
= 0. (2.62)

In this case the distribution function for electrons is the Fermi-Dirac distribution:

f(r,k, t) =
1

e(εk−µ)/T + 1
, (2.63)

and it reduces to the Boltzmann distribution

f(r,k, t) = e(µ−εk)/T (2.64)

when exp[(εk − µ)/T ]� 1.

In the absence of the external field, all electrons do free motions, and only the coordinates r

vary. Since the rate of change of r is just v, we have

df

dt
=
∂f

∂t
+ v · ∇f. (2.65)

On the other hand, if there is an external electric field acting on electrons then (recall that the rate

of change of a wave vector is ~k̇ = −eE)

df

dt
=
∂f

∂t
+ v · ∇f − e

~
∂f

∂k
·E. (2.66)

Equation (2.62) is no longer valid if collisions are taken into account. Instead of (2.62), we must

add a collision term C(f) to the right side of the equation:

df

dt
= C(f), (2.67)

where C(f) denotes the rate of change of the distribution function due to collisions, and it is called

the collision integral. Therefore we obtain

∂f

∂t
+ v · ∇f − e

~
∂f

∂k
·E = C(f). (2.68)
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In principle, once the Boltzmann equation is solved, then the particle current density j and electrical

current density −ej are simply defined as

j(r, t) = 2

∫
vkf(r,k, t)

d3k

(2π)3
, −ej(r, t) = −2e

∫
vkf(r,k, t)

d3k

(2π)3
, (2.69)

where the factor 2 is due to electron spin degeneracy. And the energy current density q and the

heat current q − µj are

q(r, t) = 2

∫
εkvkf(r,k, t)

d3k

(2π)3
, (q − µj)(r, t) = 2

∫
(εk − µ)vkf(r,k, t)

d3k

(2π)3
. (2.70)

The heat current density q − µj are evaluated with respect to the chemical potential µ, this is the

reason why we need to subtract a term µj from the energy current q. If εk > µ the particle is said

to be “hot” and to carry excess energy, otherwise it is “cold”.

Transport Relaxation Time

In slightly inhomogeneous cases, the distribution function f can be written as f0 + δf , where f0

is the distribution function in local equilibrium which is a function of energy, while δf is a small

correction of f0. We write the simplest expression for C(f) by introducing a phenomenological

energy dependent relaxation time τ(ε):

C(f) ≈ −f − f0

τ(ε)
= − δf

τ(ε)
. (2.71)

On the other hand, suppose that the temperature depends on coordinates. Substituting f = f0 +δf

into (2.68) and retaining only the first order term we obtain

C(f) = vk ·
[
(ε− µ)

∇T
T

+ eE

](
−∂f0

∂ε

)
, (2.72)

here we have used


∇f0 = ∇

(
1

e(ε−µ)/T + 1

)
= (ε− µ)

∇T
T

(
−∂f0

∂ε

)
,

∂f0

∂k
=
∂ε

∂k

∂f0

∂ε
= ~vk

(
∂f0

∂ε

)
.

(2.73)
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Therefore a connection between the correction to the distribution function δf , the transport relax-

ation time τ and the collision integral C(f) is reached:

δf = −τC(f) = −τ(εk)vk ·
[
(εk − µ)

∇T
T

+ eE

](
−∂f0

∂ε

)
. (2.74)

The collision integral can also be determined by Fermi’s golden rule. Consider the case that

electrons are scattered by random impurities with short range elastic scattering. Let the density

of impurities be denoted by nimp. Because electrons are fermions, the probability density of an

electron transiting from k′ state to k is

2π

~
nimp|Tkk′ |2δ(εk − εk′)f(r,k′, t)[1− f(r,k, t)], (2.75)

where Tkk′ is the scattering T -matrix. Similarly, the probability density of transition from k state

to k′ state is

2π

~
nimp|Tkk′ |2δ(εk − εk′)f(r,k, t)[1− f(r,k′, t)]. (2.76)

Therefore the collision integral can be written as

C(f) =
2π

~
nimp

∫
d3k′

(2π)3
|Tkk′ |2δ(εk − εk′){f(r,k′, t)[1− f(r,k, t)]− f(r,k, t)[1− f(r,k′, t)]}

=
2π

~
nimp

∫
d3k′

(2π)3
|Tkk′ |2δ(εk − εk′)[f(r,k′, t)− f(r,k, t)]

=
2π

~
nimp

∫
d3k′

(2π)3
|Tkk′ |2δ(εk − εk′)[δf(r,k′, t)− δf(r,k, t)].

(2.77)

In such approximations an isotropic dispersion relation ε(k) is usually adopted, to be specific,

ε(k) = ~2k2/2m∗. This dispersion relation has the same form as the dispersion relation of free

particles but with an effective mass. Hence the delta function in the above expression forces both

εk = εk′ and |k| = |k′|, and the two velocities vk and vk′ differ only in their direction. It can be

seen from (2.74) that δf can be written in a form v ·A, where A is a vector consisting of all other

terms besides v in (2.74). Now denote the angle between k and A by θ, similarly denote the angle

between and k′ and A by θ′, hence

δf(k′)− δf(k) = vk′ ·A− vk ·A = vA(cos θ′ − cos θ), (2.78)
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where v = |v| and A = |A|. Since the T -matrix Tkk′ depends only on the angle between k and k′,

we now denote this angle by α and try to express the above formula with α. Take the direction of

k as the polar axis and build a spherical coordinate system. Let ϕ and ϕ′ be the azimuth angles of

A and k′ in this spherical system, then

cos θ′ = cos θ cosα+ sin θ sinα cos
(
ϕ− ϕ′

)
. (2.79)

The azimuth angles ϕ and ϕ′ do not appear else where in the integrand of (2.77), so when integrating

over dϕ′, the term in cos(ϕ− ϕ′) averages to zero. Therefore in (2.77) we can just omit the term

in cos(ϕ− ϕ′) and write

C(f) = −2π

~
nimp

∫
d3k′

(2π)3
|Tkk′ |2δ(εk − εk′)vA cos θ(1− cosα)

= −2π

~
nimp

∫
d3k′

(2π)3
|Tkk′ |2δ(εk − εk′)v ·A(1− cosα)

= −2π

~
nimp

∫
d3k′

(2π)3
|Tkk′ |2δ(εk − εk′)(1− cosα)δf(r,k, t).

(2.80)

Because the collision integral C(f) = −δf/τ , comparing with the above formula we obtain an

expression for the transport relaxation time

1

τ(ε)
=

2π

~
nimp

∫
d3k′

(2π)3
|Tkk′ |2δ(εk − εk′)(1− cosα). (2.81)

The extra factor 1−cosα measures how much an electron scatters: larger scattering angle α makes

this factor larger and contributes more to the resistivity and decreases the conductivity.

Now let us return to (2.68) and substitute f = f0 + δf . Because f0 does not depend on time

we write ∂f
∂t = ∂δf

∂t , and write ∇f = ∇f0,
∂f
∂k = ∂f0

∂k since δf is small compared to f0. Substituting

C(f) = −δf/τ we can finally write a linearized Boltzmann equation as

∂δf

∂t
+ vk ·

[
(ε− µ)

∇T
T

+ eE

](
−∂f0

∂ε

)
= −δf

τ
. (2.82)

Writing the second term of the left side of the above equation as vk · F the equation becomes

∂δf

∂t
+ vk · F = −δf

τ
, (2.83)
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and it can be seen that F acts as the driving term. Applying a Fourier transform on both sides of

the equation we shall get

δfω =
τv · Fω
1− iωτ , (2.84)

this is a Drude like formula. It shows that Drude formula can be derived from Boltzmann’s equation

and puts the Drude theory on a much firmer theoretical basis.

Transport Coefficients

Because in equilibrium there is no net current, the integrals in current formulas (2.69) and (2.70)

are zero when f = f0. Therefore formulas for the electricity and heat currents may be written as

−ej = −2e

∫
vδf

d3k

(2π)3
, q − µj = 2

∫
(ε− µ)vδf

d3k

(2π)3
. (2.85)

Substituting (2.74) into the above formulas gives

−ej = 2e

∫
τ(εk)vk ·

[
(εk − µ)

vk · ∇T
T

+ evk ·E
](
−∂f0

∂ε

)
d3k

(2π)3
, (2.86)

q − µj = −2

∫
τ(εk)(εk − µ)vk ·

[
(εk − µ)

vk · ∇T
T

+ evk ·E
](
−∂f0

∂ε

)
d3k

(2π)3
. (2.87)

These currents can be viewed as responses to the electric field and the temperature gradient:

−ej = σ[E − S∇T ], q − µj = σSTE − k∇T, (2.88)

where σ is the electrical conductivity, S is the Seebeck coefficient, and k is the thermal conductivity

due to the electrons. Let θ be the angle between vk and the electric field E, then when there is no

temperature gradient the electricity current is

−ej = 2e2

∫
τ(εk)vk · (vk ·E)

(
−∂f0

∂ε

)
d3k

(2π)3

= 2e2

∫
τ(εk)vk(vkE cos θ)

(
−∂f0

∂ε

)
d3k

(2π)3
.

(2.89)
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In a lattice with cubic symmetry, the currents are in the same direction of the driving term2, so

for the term vk in the integral only the component with the same direction of E remains, which

means we can rewrite vk as vk
E
E cos θ in the integral. Hence

−ej = 2e2

∫
τ(εk)v2

k cos2 θE

(
−∂f0

∂ε

)
d3k

(2π)3
. (2.90)

Since the solid angle integral
∫

cos2 θ sin θdθdφ = 1
3 , we finally reach a formula for the electrical

conductivity

σ =
2e2

3

∫
τ(εk)v2

k

(
−∂f0

∂ε

)
d3k

(2π)3
. (2.91)

Similarly, the formulas for other transport coefficients due to electrons are

σS = − 2e

3T

∫
τ(εk)(εk − µ)v2

k

(
−∂f0

∂ε

)
d3k

(2π)3
, (2.92)

k =
2

3T

∫
τ(εk)(εk − µ)2v2

k

(
−∂f0

∂ε

)
d3k

(2π)3
. (2.93)

The physical meaning of the electrical conductivity σ is the response coefficient to the external

electric field, and the thermal conductivity k is the response coefficient to the temperature gradient,

but the physical meaning of the Seebeck coefficient S is not so clear. The electricity current is given

by (2.88). Consider a situation where there is no electricity current. Then

σE = S∇T, (2.94)

multiplying both sides by a spatial vector l which has same direction with E we obtain

σE · l = S(∇T · l). (2.95)

Since E · l is just the voltage difference −∆V and ∇T · l is the temperature difference ∆T , the

Seebeck coefficient can be written as

S = −∆V

∆T
. (2.96)

2In principle all these transport coefficients are tensors σαβ , Sαβ and kαβ , here α, β is the spatial component
x, y, z.
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It can be seen that the temperature difference induces a voltage difference, this phenomenon is

called the Seebeck effect.

Equation (2.88) can also be rearranged as the heat current equation

σE = −ej + σS∇T, q − µj = −ejST − (k − σTS2)∇T. (2.97)

The thermal conductivity k is measured with no electric field, while the quantity k − σTS2 is

measured with no electricity current. Note that the thermal conductivity k discussed here includes

all other thermal effects besides the effect of electrons, such as the phonon effects, and is not only

due to electrons. It can be seen that there can be heat current even when −ej is zero, thus the

quantity k − σTS2 is the thermal conductivity with electrons excluded. Now define a quantity Z

as

Z =
σS2

k − σTS2
and ZT =

σTS2

k − σTS2
, (2.98)

which is called the figure of merit for thermoelectric materials. Equation (2.97) also shows that a

heat current can be driven by electricity current. This phenomenon is the basis of thermoelectric

refrigerators where the heat is driven from the cold to the hot part by an electricity current. The

difference between k and k − σTS2 is larger with larger ZT . In particular, (k − σTS2)→ 0 when

ZT → ∞, in this case all heat is carried by electrons and the refrigerator reaches the theoretical

best performance.

2.5 The Generalized Susceptibility

In the previous sections some response coefficients have been discussed like electricity conductivity.

This type of coefficients describe the behavior of the system under an external perturbation. In this

section we shall discuss the general properties of such kind of coefficients. This is also the starting

point for linear response theory.

An external perturbation is described, in the Hamiltonian, by a perturbing operator of the type

V̂ (t) = −x̂f(t), (2.99)
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where x̂ is the operator of the physical quantity concerned, and f(t) is the generalized force which

represents the external field. Assume that the quantum mean value x̄ is zero in the equilibrium

state when in the absence of the perturbation. Then x̄ is not zero when a perturbation is present.

It is clear that the value of x̄ can only depend on the values of f(t) at previous times, i.e. the

history of f(t), and this is called the causality principle. Therefore x̄(t) can be written in the form

x̄(t) =

∫ ∞
0

α(τ)f(t− τ)dτ, (2.100)

where α(τ) is a real function of time. Note that α(τ) is defined to be zero when τ < 0 due to the

causality principle. In this sense α(τ) is a retarded quantity like the retarded Green’s function3.

The quantity x̄(t) is called the response of the system to the perturbation, and α(τ) is called the

generalized susceptibility [32, 33].

Applying a Fourier transform to (2.100) we obtain the relationship between the Fourier com-

ponents of the force fω, the susceptibility α(ω) and the response x̄ω as

x̄ω = α(ω)fω, (2.101)

where

α(ω) =

∫ ∞
0

α(t)eiωtdt, (2.102)

and

x̄ω =

∫ ∞
−∞

x̄(t)eiωtdt, fω =

∫ ∞
−∞

f(t)eiωtdt. (2.103)

Once the generalized susceptibility α(ω) is specified, the behavior of the system under the per-

turbation is completely determined, thus it plays a fundamental role in the response theory. The

function α(ω) is usually complex, denote its real and imaginary parts by α′ and α′′:

α(ω) = α′(ω) + iα′′(ω). (2.104)

The definition (2.102) shows that

α(−ω) = α∗(ω). (2.105)

3In fact, in linear response region it is just the negative of the retarded Green’s function.
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Separating the real and imaginary parts, we find that

α′(−ω) = α′(ω), α′′(−ω) = −α′′(ω), (2.106)

which means that α′(ω) is an even function of ω and α′′(ω) is an odd function of ω. This property

is simply the consequence of the fact that the response x̄ must be real for any real force f . And we

shall suppose α(ω) → 0 when ω → ±∞, since α(t) should tend to zero4 when t → ∞, and due to

the fast oscillation factor limω→±∞ e±iωt the integral in (2.102) would average to zero.

It is possible to derive some very general properties of α(ω) by just using the theory of functions

of a complex variable. Now we regard ω as a complex variable, i.e., ω = ω′+iω′′. From the definition

(2.102) it immediately shows that α(ω) is a regular function everywhere in the upper half-plane.

For when ω′′ > 0 there is an exponentially decreasing factor e−ω
′′t in the integrand in (2.102), and

since α(t) is finite for all positive t, the integral converges. On other hand, in the lower half-plane,

the decreasing factor in (2.102) becomes an increasing factor, so the integral diverges. Hence the

function α(ω) in the lower half-plane can only be defined as the analytic continuation of α(ω) in

upper half-plane. It is worth noticing that the conclusion α(ω) is regular in the upper half-plane is

physically a consequence of the causality principle. And equation (2.105) can be generalized from

the real axis into the upper half-plane as

α(−ω∗) = α∗(ω). (2.107)

Let us now derive an important relationship between the real and imaginary parts of α(ω). To

do so, we choose a positive ω0 in real axis and integrate the expression α(ω)/(ω − ω0) around the

contour C shown in Figure 2.1. This contour is indented upwards at the point ω = ω0 and includes

the whole real axis, and is finally completed by an infinite semicircle. Since α(ω) is regular in the

upper half-plane and the point ω = ω0 has been excluded from the integration region, the function

α(ω)/(ω − ω0) is everywhere analytic inside the contour C, then according to the residue theorem

we have ∫
C

α(ω)

ω − ω0
dω = 0. (2.108)

4It just means that the history very long ago has little direct effect in the present.
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O ω0−∞ +∞

C

Figure 2.1: Integration contour for α(ω)
ω−ω0

.

The function α(ω)/(ω − ω0) tends to zero more rapidly than 1/ω since α(ω) → 0 at infinite,

therefore the integral along the infinite semicircle is also zero. The point ω0 is avoided by an

infinitesimal semicircle, we now denote the radius of this semicircle by r which tends to zero.

According to residue theorem, the integral along an infinitesimal full circle around ω0 is −2iπα(ω0),

therefore the integral along the infinitesimal semicircle is just −iπα(ω0). The integration along the

whole real axis therefore gives

lim
r→0

[∫ ω0−r

−∞

α(ω)

ω − ω0
+

∫ ∞
ω0+r

α(ω)

ω − ω0

]
− iπα(ω0) = 0. (2.109)

The first term is just the Cauchy principal value of the integral from −∞ to∞. Writing the formula

in the usual Cauchy principal value notation, we have

iπα(ω0) = P

∫ ∞
−∞

α(ω)

ω − ω0
dω. (2.110)

We now replace the integration variable ω by ξ which takes only real values, and replace the

given real value ω0 by ω. Separating the real and imaginary parts of (2.110), the following formulas

for real ω are obtained:

α′(ω) = − 1

π
P

∫ ∞
−∞

α′′(ξ)
ω − ξ dξ, (2.111)

α′′(ω) =
1

π
P

∫ ∞
−∞

α′(ξ)
ω − ξ dξ. (2.112)

The above formulas are called dispersion relations, or more commonly Kramers-Kronig relations,

and were first derived by Hans Kramers [34] and Ralph Kronig [35]. It should be emphasized that
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the proof is essentially based only on the property of α(ω) that it is regular in the upper plane.

Thus the Kramers-Kronig relations are also a direct consequence of the causality principle.

2.6 The Fluctuation-Dissipation Theorem

The generalized susceptibility is directly related to the dissipation processes of the system. In this

section we shall derive the formula which represents such a relationship.

If the generalized force f is purely monochromatic and given by

f(t) = Re f0e
−iωt =

1

2
(f0e

−iωt + f∗0 e
iωt), (2.113)

then according to (2.101) we obtain

x̄(t) =
1

2
[α(ω)f0e

−iωt + α(−ω)f∗0 e
iωt]. (2.114)

When the generalized force f acts on the system, the system would absorb energy from the

external source, which can be converted into heat. This process is called dissipation. Recall that

the energy change of the system is expressed by the equation dE/dt = 〈∂Ĥ/∂t〉 [32], which states

that the time derivative of the mean energy is equal to the mean value of the partial derivative

of the Hamiltonian. Because only the generalized force f(t) depends explicitly on time in the

Hamiltonian, we have

dE

dt
= −x̄df(t)

dt
. (2.115)

Substitute (2.113) and (2.114) into the above expression, then

dE

dt
=

1

4
[α(ω)f0e

−iωt + α(−ω)f∗0 e
iωt](−iωf0e

−iωt + iωf∗0 e
iωt)

=
1

4
[−iωα(ω)f2

0 e
−2iωt + iωα(ω)|f0|2 − iωα(−ω)|f0|2 + iωα(−ω)(f∗0 )2e2iωt],

(2.116)

the terms containing e±2iωt factors would vanish when averaging with time, therefore on averaging
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with time we obtain
dE

dt
=

1

4
iω[α(ω)− α(−ω)]|f0|2

=
1

4
iω[α(ω)− α∗(ω)]|f0|2

=
1

2
ωα′′(ω)|f0|2.

(2.117)

From this formula we see that the dissipation energy can be expressed in terms of the imaginary

part of the generalized susceptibility.

Using Fermi’s golden rule we can also derive an explicit formula for dE/dt. Under the pertur-

bation

V̂ (t) = −f(t)x̂ = −1

2
(f0e

−iωt + f∗0 e
iωt)x̂ (2.118)

the system make transitions, and the transition rate from state n to state m (here suppose states

n and m are eigenstates of the unperturbed system with eigenenergy En and Em, and ωmn =

(Em − En)/~) is given by

wmn =
π|f0|2
2~2

|xmn|2[δ(ω + ωmn) + δ(ω + ωnm)], (2.119)

where xmn stands for 〈m| x̂ |n〉 and we have used the fact that xmn = x∗nm. In each transition the

system absorbs or emits an energy ~ωmn. Suppose the system is in a canonical distribution with

the distribution function ρn = e(F−En)/T , where F is the free energy of the system. Define the

energy change per unit time by Q, then

Q =
dE

dt
=

∑
nm

ρnwmn~ωmn

=
π

2~
|f0|2

∑
mn

ρn|xmn|2[δ(ω + ωmn) + δ(ω + ωnm)]ωmn,

(2.120)

or, because the delta functions force ωmn = ±ω,

Q =
π

2~
ω|f0|2

∑
mn

ρn|xmn|2[δ(ω + ωnm)− δ(ω + ωmn)]. (2.121)
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Comparison between this formula and (2.117) gives

α′′(ω) =
π

~
∑
mn

ρn|xmn|2[δ(ω + ωnm)− δ(ω + ωmn)]. (2.122)

There is also a relationship between the fluctuations of the physical quantity x and the imaginary

part of α. To show this, we first define the quantum correlation function for x̂ as

φ(t) =
1

2
〈x̂(t)x̂(0) + x̂(0)x̂(t)〉, (2.123)

and its Fourier transform as

φ(ω) =
1

2

∫ ∞
−∞
〈x̂(t)x̂(0) + x̂(0)x̂(t)〉eiωtdt. (2.124)

If the system is in canonical distribution, we can write φ(t) as

φ(t) =
1

2

∑
nm

ρn[xnm(t)xmn + xnmxmn(t)]

=
1

2

∑
nm

ρn|xmn|2(eiωnmt + eiωmnt).

(2.125)

Recall that for delta function

δ(a) =
1

2π

∫ ∞
−∞

eipadp =
1

2π

∫ ∞
−∞

e−ipadp, (2.126)

then we obtain

φ(ω) =
1

2

∑
nm

∫ ∞
−∞

ρn|xmn|2[ei(ω+ωnm)t + ei(ω+ωmn)t]dt

= π
∑
nm

ρn|xmn|2[δ(ω + ωnm) + δ(ω + ωmn)].

(2.127)

Since the summation now is over both suffixes m and n, they can be interchanged. Hence we can

write

φ(ω) = π
∑
nm

(ρn + ρm)|xmn|2δ(ω + ωnm)

= π
∑
nm

ρn(1 + e~ωnm/T )|xmn|2δ(ω + ωnm),

(2.128)
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or, due to the delta function in the summation ωnm can be replaced by −ω,

φ(ω) = π(1 + e−~ω/T )
∑
nm

ρn|xmn|2δ(ω + ωnm). (2.129)

Similarly we can also write α′′(ω) as

α′′(ω) =
π

~
(1− e−~ω/T )

∑
nm

ρn|xmn|2δ(ω + ωnm). (2.130)

A comparison between the above two expressions gives

φ(ω) = ~α′′(ω) coth
~ω
2T

. (2.131)

The fluctuation properties of x are characterized by the mean square 〈x̂2〉 which is just φ(t = 0),

hence

〈x̂2〉 = ~ lim
t→0

∫ ∞
−∞

α′′(ω) coth
~ω
2T

e−iωt
dω

2π
=

~
π

∫ ∞
0

α′′(ω) coth
~ω
2T

dω. (2.132)

These formulas constitute an important theorem which is called the fluctuation-dissipation theo-

rem, originally formulated by Harry Nyquist in 1928 [36] and then proved by Herbert Callen and

Theodore Welton in 1951 [37]. This theorem establishes a relationship between the fluctuation and

dissipative properties of the system.

When temperature is high that T � ~ω we have coth(~ω/2T ) ≈ 2T/~ω, and the formula

(2.131) becomes

φ(ω) =
2T

ω
α′′(ω), (2.133)

the Plank constant ~ disappears in the formula, because under such a condition the fluctuations

are considered to be classical. In this case (2.132) then becomes

〈x̂2〉 =
2T

π

∫ ∞
0

α′′(ω)

ω
dω = −2T

π

∫ ∞
0

α′′(ω)

0− ω dω, (2.134)

using the Kramers-Kronig relation (note that α′(0) = α(0)) the mean square of fluctuations can be
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expressed by the static value α(ω = 0):

〈x̂2〉 = Tα(0). (2.135)

The Fluctuation-Dissipation Theorem for Multiple Variables

The fluctuation-dissipation theorem can be generalized to multiple variables. Denote the physical

quantities by xi, and the operator of the perturbation then becomes

V̂ (t) = −
∑
i

x̂ifi(t), (2.136)

and the generalized susceptibility is defined as a tensor αik(τ):

x̄i =
∑
k

∫ ∞
0

αik(τ)fk(t− τ)dτ. (2.137)

Writing the above formula in Fourier component form we get

x̄iω =
∑
k

αik(ω)fkω. (2.138)

Now consider the case where the generalized forces are purely monochromatic with frequency ω,

then fi can be written as

fi(t) =
1

2
(f0ie

−iωt + f∗0ie
iωt), (2.139)

and the corresponding responses x̄i are

x̄i(t) =
1

2

∑
k

[αik(ω)f0ke
−iωt + α∗ik(ω)f∗0ke

iωt]. (2.140)
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The energy change per unit time of the system is (note that after averaging over time the terms in

oscillation factor e±2iωt vanish)

Q = −
∑
i

x̄i(t)ḟi(t)

= −iω
∑
ik

[αik(ω)f0kf
∗
0i − α∗ik(ω)f∗0kf0i]

= iω
∑
ik

[α∗ik(ω)− αik(ω)]f0if
∗
0k,

(2.141)

where in the last step the suffixes i and k of the first term in the summation are interchanged.

On the other hand, the energy change per unit time is given by Fermi’s golden rule as

Q =
π

2~
∑
ik,mn

ρn(xi)mn(xk)nm[f0if
∗
0kδ(ω + ωnm) + f∗0if0kδ(ω + ωmn)]ωmn

=
π

2~
ω
∑
ik,mn

ρn(xi)mn(xk)nm[f0if
∗
0kδ(ω + ωnm)− f∗0if0kδ(ω + ωmn)]

=
π

2~
ω
∑
ik,mn

ρnf0if
∗
0k[(xi)mn(xk)nmδ(ω + ωnm)− (xi)nm(xk)mnδ(ω + ωmn)],

(2.142)

comparing with (2.141) we find that

α∗ik − αki = −2πi

~
∑
mn

ρn[(xi)mn(xk)nmδ(ω + ωnm)− (xi)nm(xk)mnδ(ω + ωmn)]. (2.143)

Now define the correlation function for xi as

φik(t) =
1

2
〈x̂i(t)x̂k(0) + x̂k(0)x̂i(t)〉, (2.144)

its Fourier components are accordingly

φik(ω) = π
∑
nm

ρn[(xi)nm(xk)mnδ(ω + ωnm) + (xk)nm(xi)mnδ(ω + ωmn)]. (2.145)

A comparison with (2.143) gives

φik(ω) =
i

2
~(α∗ki − αik) coth

~ω
2T

, (2.146)



2.7. THE KUBO-GREENWOOD FORMULA 33

and thus we obtain the fluctuation-dissipation theorem for multiple variables.

Similar to (2.135), the mean square of fluctuations can be expressed by the static susceptibility

αik(ω = 0):

1

2
〈x̂ix̂k + x̂kx̂i〉 = Tαik(0). (2.147)

2.7 The Kubo-Greenwood Formula

The Drude formula and Boltzmann equation methods are classical or semiclassical. Now we proceed

to obtain a quantum mechanical expression for electricity conductivity based on the independent-

particle approximation. It is also the simplest practical formula in linear response theory.

The electromagnetic interaction in classical electrodynamics is described by the term5 ej ·A,

where j is the electron particle current density and A is the vector potential of the electromagnetic

four-potential. In quantum electrodynamics j and A should both be replaced by corresponding

operators ĵ and Â. However, here we need only to replace j by its operator ĵ since the generalized

forces, i.e. the external fields, are supposed to be classical. Thus the operator of the perturbation

is of the type

V̂ (t) = e

∫
ĵ ·A(t)d3r. (2.148)

We only consider the case that the system is homogeneous in space, then the integration in the

above formula just gives

V̂ (t) = eV ĵ ·A(t), (2.149)

where V is the volume of the system. And because the response current j is in the direction of the

generalized force A, we can just concentrate on their component in that direction and write them

as scalars j and A, i.e.

V̂ (t) = eV ĵA(t). (2.150)

Let α(ω) denote the generalized susceptibility to A corresponding to the response −ej, i.e.,

−ejω = α(ω)Aω, (2.151)

5Here x is the electricity current density −ej and the generalized force f is A, thus −xf is ej ·A.
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and denote the energy change rate of the system by Q. Then according to the fluctuation-dissipation

theorem when the system is under a purely monochromatic magnetic potential A(t) = 1
2A0(e−iωt+

eiωt) we have

Q =
1

2
Vωα′′(ω)|A0|2. (2.152)

Now assume that all electrons are independent of each other, and such assumption is called the

independent-particle approximation. Since the perturbation operator of a single electron is −evA,

where v is the component of v which is in the direction of j and A, applying Fermi’s golden rule

we find an expression for Q as

Q =
πe2

2~2

∑
nm

~ωmnfn(1− fm)|vmn|2|A0|2[δ(ω + ωnm) + δ(ω + ωmn)]

=
πe2

2~
∑
nm

ωmn[fn(1− fm)− fm(1− fn)]|vmn|2|A0|2δ(ω + ωnm)

=
πe2

2~
∑
nm

ω(fn − fm)|vmn|2|A0|2δ(ω + ωnm),

(2.153)

where ωmn = (εm−εn)/~. The function fn is just the Fermi distribution, and the factor fn(1−fm)

is due to Pauli exclusion principle for a fermion: the electron transits from an occupied state n to

an unoccupied state m. In the second step we interchanged the indices m and n in the summation

of second delta function. Comparing this formula with (2.152) we find

α′′(ω) =
1

V
πe2

~
∑
mn

(fn − fm)|vmn|2δ(ω + ωnm). (2.154)

However, this α is not the electrical conductivity σ, and we need to express Q in terms of σ. To

do so, we notice that the relation between the electric field E and magnetic vector A is just (here

E is the component of electric field E with the same direction of A)

E(t) = −∂A(t)

∂t
, (2.155)

and after Fourier transformation we obtain

Eω = iωAω. (2.156)



2.7. THE KUBO-GREENWOOD FORMULA 35

Substituting this formula into (2.151) we have

−ejω =
α(ω)

iω
Eω, (2.157)

then according to the definition of the electrical conductivity,

σ(ω) =
α(ω)

iω
. (2.158)

Separating the real and imaginary parts of σ and α gives

α′(ω) = −ωσ′′(ω), α′′(ω) = ωσ′, (2.159)

where σ′ and σ′′ are real and imaginary parts of σ respectively.

Combining (2.152) and (2.158) an expression for Q in terms of E and σ is obtained as

Q =
1

2
Vσ′(ω)|E0|2, (2.160)

and this is exactly the Joule heating formula; and there is also an expression for σ′ as

σ′(ω) =
α′′(ω)

ω
=
πe2

Vω
∑
mn

(fn − fm)|vmn|2δ(~ω + ~ωnm), (2.161)

or, writing ~ωnm = εn − εm,

σ′(ω) =
πe2~
V

∑
mn

fn − fm
~ω

|vmn|2δ(εn − εm + ~ω). (2.162)

This formula is called the Kubo-Greenwood formula [38–40], which is originally due to Ryogo Kubo

and D. A. Greenwood. This form of Kubo-Greenwood formula contains a delta function which is

not convenient to evaluate, so usually we write the formula in terms of Green’s function. To do so,

we first note that

fn − fm
~ω

δ(εn − εm + ~ω) =

∫
f(ε)− f(ε+ ~ω)

~ω
δ(ε− εn)δ(ε− εm + ~ω)dε, (2.163)
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hence σ′ can be written as

σ′(ω) =
πe2~
V

∫ ∑
mn

[
f(ε)− f(ε+ ~ω)

~ω
vmnvnmδ(ε− εn)δ(ε− εm + ~ω)

]
dε

=
πe2~
V

∫
f(ε)− f(ε+ ~ω)

~ω
∑
mn

vmnδ(ε− εn)vnmδ(ε− εm + ~ω)dε

=
πe2~
V

∫
f(ε)− f(ε+ ~ω)

~ω
Tr
[
v̂δ(ε− Ĥ)v̂δ(ε+ ~ω − Ĥ)

]
dε.

(2.164)

The operator δ(ε− Ĥ) represents the density of states at energy ε and Ĥ is the Hamiltonian of a

single electron, and it is related to the Green’s function by

δ(ε− Ĥ) = − 1

π
ImGR(ε) =

1

π
ImGA =

i

2π
[GR(ε)−GA(ε)], (2.165)

where GR and GA are retarded and advanced Green’s function respectively. Therefore we reach

the Kubo-Greenwood formula in terms of retarded Green’s function as

σ′(ω) =
e2~
πV

∫
f(ε)− f(ε+ ~ω)

~ω
Tr
[
v̂ ImGR(ε)v̂ ImGR(ε+ ~ω)

]
dε. (2.166)

We often want the static conductivity σ(0) = σ′(0), thus

σ(0) =
e2~
πV lim

ω→0

∫
f(ε)− f(ε+ ~ω)

~ω
Tr
[
v̂ ImGR(ε)v̂ ImGR(ε+ ~ω)

]
dε

=
e2~
πV

∫ (
−∂f
∂ε

)
Tr
[
v̂ ImGR(ε)v̂ ImGR(ε)

]
dε.

(2.167)

Sometimes we can obtain an approximate k independent self-energy ΣR(ε) for retarded Green’s

function. For instance, coherent potential approximation and dynamical mean field theory would

give such self-energy. In this case, GR and v are both diagonal in k-representation, then we have

GR(ε,k) =
1

ε− ΣR − ε0(k)
, 〈k|v |k〉 =

1

~
∂ε0(k)

∂k
, (2.168)

and the formula for σ(0) becomes

σ(0) = 2
e2~
πV

∫ (
−∂f
∂ε

)∑
k

| 〈k| v̂ |k〉 |2| ImGR(ε,k)|2dε, (2.169)
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here v is the component of v which is in the same direction of electric field E, and the extra factor

2 is due to electron spin degeneracy. This formula has a similar form to Boltzmann’s equation

(2.91), this makes a connection between Kubo-Greenwood formula and Boltzmann equation. This

connection was noticed by David Thouless [41] in 1975.

2.8 The Green-Kubo Formula

Usually when mentioning linear response theory, we actually refer to the Green-Kubo formula. It is

a general quantum mechanical formula for the response coefficients (the generalized susceptibility)

based on the first order perturbation, this is also the reason why this theory is called the linear

response theory. This formula is due to Melville Green in 1954 [42] and Ryogo Kubo in 1957 [38].

We still write the operator of the perturbation in the form

V̂ (t) = −x̂f(t), (2.170)

where x is the physical quantity concerned and f(t) is a purely monochromatic function with a

frequency ω:

f(t) =
1

2
(f0e

−iωt + f∗0 e
iωt). (2.171)

Let Ψ
(0)
n be the wave function of state n with eigenenergy En of the unperturbed system, then

according to the time dependent perturbation theory we seek the perturbed wave function of state

n in the first approximation as

Ψn = Ψ(0)
n +

∑
m

amnΨ(0)
m . (2.172)

According to (2.46) the coefficients amn satisfy the equations

i~
damn
dt

= Vmne
iωmnt = −1

2
xmne

iωmnt(f0e
−iωt + f∗0 e

iωt), (2.173)

note that Vmn stands for 〈m| V̂ (t) |n〉 which also depends on time. Like in time dependent pertur-

bation theory, we assume the perturbation is “adiabatic switch-on” from t = −∞; this means that

we need to put ω → ω ∓ i0 in the factors e±iωt (where i0 denotes an infinitesimal iη with η → 0).
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Then

amn(t) =
i

2~

∫ t

−∞
xmne

iωmnτ
[
f0e
−i(ω+i0)τ + f∗0 e

i(ω−i0)τ
]
dτ

=
i

2~

∫ t

−∞
xmn

[
f0e

i(ωmn−ω−i0)τ + f∗0 e
i(ωmn+ω−i0)τ

]
dτ

=
1

2~
xmne

iωmnt

[
f0e
−iωt

ωmn − ω − i0
+

f∗0 e
iωt

ωmn + ω − i0

]
.

(2.174)

Suppose the system is in a canonical distribution with distribution function ρn = e(F−En)/T , where

F is the free energy of the system. Assume the mean value of x to be zero without perturbation,

i.e.
∑
n

ρn

〈
Ψ(0)
n

∣∣∣ x̂ ∣∣∣Ψ(0)
n

〉
= 0, then the mean value x̄ with perturbation is calculated in first

approximation via

x̄(t) =
∑
n

ρn 〈Ψn| x̂ |Ψn〉

=
∑
mn

ρn(amnxnme
iωnmt + a∗mnxmne

iωmnt)

=
1

2~
∑
mn

ρnxmnxnm

[
1

ωmn − ω − i0
+

1

ωmn + ω + i0

]
f0e
−iωt + c.c.,

(2.175)

where “c.c.” means complex conjugate. Comparing this formula with the expression (2.114) we

find an expression for the generalized susceptibility α(ω) as

α(ω) =
1

~
∑
mn

ρn|xmn|2
[

1

ωmn − ω − i0
+

1

ωmn + ω + i0

]
. (2.176)

The real and imaginary parts of this expression can be separated by the formula of Cauchy principal

value

1

x± i0 = P
1

x
∓ iπδ(x). (2.177)

From this formula it is easy to see that α′′(ω) recovers the expression in fluctuation-dissipation

theorem.

The formula (2.176) is just the Fourier transform of the function

α(t) =
i

~
θ(t)〈x̂(t)x̂(0)− x̂(0)x̂(t)〉, (2.178)

where the averaging is with respect to the equilibrium state (without perturbation) of the system
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and θ(t) is the Heaviside step function defined as

θ(t) =

 1, t > 0;

0, t < 0.
(2.179)

To see this, write (2.178) with respect to n state of the unperturbed system and we shall obtain

that for t > 0

α(t) =
i

~
∑
mn

ρn[xnmxmne
iωnmt − xnmxmneiωnmt]

=
i

~
∑
mn

ρn|xmn|2[eiωnmt − eiωmnt],
(2.180)

note that the factor eiωnmt − eiωmnt is purely imaginary, this ensures that α(t) is real. Since α(t) is

zero except t > 0, the Fourier transform of eiωmnt is calculated as

∫ ∞
0

eiωmntei(ω+i0)tdt =
i

ωmn + ω + i0
. (2.181)

Recalling that ωmn = −ωnm, we get the final result

α(ω) =
i

~

∫ ∞
0
〈x̂(t)x̂(0)− x̂(0)x̂(t)〉eiωtdt, (2.182)

this formula is known as the Green-Kubo formula. It can be seen that the Green-Kubo formula

relates the response coefficients to the equilibrium properties of the system.

The Green-Kubo formula is also related to the retarded Green’s function in a simple manner.

The usual definition of the retarded Green’s function GR(t) for x is

GR(t) = − i
~
θ(t)〈x̂(t)x̂(0)− x̂(0)x̂(t)〉, GR(ω) =

∫ ∞
−∞

GR(t)eiωtdt, (2.183)

therefore α(ω) is just the opposite of GR(ω):

α(ω) = −GR(ω). (2.184)

Similarly, when there are multiple variables xi, the Green-Kubo formula for the generalized
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susceptibility αik(ω) is given by

αik(ω) =
i

~

∫ ∞
0
〈x̂i(t)x̂k(0)− x̂k(0)x̂i(t)〉eiωtdt. (2.185)

With the definition of the retarded Green’s function

GRik(t) = − i
~
θ(t)〈x̂i(t)x̂k(0)− x̂k(0)x̂i(t)〉, GRik(ω) =

∫ ∞
−∞

GR(t)eiωtdt, (2.186)

we can just write

αik(ω) = −GRik(ω). (2.187)

Kubo Identity

With the aid of Kubo identity [22] the Green-Kubo formula can be written in another form. The

Kubo identity states that for a physical operator x̂ and a given Hamiltonian Ĥ there is

[e−βĤ , x̂] = e−βĤ
∫ β

0
eλĤ [x̂, Ĥ]e−λĤdλ, (2.188)

where [x̂, Ĥ] is the commutator and β = 1/T . To prove this relation, let us consider an operator

Ŝ(λ) = eλĤ [x̂, e−λĤ ] = eλĤ x̂e−λĤ − x̂. (2.189)

Differentiating this operator with respect to λ yields

dŜ

dλ
= eλĤĤx̂e−λĤ − eλĤ x̂Ĥe−λĤ = eλĤ [Ĥ, x̂]e−λĤ . (2.190)

Therefore

Ŝ(β) = Ŝ(0) +

∫ β

0

dŜ

dλ
dλ =

∫ β

0
eλĤ [Ĥ, x̂]e−λĤdλ, (2.191)

and finally we have

[e−βĤ , x̂] = −e−βĤ Ŝ(β) = e−βĤ
∫ β

0
eλĤ [x̂, Ĥ]e−λĤdλ. (2.192)
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Now we write the distribution function ρn in its operator form, i.e., write it as the density matrix

ρ̂ = e−β(F−Ĥ). Then according to Green-Kubo formula,

αik(t) =
i

~
θ(t)〈x̂i(t)x̂k(0)− x̂k(0)x̂i(t)〉

=
i

~
θ(t) Tr[ρ̂x̂i(t)x̂k(0)− ρ̂x̂k(0)x̂i(t)]

=
i

~
θ(t) Tr {x̂i(t)[x̂k(0)ρ̂− ρ̂x̂k(0)]} ,

(2.193)

here we have used the property that the trace is invariant under cyclic permutations. Substituting

Kubo identity

[x̂k(0)ρ̂− ρ̂x̂k(0)] = ρ̂

∫ β

0
eλĤ [Ĥ, x̂k(0)]e−λĤdλ (2.194)

we obtain

αik(t) =
i

~
θ(t)

∫ β

0
Tr{x̂i(t)ρ̂eλĤ [Ĥ, x̂k(0)]e−λĤ}dλ. (2.195)

Recalling the Heisenberg equation for x̂k

ˆ̇xk =
i

~
[Ĥ, x̂k], (2.196)

then we have

αik(t) = θ(t)

∫ β

0
Tr
[
x̂i(t)ρ̂e

λĤ ˆ̇xk(0)e−λĤ
]
dλ

= θ(t)

∫ β

0
Tr
[
ρ̂eλĤ ˆ̇xk(0)e−λĤ x̂i(t)

]
dλ

= θ(t)

∫ β

0
〈eλĤ ˆ̇xk(0)e−λĤ x̂i(t)〉dλ.

(2.197)

2.9 The Green-Kubo Formula for Electrical Conductivity

When deriving the Kubo-Greenwood formula we only considered a special case that the current is

homogeneous in space and always in the same direction of external field, the fluctuations of the

current in space are totally neglected. Now let us consider a more general case.

The presence of the external field A(t, r) induces an electricity current −ej(t, r). The general-

ized susceptibility of −ej(t, r) corresponding to A(t, r) is defined as

−eja(t, r) =

∫ ∞
0
dτ

∫
d3r′

∑
b

αab(τ ; r, r′)Ab(t− τ, r′), (2.198)
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where a, b = x, y, z are the spatial components. We can also define a conductivity as the response

coefficients to E(t, r) as

−eja(t, r) =

∫ ∞
0
dτ

∫
d3r′

∑
b

σab(τ ; r, r′)Eb(t− τ, r′). (2.199)

The operator of the perturbation is written in terms of A(t, r) as

V̂ (t) = e

∫ ∑
a

ĵa(t, r)Aa(t, r)d3r. (2.200)

According to Green-Kubo formula we immediately obtain

αab(t; r, r
′)d3r′ =

i

~
〈[−eĵa(t, r),−eĵb(0, r′)d3r′]〉, t > 0; (2.201)

i.e.,

αab(t; r, r
′) =

ie2

~
〈[ĵa(t, r), ĵb(0, r

′)]〉, t > 0. (2.202)

Its Fourier component is written as

αab(ω; r, r′) =
ie2

~

∫ ∞
0
〈[ĵa(t, r), ĵb(0, r

′)]〉eiωtdt, (2.203)

the relation between α(ω; r, r′) and σ(ω; r, r′) is similar with (2.158) and thus we have

σab(ω; r, r′) =
e2

~ω

∫ ∞
0
〈[ĵa(t, r), ĵb(0, r

′)]〉eiωtdt. (2.204)

This formula is often referred to as the Kubo formula of conductivity. Now assume σab(ω; r, r′) is

only a function of the position separation σ(ω, r − r′). This assumption is incorrect on an atomic

scale, but it is permissible in solids when the current is to be averaged over many unit cells of the
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solid. Then the formula can be written in k-representation as

σab(ω,k) =
e2

~ω

∫ ∫ ∞
0
〈[ĵa(t, r), ĵb(0, r

′)]〉eiωte−ik·(r−r′)dt d3(r − r′)

=
e2

~ω

∫ ∫ ∞
0
〈[ĵa(t, r), ĵb(0, r

′)]〉eiωte−ik·(r−r′)dt d3r

=
e2

~ω
eik·r

′
∫ ∞

0
〈[ĵa(t,k), ĵb(0, r

′)]〉eiωtdt,

(2.205)

with the definition of Fourier transform

ĵ(t,k) =

∫
ĵ(t, r)e−ik·rd3r. (2.206)

However, this result is not quite right. We need to average over the space variable r′ in order to

eliminate atomic fluctuations. This average is done by an integration 1
V
∫
d3r′: integrate over all

volume and then divide by V. The only r′ dependent factor in the expression is eik·r
′
ĵb(0, r

′), after

the integration it becomes

1

V

∫
ĵb(0, r

′)eik·r
′
d3r′ =

1

V ĵb(0,−k) =
1

V ĵ
†
b(0,k). (2.207)

Thus the final result is

σab(ω,k) =
e2

~ωV

∫ ∞
0
〈[ĵa(t,k), ĵ†b(0,k)]〉eiωtdt, (2.208)

this is the Kubo formula in k-representation.

However, this conductivity is not the usual electrical conductivity σab(t) or σab(ω), and it can

be seen from the fact that its dimension is not correct. To find the usual electrical conductivity,

the mean current density −ej̄a(t) averaging over the volume is need. According to (2.199) we have

−ej̄a(t) = − eV

∫
ja(t, r)d3r =

1

V

∫ ∞
0
dτ

∫
d3rd3r′

∑
b

σab(τ ; r, r′)Eb(t− τ, r′), (2.209)

therefore

σab(ω) =
1

V

∫
d3rd3r′σab(ω; r, r′). (2.210)

If σab(ω; r, r′) is only a function of the position separation σ(ω, r− r′), the integral over
∫
d3rd3r′
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can be written as V
∫
d3(r − r′), then

σab(ω) =

∫
σab(ω, r)d3r. (2.211)

Now we can write the expression for electrical conductivity in terms of operator ĵa explicitly as

σab(ω) =
e2

~ω

∫ ∫ ∞
0
〈[ĵa(t, r), ĵb(0, 0)]〉eiωtdt d3r, (2.212)

or

σab(ω) =
e2

~ω
lim
k→0

∫ ∫ ∞
0
〈[ĵa(t, r), ĵb(0, 0)]〉ei(ωt−k·r)dt d3r, (2.213)

where the limit k → 0 corresponds to the hydrodynamic approximation [24], under such approx-

imation only long wavelength (small k) excitations are studied and the atomic fluctuations are

ignored.

The Formula for Thermoelectric Coefficient

The electric field can also induce heat current. According to the discussion in section 2.4, the

corresponding response coefficient to electric field E is a combination of conductivity, Seebeck

coefficient and temperature σST . So we have

(q − µj)a(t; r, r′) =

∫ ∞
0

dτ

∫
d3r′

∑
b

(σST )ab(τ ; r, r′)Eb(t− τ, r′). (2.214)

It is easy to write down a Kubo formula for σST . Since the operator of the perturbation remains

the same, we need to only change the operator −eĵa in the Kubo formula by (q̂ − µĵ)a, then

(σST )ab(ω; r, r′) = − e

~ω

∫ ∞
0
〈[(q̂ − µĵ)a(t, r), ĵb(0, r

′)]〉eiωtdt. (2.215)

Similarly, under the assumption that σST is a function of position separation (σST )(ω, r− r′) we

can obtain the formula in k-representation as

(σST )ab(ω,k) = − e

~ωV

∫ ∞
0
〈[(q̂ − µĵ)a(t,k), ĵ†b(0,k)]〉eiωtdt. (2.216)
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The dimension of (σST )ab(t; r, r
′) is not the same as usual (σST )ab, so we need to use hydrodynamic

approximation again to get the formula after the space averaging as

(σST )ab(ω) = − e

~ω
lim
k→0

∫ ∫ ∞
0
〈[(q̂ − µĵ)a(t, r), ĵb(0, 0)]〉ei(ωt−k·r)dt d3r. (2.217)

This formula allows us to calculate the combination quantity (σST )ab, so together with the Kubo

formula of conductivity we can get both the electrical conductivity and the Seebeck coefficient.

Connection to Kubo-Greenwood Formula

The Green-Kubo formula is usually hard to evaluate, therefore we often approximate the electrons

in solids as non interacting particles, which means that there exist single particle stationary states.

Under such approximation the Green-Kubo formula reduces to Kubo-Greenwood formula [43] which

is much easier to evaluate.

Now denote the wave function of a single electron in state n with eigenenergy εn by ψn(r). Now

we introduce the ψ-operators which are defined as

ψ̂(r) =
∑
n

ψn(r)ĉn, ψ̂†(r) =
∑
n

ψ∗n(r)ĉ†n, (2.218)

which would be more convenient here. With these operators the particle current operator ĵ can be

expressed as

ĵ(r) = ψ̂†(r)v̂ψ̂(r), (2.219)

where v̂ is the single particle velocity operator which acts only on the wave function on its right.

The wave function ψn(r) is normalized by condition

∫
ψ∗n(r)ψn(r)d3r = 1, (2.220)

thus ψ̂†(r)ψ̂(r) is the particle number density operator at position r and

∫
ψ̂†(r)ψ̂(r)d3r =

∑
n

ĉ†nĉn = N̂ (2.221)
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is the particle number operator. With these operators the conductivity formula (2.210) writes

σab(ω) =
e2

~ωV

∫ ∫ ∞
0
〈[e i~ Ĥtψ̂†(r)v̂aψ̂(r)e−

i
~ Ĥt, ψ̂†(r′)v̂bψ̂(r′)]〉eiωtdt d3rd3r′, (2.222)

or explicitly in terms of ĉ†n and ĉn,

σab(ω) =
e2

~ωV

∫ ∞
0

∑
nm,pq

〈[(va)nmĉ†nĉmeiωnmt, (vb)pq ĉ†pĉq]〉eiωtdt, (2.223)

where

(va)nm =

∫
ψn(r)v̂aψm(r)d3r, (vb)pq =

∫
ψp(r

′)v̂bψq(r
′)d3r′, ωnm = (εn − εm)/~. (2.224)

To evaluate the above formula we need the expression for 〈ĉ†nĉmĉ†pĉq〉. Since electrons are fermion,

according to Wick’s theorem we have

〈ĉ†nĉmĉ†pĉq〉 = 〈ĉ†nĉm〉〈ĉ†pĉq〉+ 〈ĉ†nĉq〉〈ĉmĉ†p〉

= δmnδpqfnfp + δnqδmpfn(1− fm),

(2.225)

where fn is the Fermi distribution function. Accordingly,

〈[ĉ†nĉm, ĉ†pĉq]〉 = δnqδmp(fn − fm), (2.226)

and this expression leads us to

σab(ω) =
ie2

V
∑
mn

fn − fm
~ω

(va)nm(vb)mn
ωnm + ω + i0

. (2.227)

The real and imaginary parts of this expression can be separated by Cauchy principal value formula

1

x± i0 = P
1

x
∓ iπδ(x). (2.228)
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Thus we obtain the formula for the real part of σab(ω):

Re σab(ω) =
πe2~
V

∑
mn

fn − fm
~ω

(va)nm(vb)mnδ(εn − εm + ~ω). (2.229)

This formula coincides with the Kubo-Greenwood formula introduced in an earlier section but is

in a more general manner: the possibility that the electricity current might not be parallel to the

electric field is taken into account, so the conductivity is a tensor. Thus we reach a conclusion that

the Kubo-Greenwood formula is an approximation of the Green-Kubo formula where the interaction

between electrons is ignored. This is just the independent particle approximation.

Similarly, if written in terms of the retarded Green’s function, the formula is

Re σab(ω) =
e2~
πV

∫
f(ε)− f(ε+ ~ω)

~ω
Tr
[
v̂a ImGR(ε)v̂b ImGR(ε+ ~ω)

]
dε, (2.230)

and the static formula is just

σab(0) = Re σab(0) =
e2~
πV

∫ (
−∂f
∂ε

)
Tr
[
v̂a ImGR(ε)v̂b ImGR(ε)

]
dε. (2.231)

If the Green’s function and velocity are both diagonal in the k-representation, then the static

formula is written as

σ(0) = 2
e2~
πV

∫ (
−∂f
∂ε

)∑
k

va(k)vb(k)| ImG(ε,k)|2dε, (2.232)

where the factor 2 is due to electron spin degeneracy.

Starting from Green-Kubo formula, we can also obtain a Kubo-Greenwood formula for the

thermoelectric coefficient σST . With independent particle approximation, the heat current density

q − µj is usually written as (ε− µ)j. Following the same procedures above the Kubo-Greenwood

formula for σST is obtained as

(σST )ab(ω) = −πe~V
∑
mn

fn − fm
~ω

(εn − µ)(va)nm(vb)mnδ(εn − εm + ~ω). (2.233)
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Write it in terms of the Green’s function, then

Re (σST )ab(ω) = − e~
πV

∫
f(ε)− f(ε+ ~ω)

~ω
Tr
[
(ε− µ)v̂a ImGR(ε)v̂b ImGR(ε+ ~ω)

]
dε, (2.234)

and the static formula is

(σST )ab(0) = Re (σST )ab(0) = − e~
πV

∫ (
−∂f
∂ε

)
Tr
[
(ε− µ)v̂a ImGR(ε)v̂b ImGR(ε)

]
dε. (2.235)

And the formula in the k-representation is

(σST )ab(0) = −2
e~
πV

∫ (
−∂f
∂ε

)∑
k

(ε− µ)va(k)vb(k)| ImGR(ε,k)|2dε. (2.236)

2.10 Non-Equilibrium Green’s Function Formalism

Non-equilibrium Green’s function formalism [31, 44–47] provides a general way which in principle

can handle not only equilibrium states but also any non-equilibrium states. This is the reason

why it is called the non-equilibrium Green’s function. It should be emphasized that this formalism,

although it is called non-equilibrium Green’s function, is also suitable for equilibrium states. In

this section we shall briefly review this formalism. In particular, we shall discuss the fluctuation-

dissipation theorem in terms of non-equilibrium Green’s function formalism.

Suppose there are several physical operators x̂i, x̂k under consideration. As we know, when

dealing with the system at zero temperature, one usually uses time ordered Green’s functions

which are defined as

Gik(t, t
′) = − i

~
〈0|T x̂i(t)x̂k(t′) |0〉 , (2.237)

where x̂i(t), x̂k(t
′) are operators in Heisenberg picture. The angle brackets 〈0| · · · |0〉 denote aver-

aging over the ground state of the system. The symbol T denotes the chronological product (time

ordering operator): the operators following it are arranged from right to left in order of increasing

time. For fermionic operators, the interchange of operators must change the sign of the product,
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while for bosonic operators the sign remains unchanged. Explicitly,

i~Gik(t, t′) =

 〈0| x̂i(t)x̂k(t
′) |0〉 , t > t′;

∓ 〈0| x̂k(t′)x̂i(t) |0〉 , t < t′.
(2.238)

The upper sign refers to fermionic operators and the lower sign to bosonic operators. When only

the ground state is considered, this time ordered Green’s function is enough to apply perturbation

method, and the reason is the following: when the Green’s function is changed into interaction

picture, the perturbation is usually assumed under an “adiabatic switch-on” and then “adiabatic

switch-off”, and after such procedure the system would return to the ground state and just leave

an unimportant phase factor.

As applied to finite temperature case or non-equilibrium case, the Green’s function is defined

in the same manner:

Gik(t, t
′) = − i

~
〈T x̂i(t)x̂k(t′)〉. (2.239)

The only difference is that the averaging (denoted by 〈· · · 〉) is now over any state of the system,

not necessarily over only the ground state of the system.

However, considering only time ordered Green’s functions is not enough to apply the perturba-

tion method, and we must introduce other Green’s functions. First let us denote the time ordered

Green’s function (2.239) by G−−ik , and define it as

i~G−−ik (t, t′) = 〈T x̂i(t)x̂k(t′)〉 =

 〈x̂i(t)x̂k(t
′)〉, t > t′;

∓ 〈x̂k(t′)x̂i(t)〉, t < t′.
(2.240)

Then we define another Green’s function

i~G++

ik (t, t′) = 〈T x̂i(t)x̂k(t′)〉 =

 ∓〈x̂k(t
′)x̂i(t)〉, t > t′;

〈x̂i(t)x̂k(t′)〉, t < t′,
(2.241)

which differs from G−− that T is replaced by T . The symbol T signifies that the operator factors

are arranged in the reverse of chronological order, it is called anti-time ordering operator.

Two further Green’s functions are defined without time ordering T or anti-time ordering oper-
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ator T as

i~G+−
ik (t, t′) = 〈x̂i(t)x̂k(t′)〉, i~G−+

ik (t, t′) = ∓〈x̂k(t′)x̂i(t)〉. (2.242)

The upper sign refers to fermionic operators and the lower sign to bosonic operators, in the following

we shall always use this convention.

The four Green’s functions thus defined are not independent of each other. It is easy to see

that they are related by a linear relation:

G−− +G++ = G−+ +G+−. (2.243)

The relation between these new defined Green’s functions and the retarded and advanced

Green’s functions is important. Recalling the definitions of retarded and advanced Green’s functions

i~GRik(t, t′) =

 〈x̂i(t)x̂k(t
′)± x̂k(t′)x̂i(t)〉, t > t′;

0, t < t′;
(2.244)

i~GAik(t, t′) =

 0, t > t′;

−〈x̂i(t)x̂k(t′)± x̂k(t′)x̂i(t)〉, t < t′,
(2.245)

and a direct comparison to those new defined functions gives

 GR = G−− −G−+ = G+− −G++,

GA = G−− −G+− = G−+ −G++.
(2.246)

Instead of G+− and G−+, sometimes more common notations G> and G< are used that

G> = G+−, G< = G−+. (2.247)

These new defined functions constitute non-equilibrium Green’s function (NEGF) formalism.

Fluctuation-Dissipation Theorem in Terms of Non-Equilibrium Green’s Function

With the definitions of these non-equilibrium Green’s functions, the fluctuation-dissipation theorem

can be written in another form. Let us consider the system which is time transitional invariant and
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is in canonical equilibrium. And several observable variables xi, xk are under consideration. Note

that since xi, xk are observable variables, the corresponding operators x̂i, x̂k are bosonic. Using the

previous definitions it is easy to write the quantum correlation function for x̂i, x̂k as

φik(t) =
1

2
〈x̂i(t)x̂k(0) + x̂k(0)x̂i(t)〉 =

i~
2

[G+−
ik (t) +G−+

ik (t)], (2.248)

and its Fourier component as

φik(ω) =
i~
2

[G+−
ik (ω) +G+−

ik (ω)], (2.249)

where

G+−
ik (ω) =

∫ ∞
−∞

G+−
ik (t)eiωtdt, G−+

ik (ω) =

∫ ∞
−∞

G−+

ik (t)eiωtdt. (2.250)

According to Green-Kubo formula, the generalized susceptibility α is just the opposite of the

retarded Green’s function GR:

αik(ω) = −GRik(ω), GRik(ω) =

∫ ∞
0

GRik(t)e
iωtdt. (2.251)

Therefore the fluctuation-dissipation theorem for multiple variables (2.146) can be written as

[G+−
ik (ω) +G+−

ik (ω)] = [GRik(ω)−GR∗ki (ω)] coth
~ω
2T

. (2.252)

As will be shown later, GR∗ik (ω) = GAik(ω), so we can write this expression as

[G+−
ik (ω) +G+−

ik (ω)] = [GRik(ω)−GAki(ω)] coth
~ω
2T

. (2.253)

This formula indicates that the fluctuation-dissipation theorem is essentially the relation between

different Green’s functions in equilibrium. In fact, the formula (2.146) is just a special case at

which only bosonic operators are considered and an auxiliary perturbation is needed. Now using

non-equilibrium Green’s function formalism we can derive a more general fluctuation-dissipation

theorem.

The fluctuation-dissipation theorem is for Green’s function in equilibrium, and time transitional
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invariance is also assumed. The definition of the retarded Green’s function then is (the upper sign

is for fermionic operators and the lower sign is for bosonic operators)

GRik(t) = − i
~
θ(t)〈x̂i(t)x̂k(0)± x̂k(0)x̂i(t)〉, (2.254)

and its Fourier transform is

GRik(ω) = − i
~

∫ ∞
0
〈x̂i(t)x̂k(0)± x̂k(0)x̂i(t)〉eiωtdt. (2.255)

Let ρn denote the canonical distribution function e(F−En)/T , where F is the free energy of the

system and En is the eigenenergy of the system in eigenstate n. Then we can write GRik(t) explicitly

as

GRik(t) = − i
~
θ(t)

∑
nm

ρn[(xi)nm(xk)mne
iωnmt ± (xk)nm(xi)mne

iωmnt], (2.256)

where ωmn = (Em−En)/~ and (xi)nm stands for 〈n| x̂i |m〉. Hence its Fourier transform GRik(ω) is

GRik(ω) = − i
~

∫ ∞
0

∑
nm

ρn[(xi)nm(xk)mne
i(ωnm+ω)t ± (xk)nm(xi)mne

i(ωmn+ω)t]dt

=
1

~
∑
nm

ρn

[
(xi)nm(xk)mn
ωnm + ω + i0

± (xk)nm(xi)mn
ωmn + ω + i0

]
.

(2.257)

This kind of expression of the Green’s function is called the Lehmann representation. Similarly, we

can also write GAik(t) as

GAik(t) =
i

~
θ(−t)

∑
nm

ρn[(xi)nm(xk)mne
iωnmt ± (xk)nm(xi)mne

iωmnt], (2.258)

and its Lehmann representation is

GAik(ω) =
i

~

∫ 0

−∞

∑
nm

ρn[(xi)nm(xk)mne
i(ωnm+ω)t ± (xk)nm(xi)mne

i(ωmn+ω)t]dt

=
1

~
∑
nm

ρn

[
(xi)nm(xk)mn
ωnm + ω − i0 ±

(xk)nm(xi)mn
ωmn + ω − i0

]
.

(2.259)

Note that we must add an infinitesimal −i0 into ω when integrating from −∞ to 0 to ensure the
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convergence, that is ∫ 0

−∞
eiωtdt =

∫ 0

−∞
ei(ω−i0)tdt =

−i
ω − i0 . (2.260)

A comparison of (2.257) and (2.259) shows

GR∗ik (ω) = GAik(ω). (2.261)

The real and imaginary parts of GRik(ω) and GAik(ω) can be separated by Cauchy principal value

formula

1

x± i0 = P
1

x
∓ iπδ(x). (2.262)

Since GAik(ω) is just the complex conjugate of GRik(ω) here we only show the results of GRik(ω):


Re GRik(ω) =

1

~
P
∑
nm

ρn

[
(xi)nm(xk)mn
ωnm + ω

± (xk)nm(xi)mn
ωmn + ω

]
,

Im GRik(ω) = −π
~
∑
nm

ρn[(xi)nm(xk)mnδ(ωnm + ω)± (xk)nm(xi)mnδ(ωmn + ω)].

(2.263)

Exchange the indices m,n of the second term in the summation, Im GRik(ω) can be also written as

Im GRik(ω) = −π
~
∑
nm

(ρn ± ρm)(xi)nm(xk)mnδ(ωnm + ω)

= −π
~
∑
nm

ρn(1± e−~ω/T )(xi)nm(xk)mnδ(ωnm + ω).

(2.264)

It can be seen from (2.263) that Re GRik(ω) and Im GRik(ω) are related by

Re GRik(ω) = − 1

π
P

∫
Im GRik(ξ)

ω − ξ dξ, (2.265)

this is also called the Kramers-Kronig relation. It may also be noted that this relation allows us to

write

GRik(ω) = − 1

π

∫
Im GRik(ξ)

ω − ξ + i0
dξ. (2.266)

Similarly, in equilibrium state we can write down the Lehmann representation for G+−
ik and G−+

ik :
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G+−
ik (ω) = − i

~

∫ ∞
−∞

∑
nm

ρn(xi)nm(xk)mne
i(ωnm+ω)tdt

= −2πi

~
∑
nm

ρn(xi)nm(xk)mnδ(ωnm + ω),

(2.267)

and

G−+

ik (ω) = ± i
~

∫ ∞
−∞

∑
nm

ρn(xk)nm(xi)mne
i(ωmn+ω)tdt

= ±2πi

~
∑
nm

ρn(xk)nm(xi)mnδ(ωmn + ω).

(2.268)

Note here we have used the formula for δ function that

δ(x) =
1

2π

∫ ∞
−∞

eipxdp =
1

2π

∫ ∞
−∞

e−ipxdp. (2.269)

Therefore we can write the sum of G+−
ik (ω) and G−+

ik as

G+−
ik (ω) +G−+

ik (ω) = −2πi

~
∑
nm

ρn[(xi)nm(xk)mnδ(ωnm + ω)∓ (xk)nm(xi)mnδ(ωmn + ω)]

= −2πi

~
∑
nm

(ρn ∓ ρm)(xi)nm(xk)mnδ(ωnm + ω)

= −2πi

~
∑
nm

ρn(1∓ e−~ω/T )(xi)nm(xk)mnδ(ωnm + ω).

(2.270)

Comparing (2.270) with (2.264), it is clear that

[G+−
ik (ω) +G−+

ik (ω)] = 2i Im GRik(ω)
1∓ e−~ω/T
1± e−~ω/T , (2.271)

or

[G+−
ik (ω) +G−+

ik (ω)] = [GRik −GAki]
1∓ e−~ω/T
1± e−~ω/T . (2.272)

Therefore for fermionic operators we have

[G+−
ik (ω) +G−+

ik (ω)] = [GRik −GAki] tanh
~ω
2T

, (2.273)
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and for bosonic operators

[G+−
ik (ω) +G−+

ik (ω)] = [GRik −GAki] coth
~ω
2T

. (2.274)

Comparing (2.264) and (2.267) we can also find the relationship between Im GRik(ω) and G+−
ik (ω):

GRik(ω)−GAik(ω) = G+−
ik (ω)(1± e−~ω/T ), (2.275)

thus we can express the average quantity 〈x̂ix̂k〉 by the inverse Fourier transform at t = 0:

〈x̂ix̂k〉 = i~ lim
t→0

∫
G+−
ik (ω)e−iωt

dω

2π
= −~

π

∫
Im GRik(ω)

1± e−~ω/T dω. (2.276)

This formula is usually called the spectrum theorem of the Green’s function, and it is also treated

as a part of the fluctuation-dissipation theorem. Similarly, interchanging the indices m,n in (2.268)

and recalling that ρn = ρme
−~ωnm/T we find the relation between G+−

ik (ω) and G−+

ik (ω) as [48]

G+−
ik (ω) = ∓e~ω/TG−+

ik (ω). (2.277)

When the fluctuation-dissipation theorem is written in non-equilibrium Green’s function for-

malism, its physical meaning is not so clear: the fluctuation and dissipation processes are not

pointed out explicitly. What’s more, when operators are fermionic they do not correspond to any

observable quantity, thus there is no corresponding actual physical process explicitly. However,

this form of the fluctuation-dissipation theorem reveals a more profound mathematical relationship

between the different Green’s functions. This kind of relationship is the internal property of the

system in equilibrium, and is much more general than (2.146).

2.11 Fluctuations

In the previous sections we have discussed the Green-Kubo formula whose derivation is based on

time dependent perturbation theory. To apply perturbation theory, we need to assume an external

field and a corresponding perturbation operator x̂f in the Hamiltonian. If the perturbation is an

electric field, then according to Green-Kubo formula we can obtain the electricity and heat currents
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as responses to electric field. However, we do not know whether there is a Green-Kubo formula for

heat conductivity yet: because it is the response coefficient to the temperature gradient, thus there

is no external field acting as perturbation in the Hamiltonian and the time dependent perturbation

theory is not applicable here6. Does a Green-Kubo formula for heat conductivity exist? The answer

is yes, but it can not be derived from perturbation theory directly since temperature gradient is

not an external perturbation but a statistical inhomogeneity of the system. In this section we

shall discuss the general fluctuation theory as prior knowledge of the derivation of the Green-Kubo

formula for heat conductivity.

Gaussian Distribution

According to the definition, let Ω be the statistical weight, then the entropy can be written as

S = ln Ω. (2.278)

As we know, in the microcanonical ensemble the probability distribution w is proportional to the

statistical weight Ω, thus we can write

w ∝ eS . (2.279)

Let us consider a system with several thermodynamic quantities x1, · · · , xn under consideration.

It will be convenient to suppose that the mean value x̄i has already been subtracted from xi, so

we shall assume that x̄i = 0. We now write the entropy S formally as a function of all these

thermodynamic quantities S(x1, · · · , xn), then the probability density function w(x1, · · · , xn) is

accordingly

w(x1, · · · , xn) ∝ eS(x1,··· ,xn), (2.280)

with the normalization condition

∫
w(x1, · · · , xn)dx1 · · · dxn = 1. (2.281)

The entropy S has a maximum when xi = x̄i = 0, hence ∂S/∂xi = 0 and the matrix ∂2S/∂xi∂xk

6However, Joaquin Luttinger [51] gave a “mechanical” derivation for Green-Kubo formula. That is, the derivation
still depends on perturbation theory but it needs some tricks.
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is negative definite for (x1, · · · , xn) = 0. In fluctuations, the quantities xi, · · · , xn are supposed to

be small, so expanding S in powers of x1, · · · , xn and retaining terms of up to the second order

yields

S(x1, · · · , xn) = S0 −
1

2

n∑
i,k=1

βikxixk, (2.282)

where βik is a positive definite matrix, and clearly βik = βki. In the rest of the section we shall omit

the summation sign, and all repeated indices imply the summation from 1 to n. Thus we write

S = S0 −
1

2
βikxixk. (2.283)

Substituting this expression into (2.280), the probability density w is written as a Gaussian distri-

bution

w = Ae−
1
2
βikxixk . (2.284)

The constant A is determined by the normalization condition (2.281), according to the properties

of the Gaussian distribution we have

A =

√
β

(2π)
n
2

, (2.285)

where β = |βik| is the determinant of the matrix βik. Then the Gaussian distribution expression

for w is

w =

√
β

(2π)
n
2

exp

(
−1

2
βikxixk

)
. (2.286)

Now define the quantity

Xi = − ∂S
∂xi

= βikxk, (2.287)

which is referred as thermodynamically conjugate [32, 52] to xi. Note that this conjugacy is recip-

rocal: according to the definition we also have xi = −∂S/∂Xi since

dS = −Xkdxk = −βkixidxk = −xid(βikxk) = −xidXi. (2.288)

Now let us determine the mean values 〈xiXk〉:

〈xiXk〉 =

√
β

(2π)
n
2

∫
xiXk exp

(
−1

2
βikxixk

)
dx1 · · · dxn. (2.289)
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To calculate this integral, let us first assume for the moment that x̄i are not zero, and according

to the definition of the mean values

x̄i =

√
β

(2π)
n
2

∫
· · ·
∫
xi exp

[
−1

2
βik(xi − x̄i)(xk − x̄k)

]
dx1 · · · dxn. (2.290)

Differentiating both sides of this equation with respect to x̄k gives

δik =

√
β

(2π)
n
2

∫
· · ·
∫
xiβkl(xl − x̄l) exp

[
−1

2
βik(xi − x̄i)(xk − x̄k)

]
dx1 · · · dxn, (2.291)

and putting all the x̄i equal to zero again we obtain that

δik =

√
β

(2π)
n
2

∫
· · ·
∫
xiβklxl exp

(
−1

2
βikxixk

)
dx1 · · · dxn. (2.292)

From this equation it is easy to see that

βkl〈xixl〉 = δik, (2.293)

or

〈xixk〉 = β−1
ik , (2.294)

where β−1
ik is an element of the matrix inverse to βik. Substituting Xk = βklxl into (2.293) we

finally get

〈xiXk〉 = δik. (2.295)

We can also determine the mean value 〈XiXk〉 by writing it as

〈XiXk〉 = βil〈xlXk〉 = βilδlk, (2.296)

i.e.,

〈XiXk〉 = βik. (2.297)
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We can also express the time derivative of the entropy in terms of xi and Xi as

Ṡ = −βikẋixk = −ẋiXi. (2.298)

2.12 Onsager’s Principle

If at some instant the value of a physical quantity x is large compared to the mean fluctuation,

i.e. the system is far from equilibrium, then the system will tend to reach the equilibrium state

and x will tend to reach its mean value x̄. Here we shall put x̄ = 0 and the rate of change of x is

determined by the value of x itself: ẋ = ẋ(x). If x is still small comparing with the whole system,

then ẋ can be expanded in powers of x, keeping only the linear term we have

dx

dt
= −λx, (2.299)

where λ is a positive constant. There is no zero order term in this expression, since the rate of

change ẋ must be zero in equilibrium, i.e. at x = 0.

The equation (2.299) gives the “damping” term for x when it deviates from equilibrium value

x = 0. However, due to the environment there also exist “heating” or “driving” terms which

are usually called random forces. The random forces would “thermalize” the system and let the

physical quantity x deviate from its mean value. Denoting the random force by y(t) and adding it

to the right handed side of (2.299) we obtain

dx

dt
= −λx+ y(t). (2.300)

This equation is referred as Langevin equation [53]. Note that this Langevin equation is generalized

in that it describes not the random movement of a particle but thermodynamic quantity x. And

y(t) is supposed to be the source of the fluctuations of x and its mean value averaged over time is

supposed to be zero. The Langevin equation can be also formulated with several physical quantities

x1, · · · , xn as

dxi
dt

= −λikxk + yi(t), (2.301)
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where λik is a positive definite matrix.

Let us now turn to the relation between (2.301) and the correlation function. The correlation

function φik(t) is defined as

φ(t) = 〈xi(t)xk(0)〉. (2.302)

Define a quantity ξi(t) as the mean value of xi at a time t > 0 with the condition that it had some

given value xi at the prior time t = 0. Thus the correlation function φik(t) can be written as

φik(t) = 〈ξi(t)xk〉, (2.303)

where the averaging is over the probabilities of various values of xi, xk at the initial time t = 0.

Then the equation for ξi is just the average of (2.301):

ξ̇i = −λikξk, (2.304)

where the random forces are averaged out. And the equation for the correlation function is thus

dφik(t)

dt
= 〈ξ̇i(t)xk〉 = −λilφlk(t), t > 0. (2.305)

To find φik(t) these equations are to be integrated with the initial conditions

φik(0) = 〈xi(0)xk(0)〉 ≡ 〈xixk〉 = β−1
ik , (2.306)

where these initial conditions are from (2.294).

The Symmetry of the Kinetic Coefficients

The equations (2.301) have a deep-lying internal symmetry, which becomes explicit when the right

hand side is expressed in terms of the thermodynamic conjugate Xi of xi. According to (2.287),

we have

Xi = βikxk. (2.307)
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Thus expressing the right hand side in terms of Xi, the equations (2.301) can be written as

dxi
dt

= −γikXk + y(t), (2.308)

where

γik = λilβ
−1
lk (2.309)

are new constants called kinetic coefficients. The response coefficients mentioned in previous sec-

tions, such as the electrical conductivity, are also particular examples of kinetic coefficients.

Define a quantity Ξi(t) as the mean value of Xi at a time t > 0 with the initial condition that

it has some given value Xi at the prior time t = 0. Then we can write the average of (2.308) as

dξi(t)

dt
= −γikΞk, t > 0, (2.310)

where the averages of random force yi(t) are zero. The correlation function φik(t) has time reversal

symmetry φik(t) = φik(−t), which may be expressed as

〈xi(t)xk(0)〉 = 〈xi(0)xk(t)〉, (2.311)

or, with ξi(t),

〈ξi(t)xk〉 = 〈xiξk(t)〉, (2.312)

where the averaging is with respect to the probabilities of the various values of all the xi, xk at

t = 0. Differentiating this equation with respect to time t and substituting the derivatives ξ̇i from

(2.310), we obtain that

γil〈Ξl(t)xk〉 = γkl〈xiΞk(t)〉. (2.313)

When t = 0, the Ξl are equal to Xl(0); hence putting t = 0 in the above equation we get

γil〈Xlxk〉 = γkl〈xiXk〉, (2.314)

where these two averages are taken at the same time. According to (2.295), such mean values
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〈xlXk〉 = δlk, thus we arrive at an important result

γik = γki. (2.315)

This expression states that the kinetic coefficients are symmetric. Such symmetry is called On-

sager’s principle or Onsager’s relation, which is due to Lars Onsager in 1931 [54].

The proof of the Onsager’s principle is based on the time reversal symmetry of the correlation

function φik, and an assumption has been made that the quantities xi and xk are not affected by

time reversal. However, this is not always true. For instance, the velocity v would become −v

under the time reversal. Thus if xi and xk both remain or change the sign, the relation (2.315) is

still valid. But if one of xi and xk changes sign and the other remains unchanged, the Onsager’s

principle should be formulated as

γik = −γki. (2.316)

What’s more, angular momentum Ω and magnetic field B change sign under time reversal. So

the Onsager’s principle when angular momentum is under consideration or the system is under a

magnetic field are

γik(Ω) = γki(−Ω), γik(B) = γki(−B). (2.317)

Similarly we can define kinetic coefficients ζik in another form taking the derivatives of Xi as

dXi(t)

dt
= −ζikxk + Yi(t), ζik = βilλlk, (2.318)

where Yi(t) are the corresponding random forces. The coefficients ζik have similar symmetry prop-

erties to those of γik. This can be derived following the same procedure and using the reciprocal

relation between xi and Xi.
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Relation Between Random Forces and Kinetic Coefficients

Let us return to equations (2.305) and try to express the solutions in terms of λik and βik. We use

a notation (xixk)ω to denote the Fourier component of the correlation function, which is

(xixk)ω =

∫ ∞
−∞

φik(t)e
iωtdt ≡

∫ ∞
−∞
〈xi(t)xk(0)〉eiωtdt. (2.319)

From the definition of φik there is an obvious symmetry φik(t) = φki(−t). Note that this symmetry

is just time transition invariance, not the time reversal symmetry φik(t) = φik(−t). This symmetry

shows that

(xixk)ω = (xkxi)−ω = (xkxi)
∗
ω. (2.320)

Since (2.305) refer only to times t > 0, we shall apply a “one-sided” Fourier transformation to it,

multiplying by eiωt and integrating with respect to t from 0 to∞. The term φ̇ik(t)e
iωt is integrated

by parts, and since φik(∞) = 0 we have

φik(0)− iω(xixk)
+
ω = −λil(xlxk)+

ω , (2.321)

with the notation

(xixk)
+
ω =

∫ ∞
0

φik(t)e
iωtdt. (2.322)

The value of φik(0) is given by the initial condition (2.306); thus

(λil − iωδil)(xlxk)+
ω = β−1

ik , (2.323)

or

(ζil − iωβil)(xlxk)+
ω = δik, (2.324)

where the coefficients λil have been replaced by ζil = βikλkl, which are more convenient here. The

solution for these algebraic equations is

(xlxk)
+
ω = (ζ − iωβ)−1

lk , (2.325)
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where the index −1 means the inverse matrix.

On the other hand, according to the definition and the symmetry φik(t) = φki(−t), the full

(xixk)ω can be expressed by “one-sided” (xixk)ω as

(xixk)ω = (xixk)
+
ω + [(xkxi)

+
ω ]∗. (2.326)

Thus finally we have

(xixk)ω = (ζ − iωβ)−1
ik + (ζ + iωβ)−1

ki . (2.327)

Using this result we can find the expression for the correlation function of random forces. For

example, the Langevin equation for Xi with random forces Yi, see (2.318), is

Ẋi(t) = −ζikxk + Yi(t). (2.328)

Applying a Fourier transformation on these equations gives

−iωXiω + ζikxkω = Yiω, (2.329)

where

Xiω =

∫ ∞
−∞

Xi(t)e
iωtdt, xkω =

∫ ∞
−∞

xk(t)e
iωtdt, Yiω =

∫ ∞
−∞

Yi(t)e
iωtdt. (2.330)

Or recalling that Xi = βikxk, we have

(ζik − iωβik)xkω = Yiω. (2.331)

Now write the correlation function of Yi as 〈Yi(t)Yk(t′)〉, then it can be written in inverse Fourier

transformation form as

〈Yi(t)Yk(t′)〉 =

∫ ∞
−∞

∫ ∞
−∞
〈YiωYkω′〉e−i(ωt+ω

′t′)dωdω
′

(2π)2
. (2.332)

Since 〈Yi(t)Yk(t′)〉 is a function only depends on t− t′, the integrand must contain a delta function
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of ω + ω′, i.e.

〈YiωYkω′〉 = 2π(YiYk)ωδ(ω + ω′), (2.333)

where (because 〈Yi(t)Yk(t′)〉 only depends on t− t′, we can just replace it by 〈Yi(t)Yk(0)〉)

(YiYk)ω =

∫ ∞
−∞
〈Yi(t)Yk(0)〉eiωtdt, (2.334)

is the Fourier component of the correlation function 〈Yi(t)Yk(0)〉. Similarly, we have

〈xiωxkω′〉 = 2π(xixk)ωδ(ω + ω′), (2.335)

where

(xixk)ω =

∫ ∞
−∞
〈xi(t)xk(0)〉eiωtdt. (2.336)

Then from (2.331) it is easy to see that

〈YiωYkω′〉 = (ζil − iωβil)(ζkm − iω′βkm)〈xlωxmω′〉, (2.337)

or, because of the delta function δ(ω + ω′) in 〈xiωxkω′〉 and 〈YiωYkω′〉,

(YiYk)ω = (ζil − iωβil)(ζkm + iωβkm)(xlxm)ω. (2.338)

Finally substituting (2.327) in the above formula gives

(YiYk)ω = ζik + ζki. (2.339)

If we use random forces yi in the Langevin equation

ẋi = −γikXk + yi, (2.340)

following the same procedure their correlation function is obtained that

(yiyk)ω = γik + γki, (2.341)
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where

(yiyk)ω =

∫ ∞
−∞
〈yi(t)yk(0)〉eiωtdt. (2.342)

All the above formulas are classical or quasi-classical, thus we need to find their corresponding

quantum version. This correspondence is reached by writing the random forces in terms of the

generalized forces and collaborating with the fluctuation-dissipation theorem. According to (2.147),

the static susceptibility Tαik(0) = 1
2〈x̂ix̂k+x̂kx̂i〉, and its classical correspondence is just Tαik(0) =

〈xixk〉, comparing it with (2.294) we find

Tαik(0) = β−1
ik . (2.343)

Now we assume that the system is subject to the external static forces fi. This causes displacement

of the equilibrium state, in which x̄i is now not zero but αik(0)fk = β−1
ik fk/T . Thus the equation

of ẋi becomes

ẋi = −λik [xk − αik(0)fk] , (2.344)

which differs from (2.301) in that ẋi is not zero when x = 0 but when xi = αik(0)fk. In this equation

we do not write the random forces yi because fk would be regarded as random forces. This equation

may be regarded as valid also when the generalized forces are time-dependent fk(t), as long as the

period of the forces fk(t) is large compared with the relaxation time for the establishment of the

partial equilibrium corresponding to any given value of thermodynamic quantities xi.

The displacement may be also written in terms of Xi by using

Xi = βikx̄k = βikαkl(0)fl(t) =
fi(t)

T
, (2.345)

therefore we have

ẋi = −γik
[
Xk −

fk(t)

T

]
. (2.346)

Now we shall regard fk(t) as random forces, and comparing with Langevin equation (2.308) imme-

diately gives the relation between yi and fk:

yi(t) =
γikfk(t)

T
. (2.347)
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Substituting fk(t) and xi(t) as the periodic functions (2.139) and (2.140) in (2.346) (with the Xk

written as Xk = βklxl) and separating the terms in e−iωt and eiωt, we obtain

−iωαim(ω)f0m = −γikβklαlm(ω)f0m +
1

T
γimf0m. (2.348)

Since f0m are arbitrary, we have

−iωαim(ω) + γikβklαlm =
1

T
γim, (2.349)

or

αik(ω) =
1

T
(β − iωγ−1)−1

ik , (2.350)

where the index −1 means the inverse matrix. This gives the relation between the generalized

susceptibility αik(ω) and the kinetic coefficients γik.

According to the fluctuation-dissipation theorem (2.146) we have

(xixk)ω =
i

2
~[α∗ki(ω)− αik(ω)] coth

~ω
2T

, (2.351)

where (xixk)ω is the Fourier component of the quantum correlation function, i.e.

(xixk)ω =

∫ ∞
−∞

1

2
〈x̂i(t)x̂k(0) + x̂k(0)x̂i(t)〉eiωtdt. (2.352)

And according to the definition of the generalized susceptibility αik(ω), we write

xiω = αik(ω)fk, or fiω = α−1
ik xkω. (2.353)

From the above formula it is easy to see that

(fifk)ω = α−1
il (ω)α−1

km(−ω)(xlxm)ω

= α−1
il α

−1∗
km (xlxm)ω

=
i

2
~(α−1

ik − α−1∗
ki ) coth

~ω
2T

.

(2.354)
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Since βik = −∂2S/∂xi∂xk = βki, substituting (2.350) in the above formula gives

(fifk)ω = (γ−1
ik + γ−1

ki )
~ωT

2
coth

~ω
2T

. (2.355)

Using the relation (2.347) we finally obtain the quantum expression for (yiyk)ω:

(yiyk)ω = (γik + γki)
~ω
2T

coth
~ω
2T

. (2.356)

The quantum expression (2.356) differs from the classical one (2.341) by a factor

~ω
2T

coth
~ω
2T

, (2.357)

which tends to unity in the classical limit (~ω � T ). This extra factor is thus the general corre-

spondence between the correlation of classical random forces and the quantum ones.

2.13 The Green-Kubo Formula for Heat Conductivity

In this section we shall use the technique introduced in the last two sections to derive the Green-

Kubo formulas, especially the formula for heat conductivity which can not be derived from time

dependent perturbation theory.

An electric field does mechanical work on the electricity current. The work done per unit time

and volume is evidently equal to the scalar product −ej ·E, where j is the particle number current

density and e is the positive electron charge. If this work dissipates into heat, such process is called

Joule heating. The evolution of heat results in an increase in the entropy of the body. When an

amount of heat −ej ·EdV is evolved in a volume element dV, the corresponding entropy increment

is −(ej ·E/T )dV. The rate of change of the total entropy of the body is therefore

dS

dt
= −e

∫
j ·E
T

dV. (2.358)

The entropy is also changed by the heat current itself. According to the equation of continuity,

the heat change in a volume element dV due to the heat current is just the gradient of the heat

current −∇(q−µj)dV, where q is the energy current and µ is the chemical potential. Accordingly,
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the entropy change in the volume element is −[∇(q−µj)/T ]dV and the rate of change of the total

entropy due to heat current is

dS

dt
= −

∫ ∇ · (q − µj)
T

dV. (2.359)

Integrating this formula by parts and assuming the boundary integral to vanish we obtain that

dS

dt
= −

∫
(q − µj) · ∇T

T 2
dV. (2.360)

Combining (2.358) and (2.360) gives the final expression for the rate of change of the total entropy

as [21, 24]

dS

dt
= −

∫ [
ej ·E
T

+
(q − µj) · ∇T

T 2

]
dV. (2.361)

According to the general fluctuation theory, the rate of change of entropy can be written like (2.298)

in terms of physical quantities xi and the corresponding thermodynamic conjugate Xi as

Ṡ = −
∑
i

ẋiXi. (2.362)

Now we define ẋ1(r) as the electricity current density −ej(r) and ẋ2(r) as the heat current density

(q − µj)(r), and their spatial components as

ẋ1a(r) = −eja(r), ẋ2a(r) = (q − µj)a(r), (2.363)

where a = x, y, z is a spatial component index. Replacing the integral (2.361) by a sum over the

portions ∆V it is easy to see that the corresponding thermodynamic conjugates X1a and X2a are

X1a(r) = −Ea(r)

T
∆V, X2a(r) =

(∇T )a(r)

T 2
∆V. (2.364)

Once xia and Xia are specified, the corresponding kinetic coefficients γik,ab(r, r
′) are also specified,

here i, k = 1, 2 and a, b = x, y, z. And the corresponding Langevin equations are

ẋia(r) = −
∑
k,b,r′

γik,ab(r, r
′)Xkb(r

′) + yia(r), (2.365)
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where the sum over r′ means the sum over the corresponding infinitesimal volume portion ∆V.

Note that the random forces yia can be also viewed as a random flux since ẋia are currents here.

According to (2.356), we have

[yia(r)ykb(r
′)]ω = [γik,ab(r, r

′) + γki,ba(r
′, r)]

~ω
2T

coth
~ω
2T

. (2.366)

Now consider that the transport coefficients, and also the kinetic coefficients, are complex functions

of frequency, so we can replace γik,ab(r, r
′)+γki,ba(r

′, r) by the real parts of the frequency dependent

functions that

[yia(r)ykb(r
′)]ω =

~ω
T

coth
~ω
2T

Re γik,ab(ω; r, r′). (2.367)

The validity of the replacement of γik,ab + γki,ba by their real parts can be seen from the following.

If this expression depends on time, then according to the general derivation the explicit form

should be γik,ab(r, r
′; t) + γki,ba(r

′, r;−t), or collaborating with Onsager’s principle γik,ab(r, r
′; t) +

γik,ba(r, r
′;−t). After the Fourier transformation the expressions are just 2 Re γik,ab(ω; r, r′).

The equation (2.367) may be viewed differently by reading them “from right to left”. In other

words, write them as

Re γik,ab(r, r
′;ω) = [yia(r)ykb(r

′)]ω
T

~ω
tanh

~ω
2T

. (2.368)

In this formula we can replace the random forces yia(here we can regard them as random currents)

by the currents themselves. The reason can be seen from (2.365): in equilibrium the first term

disappears, the fluctuations of currents ẋia are the same as the random currents yia. In other

words, all the fluctuations of currents are represented by the random currents yia. Unlike yia, the

currents ẋia themselves have direct mechanical significance and corresponds to a definite quantum-

mechanical operator ˆ̇xia(r, t) which can be expressed in terms of the operators of dynamic variables

of particles in the medium. Therefore we arrive at the formula [42]

Re γik,ab(ω; r, r′) =
T

~ω
tanh

~ω
2T
×
∫ ∞

0

1

2
〈ˆ̇xia(t, r)ˆ̇xkb(0, r

′) + ˆ̇xkb(0, r
′)ˆ̇xia(t, r)〉eiωtdt,

= [ˆ̇xia(r)ˆ̇xkb(r
′)]ω

T

~ω
tanh

~ω
2T

.

(2.369)
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According to the fluctuation-dissipation theorem (2.131) or (2.274), the correlation function can be

related to the commutation of the operators by

[ˆ̇xia(r)ˆ̇xkb(r
′)]ω = coth

~ω
2T
× Re

∫ ∞
0
〈[ˆ̇xia(t, r), ˆ̇xkb(0, r

′)]〉eiωtdt, (2.370)

note here is the real part of the integral, not the imaginary part of the Green’s function in (2.274)

since in the definition of the Green’s function there is an extra factor i
~ .

A comparison between (2.369) and (2.370) immediately gives

Re γik,ab(ω; r, r′) =
T

~ω
× Re

∫ ∞
0
〈[ˆ̇xia(t, r), ˆ̇xkb(0, r

′)]〉eiωtdt. (2.371)

The two sides of this formula contain the real parts of functions of ω which have no singularity in

the upper half-plane of the complex variable ω. And because their real parts are equal on the real

axis of ω, it immediately follows that these functions themselves are equal, and we arrive at the

final formula

γik,ab(ω; r, r′) =
T

~ω

∫ ∞
0
〈[ˆ̇xia(t, r), ˆ̇xkb(0, r

′)]〉eiωtdt. (2.372)

However, these kinetic coefficients can not correspond to the usual transport coefficients yet.

The reason is that the thermodynamic conjugate Xia(r) contains an infinitesimal volume portion

dV, and this situation is similar to when we discussed the difference between conductivity σ(ω; r, r′)

and the usual electrical conductivity σ(ω) in section 2.9. Following the same procedure as the

derivation in (2.210), we obtain that

γik,ab(ω) =
1

V

∫
d3rd3r′γik,ab(ω; r, r′), (2.373)

or, explicitly,

γik,ab(ω) =
T

~ω

∫ ∫ ∞
0
〈[ˆ̇xia(t, r), ˆ̇xkb(0, 0)]〉eiωtdt d3r

=
T

~ω
lim
k→0

∫ ∫ ∞
0
〈[ˆ̇xia(t, r), ˆ̇xkb(0, 0)]〉ei(ωt−k·r)dt d3r,

(2.374)

where k→ 0 corresponds to the hydrodynamic approximation.

From the above discussion it is evident that the kinetic coefficients γik,ab correspond to the
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transport coefficients defined in (2.88). To specific, it is easy to see that

γ11,ab = σabT, γ12,ab = γ21,ab = (σS)abT
2, γ22 = kabT

2, (2.375)

where σ is the electrical conductivity, S is the Seebeck coefficient and k is the heat conductivity. It

should be noted that according to Onsager’s principle the indices a and b are also symmetric, for

instance σab = σba. Thus the formula for electrical conductivity and thermoelectric coefficients are

σab(ω) =
e2

~ω
lim
k→0

∫ ∫ ∞
0
〈[ĵa(t, r), ĵb(0, 0)]〉ei(ωt−k·r)dt d3r, (2.376)

and

(σS)ab(ω) = − e

~ωT
lim
k→0

∫ ∫ ∞
0
〈[(q̂ − ĵ)a(t, r), ĵb(0, 0)]〉ei(ωt−k·r)dt d3r, (2.377)

the above two expressions coincide with the Green-Kubo formulas (2.213) and (2.217) discussed

in previous sections. And the Green-Kubo formula for heat conductivity is just the formula for

γ22,ab(ω) that

kab(ω) =
1

~ωT
lim
k→0

∫ ∫ ∞
0
〈[(q̂ − ĵ)a(t, r), (q̂ − ĵ)b(0, 0)]〉ei(ωt−k·r)dt d3r. (2.378)

With these Green-Kubo formulas, the corresponding Kubo-Greenwood formulas can be also derived

by just replacing the corresponding current operator in the Kubo-Greenwood formula discussed in

the previous sections.



Chapter 3

Dynamical Mean-Field Theory

Dynamical mean-field theory [55, 56] is a method to calculate the electronic structure of strongly

correlated systems. This method is non-perturbative and thus in principle can treat the system in

any parameter region. The essential idea of the dynamical mean-field theory is to map the orig-

inal lattice model into an impurity model embedded in an effective medium which is determined

self-consistently, and thus reduces a many body problem into a single body problem. The essen-

tial difference between the dynamical mean-field theory and the usual Weiss mean-field is that the

“mean-field” in the dynamical mean-field is a function, not just a number. Therefore in the dynam-

ical mean-field theory frame all quantum fluctuations of the system are preserved, and this is the

reason why it is called “dynamical”. In this chapter we shall give a brief review of the dynamical

mean-field theory.

3.1 Anderson Impurity Model

The key idea of dynamical mean-field theory is to map a lattice problem into an impurity problem,

and such an impurity problem can be represented by Anderson’s impurity model [57]. In this

section we shall briefly introduce the single orbit Anderson impurity model. This model was

originally proposed by Philip Anderson, and later it was introduced to study the famous Kondo

model [13].

73
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The typical Hamiltonian of the Anderson impurity model writes

Ĥ =
∑
kσ

εkâ
†
kσâkσ − µ

∑
σ

ĉ†σ ĉσ +
∑
kσ

Vk(â
†
kσ ĉσ + ĉ†σâkσ) + Un̂↑n̂↓, (3.1)

where σ is the spin index and

n̂↑ = ĉ†↑ĉ↑, n̂↓ = ĉ†↓ĉ↓. (3.2)

In this Hamiltonian the operators â†kσ, âkσ represent an electron band and εk is the dispersion

relation of this electron band. The operators ĉ†σ and ĉσ represent a single site impurity, and

this site has a chemical potential µ and a Coulomb interaction U between electrons. The term∑
kσ Vk(â

†
kσ ĉσ + ĉ†σâkσ) represent the interchanges of the electrons between the electron band and

the impurity, and it is usually called the hybridization term.

Matsubara Green’s Function for Anderson Impurity Model

The Matsubara Green’s function, which is also called temperature Green’s function, was developed

by Takeo Matsubara in 1955 [58]. It is suitable for calculating the thermodynamic properties of the

system. An advantage of Matsubara Green’s function is that it can be evaluated by Monte Carlo

method.

We first define the operators in Matsubara representation as

ĉσ(τ) = eτĤ ĉσe
−τĤ , ˆ̄cσ(τ) = eτĤ ĉ†σe

−τĤ , (3.3)

where τ is an auxiliary real variable. These operators formally differ from the operators in Heisen-

berg representation in that the real time t in the latter is replaced by the imaginary variable −i~τ .

Such a replacement is also known as Wick rotation [59]. Therefore sometimes we say that the

Matsubara operators evolve in imaginary time. It should be emphasized that the operator ˆ̄cσ is

not the same as the Hermitian conjugate [ĉσ(τ)]†.

The Matsubara Green’s function for the impurity is defined as

Gσσ′(τ, τ
′) = −〈Tτ ĉσ(τ)ˆ̄cσ′(τ

′)〉, (3.4)
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where Tτ is the “τ -chronological operator”, which places operators from right to left in order of

increasing τ (note that, just like the effect of time ordering operator, for Fermion the sign need

to be changed when operators are interchanged). The symbol 〈· · · 〉 denotes the average over the

grand canonical distribution, then the explicit form of the Matsubara Green’s function is

Gσσ′(τ, τ
′) = − 1

Z
Tr
[
e−βĤTτ ĉσ(τ)ˆ̄cσ′(τ

′)
]
, (3.5)

where β is the inverse of temperature 1/T and Z = Tr e−βĤ is the partition function. From this

expression it is easy to see that the Matsubara Green’s function Gσσ′(τ, τ
′) depends only on the

difference τ − τ ′. For example, let τ < τ ′ then

Gσσ′(τ, τ
′) =

1

Z
Tr
[
e−βĤ ˆ̄cσ′(τ

′)ĉσ(τ)
]

=
1

Z
Tr
[
e−βĤeτ

′Ĥ ĉ†σ′e
(τ−τ ′)Ĥ ĉσe−τĤ

]
,

(3.6)

or with a cyclic interchange of the factors in the trace,

Gσσ′(τ, τ
′) =

1

Z
Tr
[
e−(β+τ−τ ′)Ĥ ĉ†σ′e

(τ−τ ′)Ĥ ĉσ
]
, τ − τ ′ < 0. (3.7)

Similarly, if τ > τ ′ then

Gσσ′(τ, τ
′) = − 1

Z
Tr
[
e−[β−(τ−τ ′)]Ĥ ĉσe−(τ−τ ′)Ĥ ĉ†σ′

]
, τ − τ ′ > 0. (3.8)

According to the discussion above, we can write the Matsubara Green’s function with only one

variable τ as

Gσσ′(τ) = −〈Tτ ĉσ(τ)ĉ†σ′〉, (3.9)

or explicitly

Gσσ′(τ) =


1

Z
Tr
[
e−(β+τ)Ĥ ĉ†σ′e

τĤ ĉσ

]
, τ < 0;

− 1

Z
Tr
[
e−(β−τ)Ĥ ĉσe

−τĤ ĉ†σ′
]
, τ > 0.

(3.10)

In practice the variable τ only takes values in a finite range −β ≤ τ ≤ β and the values of

Gσσ′(τ) for −β ≤ τ ≤ 0 and 0 ≤ τ ≤ β are related in a simple manner. When τ > 0, with a cyclic
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interchange of the factors in the trace, Gσσ′(τ) can be written as

Gσσ′(τ) = − 1

Z
Tr
[
e−τĤ ĉ†σ′e

−(β−τ)Ĥ ĉσ

]
, τ > 0. (3.11)

A comparison of the above expression with (3.10) for τ < 0 immediately gives

Gσσ′(τ) = −Gσσ′(τ + β), τ < 0; (3.12)

note that when −β ≤ τ < 0 we have 0 ≤ τ + β < β. This expression indicates that Gσσ′(τ) is anti

periodic with a period β.

Let us expand Gσσ′(τ) as a Fourier series in the range 0 ≤ τ ≤ β as

Gσσ′(τ) =
1

β

∞∑
n=−∞

Gσσ′(iωn)e−iωnτ , (3.13)

where

Gσσ′(iωn) =

∫ β

0
Gσσ′(τ)eiωnτdτ. (3.14)

Since Gσσ′(τ) is anti periodic, we have

ωn =
(2n+ 1)π

β
(3.15)

for n = 0,±1,±2, · · · . This ωn is also called Matsubara frequency.

The Perturbation Method for Matsubara Green’s Function

The Hamiltonian (3.1) can be split into two parts as

Ĥ = Ĥ0 + ĤI , (3.16)

where

Ĥ0 =
∑
kσ

εkâ
†
kσâkσ − µ

∑
σ

ĉ†σ ĉσ +
∑
kσ

Vk(â
†
kσ ĉσ + ĉ†σâkσ) (3.17)
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is treated as the unperturbed Hamiltonian and

ĤI = Un̂↑n̂↓ (3.18)

is the Coulomb interaction term and treated as the perturbation. Now denote Matsubara wave

function by

Ψ(τ) = e−τĤΨ(0), (3.19)

and define Matsubara wave function in interaction picture as

Φ(τ) = eτĤ0Ψ(τ) = eτĤ0e−τĤΨ. (3.20)

It is clear that the equation of motion for Φ(τ) is

dΦ(τ)

dτ
= eτĤ0Ĥ0e

−τĤψ − eτĤ0Ĥe−τĤΨ

= −eτĤ0ĤIe
−τĤ0 [eτĤ0e−τĤΨ]

= −Ĥ(0)
I (τ)Φ(τ),

(3.21)

where

Ĥ
(0)
I (τ) = eτĤ0ĤIe

−τĤ0 (3.22)

is the operator ĤI in interaction picture. Thus for an infinitesimal interval δτ we have

Φ(τ + δτ) = [1− δτĤ(0)
I (τ)]Φ(τ)

= exp
[
−δτĤ(0)

I (τ)
]
Φ(τ),

(3.23)

and then the value of Φ(τ) can be expressed in terms of some initial value Φ(τ0) by

Φ(τ) = Ŝ(τ, τ0)Φ(τ0), (3.24)

where

Ŝ(τ, τ0) =

τ∏
τi=τ0

exp
[
−δτĤ(0)

I (τi)
]
. (3.25)
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This product is arranged from right to left in orders of increasing τ , and it is understood that we

take the limit of the product over all the infinitesimal intervals δτ between τ and τ0. The operator

Ŝ is the scattering matrix in Matsubara representation and it can be written in a symbolic form

Ŝ(τ, τ0) = Tτ exp

[
−
∫ τ

τ0

Ĥ
(0)
I (τ)dτ

]
. (3.26)

It is clear that we have Φ(0) = Ψ(0), therefore

Φ(τ) = Ŝ(τ, 0)Ψ(0), (3.27)

and accordingly the transformation rule for operators from interaction Matsubara picture to Mat-

subara picture are

ĉσ(τ) = Ŝ−1(τ, 0)ĉ(0)
σ (τ)Ŝ(τ, 0), ˆ̄cσ(τ) = Ŝ−1(τ, 0)ˆ̄c(0)

σ (τ)Ŝ(τ, 0), (3.28)

where

ĉ(0)
σ (τ) = eτĤ0 ĉσe

−τĤ0 , ˆ̄c(0)
σ (τ) = eτĤ0 ĉ†σe

−τĤ0 . (3.29)

Similar to the perturbation theory for the time-ordered Green’s function, we finally get

Gσσ′(τ) = −〈Ŝ−1[Tτ ĉ
(0)
σ (τ)ĉ†σ′Ŝ]〉

= −Tr{e−βĤ Ŝ−1[Tτ ĉ
(0)
σ (τ)ĉ†σ′Ŝ]}

Tr e−βĤ
,

(3.30)

where

Ŝ = Ŝ(τ, 0). (3.31)

According to the definition of Φ(τ) and (3.27), we have

Ŝ = eβĤ0e−βĤ , (3.32)

or

e−βĤ0 = e−βĤ Ŝ−1 and e−βĤ = e−βĤ0Ŝ. (3.33)
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Thus (3.30) can be written as

Gσσ′(τ) = −Tr{e−βĤ0 [Tτ ĉ
(0)
σ (τ)ĉ†σ′Ŝ]}

Tr
[
e−βĤ0Ŝ

]
= − 1

〈Ŝ〉0
〈Tτ ĉ(0)

σ (τ)ĉ†σ′Ŝ〉0,
(3.34)

where the symbol 〈· · · 〉0 denotes the averaging over the states of the unperturbed system.

The unperturbed Matsubara Green’s function is defined as

G
(0)
σσ′(τ) = −〈Tτ ĉ(0)

σ (τ)ĉ†σ′〉0. (3.35)

Once the unperturbed Matsubara Green’s function is known, we can evaluate the value of Matsub-

ara Green’s function via Wick’s theorem. Here we shall give the formal expression of the unper-

turbed Matsubara Green’s function in frequency domain for Anderson impurity model without the

derivation:

G
(0)
σσ′(iωn) = δσσ′

[
iωn + µ−

∫ ∞
−∞

dω
∆(ω)

iωn − ω

]−1

, (3.36)

where

∆(ω) =
∑
k

V 2
k δ(ω − εk). (3.37)

The above formal expression can be derived using influence functional technique developed by

Richard Feynman and Frank Vernon [61], and we shall leave the derivation in later sections.

A program is called impurity solver if it calculates the Green’s function according to the un-

perturbed Green’s function for the impurity model. The impurity solver plays a fundamental role

in the dynamical mean-field theory.

3.2 The Basic Procedures of the Dynamical Mean-Field Theory

The Hubbard model [60] is a typical model of strongly correlated systems, and in this chapter we

shall use it to demonstrate the dynamical mean-field theory. And in this section, for simplicity, we

shall just give a basic overview of the dynamical mean-field theory without rigorous derivations.



80 CHAPTER 3. DYNAMICAL MEAN-FIELD THEORY

The Hamiltonian for the Hubbard model is

Ĥ =
∑
ij,σ

tij ĉ
†
iσ ĉjσ + U

∑
i

n̂i↑n̂i↓ − µN̂, (3.38)

where σ is the spin index, ĉ†iσ (ĉiσ) is the creation (annihilation) operator at site i with spin σ, and

n̂iσ = ĉ†iσ ĉiσ, N̂ =
∑
iσ

n̂iσ (3.39)

are electron number operators. The parameter tij is the hopping matrix, U is the Coulomb energy

between two electrons in the same site and µ is the chemical potential. This Hamiltonian is

sometimes written as

Ĥ =
∑
ij,σ

tij ĉ
†
iσ ĉjσ +

U

2

∑
iσ

n̂iσn̂iσ̄ − µN̂, (3.40)

where σ̄ means the opposite spin of σ.

Now we choose an arbitrary site and label it as site 0. Since the system is transitional invariant,

which site is chosen does not matter. Then we can split the Hamiltonian as

Ĥ = Ĥ0 + ĤI , (3.41)

where

ĤI = Un̂0↑n̂0↓ (3.42)

and Ĥ0 is split further as

Ĥ0 = −µ
∑
σ

n̂0σ + Ĥbath + Ĥhyb, (3.43)

where 
Ĥbath = −µ

∑
i 6=0

∑
σ

n̂iσ + U
∑
i 6=0

∑
σ

n̂i↑n̂i↓ +
∑
i,j 6=0

∑
σ

tij ĉ
†
iσ ĉjσ;

Ĥhyb =
∑
i 6=0

∑
σ

(ti0ĉ
†
iσ ĉ0σ + t0iĉ

†
0σ ĉ0σ).

(3.44)

It is clear that after the split we treat the site 0 as an impurity, and this impurity contains a

chemical potential term −µ∑σ n̂σ and an interaction term ĤI . All other sites are treated as a

bath and the corresponding Hamiltonian is Ĥbath. The interaction between the impurity and the
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bath is just the hopping between them and it is represented by a hybridization Hamiltonian Ĥhyb.

Assume that the bath Hamiltonian is already diagonalized, thus Ĥbath can be formally written

as

Ĥbath =
∑
kσ

εkâ
†
kσâkσ, (3.45)

where εk is the eigenenergy of state k. Note that here we use symbol â instead of ĉ to represent the

bath in order to distinguish the bath and the impurity. Since the operators for bath are represented

by â, the index 0 for the impurity is no longer needed, thus we can write

Ĥ0 = −µ
∑
σ

n̂σ + Ĥbath + Ĥhyb, (3.46)

where

Ĥhyb =
∑
kσ

Vk(ĉ
†
σâkσ + â†kσ ĉσ). (3.47)

After all the rewriting, the Hamiltonian becomes

Ĥ = −µ
∑
σ

n̂σ + Un̂↑n̂↓ +
∑
kσ

εkâ
†
kσâkσ +

∑
kσ

Vk(â
†
kσ ĉσ + ĉ†σâkσ), (3.48)

and this is just the Hamiltonian of the Anderson impurity model. When there is no magnetic field,

the spin up state and spin down state are equivalent, therefore we can focus on the Matsubara

Green’s function without the spin index

G(τ) = Gσ(τ) = −〈Tτ ĉσ(τ)ĉ†σ〉. (3.49)

According to the discussion of Anderson impurity model in the last section, the unperturbed Green’s

function in frequency domain can be formally written as

G0(iωn) =

[
iωn + µ−

∫ ∞
−∞

dω
∆(ω)

iωn − ω

]−1

. (3.50)

And as usual, the relation between G0 and G is given by the Dyson equation

G−1
0 (iωn)−G−1(iωn) = Σ(iωn), (3.51)
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here in dynamical mean-field theory the self-energy Σ(iωn) is assumed local, i.e. only frequency

dependent. If there exists an impurity solver, then once G0 is given, the function G and the

self-energy Σ can be calculated by it.

G0

G

Σ

G

Impurity Solver

Σ = G−1
0 −G−1

G(iωn) =

∫
ρ0(ε)

iωn + µ− Σ(iωn) − ε
dε

G−1
0 = Σ +G−1

Figure 3.1: Basic dynamical mean-field theory loop.

The function G0 depends on the properties of the bath, or to be specific, the hybridization term

∆(iωn). Since the impurity site is chosen arbitrarily, the site in the bath is essentially equivalent

to the impurity site whose property is determined by G. And G0 and G are related by the Dyson

equation (3.51), hence it is possible to get a self-consistent condition for G0 and G. Such a condition

is given by the formula

G(iωn) =

∫
ρ0(ε)

iωn + µ− ε− Σ(iωn)
dε, (3.52)

where ρ0(ε) is the density of states of the unperturbed system. The derivations of the above

formulas is left to later sections and we shall just give a typical dynamical mean-field theory loop

here (see Figure 3.1):

1. Choose an unperturbed Matsubara Green’s function G0(iωn);

2. Calculate G according to given G0 by impurity solver;

3. Calculate Σ according to the Dyson equation (3.51);

4. Use the self-energy obtained in step 3 to calculate new G by (3.52) and calculate new G0 by

(3.51);
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5. Compare the Green’s function in step 2 and step 4, if they are close enough then we can finish

loop and a Green’s function G is obtained, otherwise go to step 2 again with G0 obtained in

step 4.

It should be emphasized that to calculate G(iωn) for a specific ωn, in principle the impurity

solver needs the whole unperturbed Green’s function G0, not only one point of G0. In other words,

the value G(iωn) for every specific ωn is a functional of function G0. This means that in dynamical

mean-field theory, the Green’s function, which is a function, acts as the “mean-field”, while in usual

Weiss mean-field the “mean-field” is just a number. This is the reason why dynamical mean-field

theory contains much more information than Weiss mean-field theory.

And we should also note that the main approximation in dynamical mean-field theory is that

the self-energy is local. This approximation let us neglect the spatial fluctuations of the system

and makes it possible to map the original problem into an impurity problem.

3.3 The Dynamical Mean-Field Theory with Constant Filling

Although the Hubbard model can explain basic features of a strongly correlated electronic system,

it is not enough to describe the features of real materials. It is clear that realistic theories must take

the explicit electronic and lattice structure into account, and this is usually done by putting the

density of states calculated by first principle calculations [62] as the unperturbed density of states

ρ0. First principle calculations are usually done by employing density functional theory [63, 64], and

the method combining first principle calculations and dynamical mean-field theory [65] is usually

denoted by DFT+DMFT.

The density of states calculated by density functional theory can be used directly in dynamical

mean-field theory. However, we must be careful about the chemical potential, otherwise it may

cause some problems. Here is an example. Let us consider an ideal situation: a half-filling Bethe

lattice [66, 67], whose electronic density of states is just a semicircle. And we assume the bandwidth

is 4, see Figure 3.2(a).

It is clear that the half-filling condition for the Bethe lattice without Coulomb interaction is

that µ = 0, i.e., the chemical potential is at the band center. However, if Coulomb interaction is

turned on then µ = 0 is not the half-filling condition anymore. This can be seen from Figure 3.2(b):
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when µ = 0 the filling is far less than half. In fact, for Bethe lattice with Coulomb interaction,

µ = U/2 is the half-filling condition. This can be argued as follows.

The Hamiltonian of the Hubbard model is written as

Ĥ = −t
∑
〈ij〉

∑
σ

ĉ†iσ ĉjσ − µ
∑
iσ

ĉ†iσ ĉiσ + U
∑
i

n̂i↑n̂i↓. (3.53)

Here let us apply a particle-hole transformation on this Hamiltonian: replace ĉi by (−1)iĉ†i and ĉ†i

by (−1)iĉi, then the Hamiltonian becomes

Ĥ = −t
∑
〈ij〉

∑
σ

ĉ†iσ ĉjσ +

[
(U − 2µ)− (U − µ)

∑
iσ

ĉ†iσ ĉiσ

]
+ U

∑
i

n̂i↑n̂i↓. (3.54)

It is easy to see that when µ = U/2 the term in bracket yields −µN̂ , then (3.54) becomes identical

with (3.53). In this case we say the system has particle-hole symmetry, in other words, the system

is half filled.

0

0.1

0.2

0.3

0.4

0.5

−3 −2 −1 0 1 2 3

µ

ρ

ε

(a) The density of states of Bethe lattice without
Coulomb interaction. The chemical potential is at the
middle of the band, which means the half-filling.

0

0.1

0.2

0.3

−5 0 5 10

µ

ρ

ε

(b) The density of states after the dynamical mean-field
theory calculation. The value of Coulomb interaction
strength U used here is 8, thus the value of chemical
potential should be U/2 = 4 to satisfy the half-filling
condition. This form of density of states is extracted
from Matsubara Green’s function by maximum entropy
method. The maximum entropy method is employed by
ΩMaxEnt toolkit [70].

Figure 3.2: The density of states before and after the dynamical mean-field
theory calculation.

Therefore when investigating real materials the filling, rather than chemical potential, given by

density functional theory should be used for dynamical mean-field theory. It should be noted that in
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principle the Coulomb interaction would also affect the electron filling, thus the full DFT+DMFT

algorithm [68, 69] should take this into consideration. However, most DFT+DMFT calculations

perform a simplified scheme which neglects the change of electron filling caused by Coulomb inter-

action, i.e., uses a constant electron filling. Such a simplified scheme is usually called “one-shot”

dynamical mean-field theory calculation, and it works well if we only want the electronic structure

[68].

To perform this one-shot calculation, the chemical potential needs to be adjusted in dynamical

mean-field theory loops. Once the Matsubara Green’s function G(iωn) is obtained, we need to

calculate the filling and then update the chemical potential to get the target filling. Since we

change only one parameter (chemical potential) in this process, a one dimensional root finder can be

used. The recommended finder would be Brent’s false-position plus inverse quadratic substitution

root-finder [71], which approaches the speed and accuracy of Newton’s method with the safety of

a false-position algorithm, and no need of calculating the derivative of the filling with respect to

chemical potential. Figure 3.3 shows a flow diagram for such a loop.

G0

G

Σ

G

n

Impurity Solver

Σ = G−1
0 −G−1

G(iωn) =

∫
ρ0(ε)

iωn + µ− Σ(iωn) − ε
dε

G−1
0 = Σ +G−1

Calculate
the filling

Update the chemical
potential µ

Figure 3.3: The loop for dynamical mean-field theory with constant filling.

3.4 Boson Coherent States

The rigorous formalism of dynamical mean-field theory is based on the functional integral formalism.

We need to introduce the concept of coherent state in order to develop the functional integral



86 CHAPTER 3. DYNAMICAL MEAN-FIELD THEORY

formalism for a many-body system. The details of the functional integral formalism can be found

in Ref [72]. In this section we shall introduce coherent states for a bosonic system.

Let âα be a bosonic annihilation operator for arbitrary state α, then the corresponding coherent

state |φ〉 is defined as the eigenstate of the annihilation operator:

âα |φ〉 = φα |φ〉 . (3.55)

For bosons, such a coherent state can be expanded by vectors in Fock space. To show this, we

write the coherent state |φ〉 for âα as

|φ〉 =
∑

n1,n2,··· ,np,···
φn1,n2,··· ,np,··· |n1, n2, · · · , np, · · ·〉 , (3.56)

where as usual |n1, n2, · · · , np, · · ·〉 denotes a normalized state with n1 particles in state 1, n2

particles in state 2, and so on. Then an annihilation operator âα acting on |φ〉 gives

âα |φ〉 = φα |φ〉 =
∑

n1,n2,··· ,nα,···

√
nαφn1,n2,··· ,nα,··· |n1, · · · , nα − 1, · · ·〉 , (3.57)

which means

φαφn1,n2,··· ,nα−1,··· =
√
nαφn1,n2,··· ,nα,···. (3.58)

We set the coefficient for vacuum equal to 1, then according to the above formula we obtain

φn1,n2,··· ,np,··· =
φn1

1√
n1!

φn2
2√
n2!
· · · φ

np
p√
np!
· · · . (3.59)

Recalling that

|n1, n2, · · · , np, · · ·〉 =
(â†1)n1

√
n1!

(â†2)n2

√
n2!
· · · (â

†
p)np√
np!
· · · |0〉 , (3.60)

and substituting (3.59) into (3.56) we finally get

|φ〉 =
∑

n1,n2,··· ,np,···

(φ1â
†
1)n1

n1!

(φ2â
†
2)n2

n2!
· · · (φpâ

†
p)np

np!
· · · |0〉

= e
∑
α φαâ

†
α |0〉 ,

(3.61)
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and correspondingly

〈φ| = 〈0| e
∑
α φ
∗
αâα . (3.62)

It is clear that we have

〈φ| â†α = 〈φ|φ∗α. (3.63)

The overlap of two coherent states is given by

〈
φ
∣∣φ′〉 =

∑
n1,·,np,···

∑
n′1,··· ,n′p,···

φ∗n1
1√
n1!
· · · φ

∗np
p√
np!
· · · φ

′
1
n′1√
n′1!
· · ·

φ′p
n′p√
n′p!
· · ·
〈
n1, · · · , np, · · ·

∣∣n′1, · · · , n′p, · · ·〉 .
(3.64)

Since the basis |n〉 is orthonormal, the scalar product
〈
n1, · · · , np, · · ·

∣∣n′1, · · · , n′p, · · ·〉 is just δn1n′1
· · · δnpn′p · · · ,

which leads to 〈
φ
∣∣φ′〉 = e

∑
α φ
∗
αφα . (3.65)

A crucial property of the coherent states is that they are complete in the Fock space, in other

words any vector in Fock space can be expanded in terms of coherent states. This can be expressed

by the closure relation ∫ (∏
α

dφ∗αdφα
2πi

)
e−

∑
α φ
∗
αφα |φ〉 〈φ| = 1, (3.66)

where 1 is the unit operator in Fock space, and the measure is given by

dφ∗αdφα
2πi

=
d(Reφα)d(Imφα)

π
. (3.67)

To prove (3.66), we first consider one single-particle state and let |n〉 denote the state with n

particles in this state, then the integral in (3.66) can be written as

∫
d(Reφ)d(Imφ)

π
e−φ

∗φ |φ〉 〈φ| =
∫
d(Reφ)d(Imφ)

π
e−φ

∗φ
∑
mn

φm√
m!
|m〉 φ

∗n
√
n!
〈n| . (3.68)

Writing φ in polar form φ = ρeiθ the above integral becomes

∫
ρ
dρdθ

π
e−ρ

2
∑
mn

(ρeiθ)m√
m!

(ρe−iθ)n√
n!

|m〉 〈n| = 2

∫
dρe−ρ

2
∑
n

ρ2n+1

n!
|n〉 〈n|

=
∑
n

∫ ∞
0

d(ρ2)e−ρ
2 ρ2n

n!
|n〉 〈n| .

(3.69)
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Substituting the variable x = ρ2 into the above expression we obtain

∑
n

∫ ∞
0

dx xne−x
1

n!
|n〉 〈n| =

∑
n

Γ(n+ 1)

n!
|n〉 〈n| =

∑
n

|n〉 〈n| , (3.70)

where Γ(n) is the Gamma function and when n is a positive integer we have Γ(n + 1) = n!.

Now generalize to a set of single-particle states |n1, · · · , np, · · ·〉, then the integral in (3.66) can be

similarly written as

∫ (∏
α

dφ∗αdφα
2πi

)
e−

∑
α φ
∗
αφα |φ〉 〈φ| =

∑
n1,··· ,np,···

|n1, · · · , np, · · ·〉 〈n1, · · · , np, · · ·| = 1. (3.71)

Thus (3.66) is proved.

This completeness relation allows us to write the trace of an operator in terms of coherent

states. Let Â be any operator and let |n〉 denote a complete set of states. Then

Tr Â =
∑
n

〈n| Â |n〉

=

∫ (∏
α

dφ∗αdφα
2πi

)
e−

∑
α φ
∗
αφα

∑
n

〈n|φ〉 〈φ| Â |n〉

=

∫ (∏
α

dφ∗αdφα
2πi

)
e−

∑
α φ
∗
αφα 〈φ| Â

∑
n

|n〉 〈n|φ〉

=

∫ (∏
α

dφ∗αdφα
2πi

)
e−

∑
α φ
∗
αφα 〈φ| Â |φ〉 .

(3.72)

3.5 Fermion Coherent States

Now let |φ〉 be a coherent state of fermions, then according to the definition of coherent state we

should have

âα |φ〉 = φα |φ〉 , âβ |φ〉 = φβ |φ〉 . (3.73)

Since âα and âβ are fermionic operators, the commutation rule shows that

âαâβ = −âβ âα, (3.74)

which means that

φαφβ = −φβφα. (3.75)
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This relation holds for any α and β, and thus forces all φα = 0 if φα is an ordinary scalar. Hence

the coherent states for fermion can not be expanded in a basis of Fock space directly and we must

enlarge the space. The required enlargement can be done by introducing the concept of Grassmann

algebra.

Grassmann Algebra

A Grassmann algebra is defined by a set of generators, which are also called Grassmann numbers.

It is named after Hermann Grassmann. We denote this set of Grassmann numbers by ξ1, ξ2, · · · , ξn.

The Grassmann numbers are defined anti-commutative to each other:

ξαξβ + ξβξα = 0, (3.76)

and in particular we have

ξ2
α = 0. (3.77)

We also define conjugation in a Grassmann algebra as

(ξα)∗ = ξ∗α, (ξ∗α)∗ = ξα, (3.78)

where ξ∗α is another Grassmann number associated as the conjugate of ξα. If λ is an ordinary scalar,

then

(λξα)∗ = λ∗ξ∗α (3.79)

and for any product of Grassmann numbers

(ξ1 · · · ξn)∗ = ξ∗nξ
∗
n−1 · · · ξ∗1 . (3.80)

As for ordinary scalar functions, we can define a derivative for Grassmann variable functions. It is

defined to be identical to the usual derivative that

∂

∂ξα
ξβ = δαβ. (3.81)
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However, there is a crucial difference between Grassmann derivative and usual derivative that the

derivative operator ∂/∂ξα must be adjacent to ξα, if not then the position of variable ξα need to

be swapped. For example,

∂

∂ξα
(ξβξα) = − ∂

∂ξα
(ξαξβ) = −ξβ, (3.82)

and

∂

∂ξα
(ξ∗αξα) = − ∂

∂ξα
(ξαξ

∗
α) = −ξ∗α. (3.83)

We can also define an integral on Grassmann algebra as

∫
dξ 1 = 0,

∫
dξ ξ = 1, (3.84)

and for conjugate variables we define

∫
dξ∗ 1 = 0,

∫
d ξ∗ξ∗ = 1. (3.85)

Note that the integral of this form
∫
dξ∗ξ is meaningless, and except this the integral thus defined

is identical to the derivative.

Lastly we require the Grassmann numbers to satisfy the following rules with operators that

ξ̃˜̂a+ ˜̂aξ̃ = 0, (3.86)

and

(ξ̃˜̂a)† = ˜̂a†ξ̃∗, (3.87)

where ξ̃ denotes any Grassmann variable in {ξα, ξ∗α} and ˜̂a is any operator in {âα, â†α}.

Fermion Coherent States

With the aid of Grassmann numbers, we can define fermion coherent states as

|ξ〉 = e−
∑
α ξαâ

†
α |0〉

=
∏
α

(1− ξαâ†α) |0〉 ,
(3.88)
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here we have expanded the exponential function and used the anti-commutative rules of Grassmann

numbers.

We now verify that the coherent states thus defined are eigenstates of annihilation operators.

It is easy to see that for a single state, the anti-commutation rules of â, â† and ξ gives

â(1− ξâ†) |0〉 = ξ |0〉 = ξ(1− ξâ†) |0〉 . (3.89)

And for multiple states noticing the fact that âα and ξα both commute with the combination ξβ â
†
β

for β 6= α, we obtain that

âα |ξ〉 = âα
∏
β

(1− ξβ â†β) |0〉

=
∏
β 6=α

(1− ξβ âβ)âα(1− ξαâ†α) |0〉

=
∏
β 6=α

(1− ξβ âβ)ξα(1− ξαâ†α) |0〉

= ξα
∏
β

(1− ξβ âβ) |0〉

= ξα |ξ〉 .

(3.90)

Similarly, the conjugate of the coherent states is defined as

〈ξ| = 〈0| e−
∑
α âαξ

∗
α = 〈0| e

∑
α ξ
∗
αâα , (3.91)

and it is a left eigenstate of â†α:

〈ξ| â†α = 〈ξ| ξ∗α. (3.92)

The overlap of two coherent states is easily calculated:

〈ξ|ξ′〉 = 〈0|
∏
α

(1 + ξ∗αâα)
∏
β

(1− ξ′β â†β) |0〉

= 〈0|
∏
α

(1 + ξ∗αâα)(1− ξ′αâα) |0〉

=
∏
α

(1 + ξ∗αξ
′
α)

= e
∑
α ξ
∗
αξ
′
α .

(3.93)
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As in the Boson case, there is also a closure relation which may be written as

∫ (∏
α

dξ∗αdξα
)
e−

∑
α ξ
∗
αξα |ξ〉 〈ξ| = 1, (3.94)

where 1 denotes the unit operator in the Fermion Fock space. To prove this closure relation, we

denote the left side of the above expression by operator Â that

Â =

∫ (∏
α

dξ∗αdξα
)
e−

∑
α ξ
∗
αξα |ξ〉 〈ξ| . (3.95)

To prove (3.94), it is sufficient to prove that for any vectors of the basis of the Fock space we have

〈α1 · · ·αn| Â |β1 · · ·βm〉 = 〈α1 · · ·αn|β1 · · ·βm〉 . (3.96)

Since the coherent states are eigenstates of annihilation operators we have

〈α1 · · ·αn|ξ〉 = 〈0| âαn · · · âα1 |ξ〉

= ξαn · · · ξα1 ,
(3.97)

and similarly for its conjugate equation:

〈ξ|β1 · · ·βm〉 = 〈ξ| â†β1
· · · â†βm |0〉

= ξ∗β1
· · · ξ∗βm ,

(3.98)

note that here we have use the property that

〈ξ|0〉 = 〈0|ξ〉 = 1. (3.99)

Therefore we obtain that

〈α1 · · ·αn| Â |β1 · · ·βn〉 =

∫ (∏
α

dξ∗αdξα
)
e−

∑
α ξ
∗
αξα 〈α1 · · ·αn|ξ〉 〈ξ|β1 · · ·βm〉

=

∫ (∏
α

dξ∗αdξα
)∏

α

(1− ξ∗αξα)ξαn · · · ξα1ξ
∗
β1
· · · ξ∗βm .

(3.100)
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Now consider the integrals which may be used in (3.100) for a particular state γ:

∫
dξ∗γdξγ(1− ξ∗γξγ)



ξγξ
∗
γ

ξ∗γ

ξγ

1


=



1

0

0

1


. (3.101)

Thus the integral in (3.100) is non-vanishing only if each state γ is either occupied in both 〈α1 · · ·αn|

and |β1 · · ·βm〉 or unoccupied in both states, which requires m = n and {α1 · · ·αn} must be some

permutation of {β1 · · ·βn}. And the order of the permutation is the same in (3.96), hence (3.96) is

proved.

This closure relation allows us to write the trace of an operator in terms of coherent states.

First, notice that if |α〉 , |β〉 are two vectors in Fock space and |ξ〉 is a coherent state, then in the

integral

〈α|ξ〉 〈ξ|β〉 = 〈−ξ|β〉 〈α|ξ〉 . (3.102)

This can be seen from (3.97) and (3.98) that

〈α|ξ〉 〈ξ|β〉 = ξαn · · · ξα1ξ
∗
β1
· · · ξ∗βn

= (−ξ∗β1
) · · · (−ξ∗βn)ξαn · · · ξα1

= 〈−ξ|β〉 〈α|ξ〉 ,

(3.103)

note that 2n− 1 interchanges are needed when we move the right most side term to left most side

and these interchanges yield an extra factor (−1)2n−1 = −1.

Now let {|n〉} be a complete set of states in Fock space, then the trace of an operator Â can be

written as

Tr Â =
∑
n

〈n| Â |n〉

=

∫ (∏
α

dξ∗αdξα
)
e−

∑
α ξ
∗
αξα
∑
n

〈n|ξ〉 〈ξ| Â |n〉

=

∫ (∏
α

dξ∗αdξα
)
e−

∑
α ξ
∗
αξα 〈−ξ| Â

∑
n

|n〉 〈n|ξ〉

=

∫ (∏
α

dξ∗αdξα
)
e−

∑
α ξ
∗
αξα 〈−ξ| Â |ξ〉 .

(3.104)
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3.6 Gaussian Integrals for Coherent States

According to the discussions in the last two sections, the trace of an operator can be expressed in

terms of coherent states in an integral form. Looking at (3.72) and (3.104), we shall find that such

integrals are in a form of Gaussian integrals. It is indeed possible to develop a Gaussian integral

formalism for Grassmann numbers and thus the trace of coherent states can be treated as Gaussian

integrals of coherent states.

Let us begin by proving an identity for multidimensional Gaussian integrals over real variables:

∫
dx1 · · · dxn

(2π)
n
2

e−
1
2
xiAijxj+xiJi = [detA]−

1
2 e

1
2
JiA
−1
ij Jj , (3.105)

where A is a real symmetric positive definite matrix and the repeated indices is understood sum-

mation over these indices. This identity can be proved by following steps: let yi = xi −A−1
ij Jj and

zk = O−1
ki xi, where O is the orthogonal transformation which diagonalize A, we obtain

∫
dx1 · · · dxne−

1
2
xiAijxj+xiJi =

∫
dy1 · · · dyne−

1
2
yiAijyj

=

∫
dz1 · · · dzne−

1
2

∑
m amz2

m

=

n∏
m=1

√
2π

am

=
(2π)

n
2

[detA]
1
2

e
1
2
JiA
−1
ij Jj .

(3.106)

Thus the identity is proved. Note that the requirement that A is positive definite is to ensure the

convergence of the Gaussian integral. A Similar identity for complex variables is

∫ ( n∏
i=1

dx∗i dxi
2πi

)
e−x

∗
iHijxj+J

∗
i xi+Jix

∗
i = [detH]−1eJ

∗
i H
−1
ij Jj , (3.107)

which is valid for a positive definite Hermitian matrix H. The proof for complex variables is similar

to the proof for real variables so we shall skim the derivations, just note that the measure

dx∗dx
2πi

=
d(Re x)d(Im, x)

π
. (3.108)
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Finally, we shall prove the analogous identity for Grassmann variables that

∫ ( n∏
i=1

dη∗i dηi
)
e−η

∗
iHijηj+ζ

∗
i ηi+η

∗
i ζi = [detH]eζ

∗
i H
−1
ij ζj , (3.109)

where H is a Hermitian but not necessarily positive definite matrix and {ζ∗i , ζi, η∗i , ηi} are Grass-

mann numbers. To prove this identity, we need to derive the transformation law for an integral

under a change of variables for Grassmann variables.

Let us consider an multidimensional integral over Grassmann variables

∫
dζ∗1dζ1 · · · dζ∗ndζnP (ζ∗, ζ), (3.110)

where P (ζ∗, ζ) is a function of {ζ∗i , ζi}. Relabel the variables as

(ζ∗1ζ
∗
2 · · · ζ∗nζnζn−1 · · · ζ1) ≡ (ζ̃1ζ̃2 · · · ζ̃2n), (3.111)

and introduce a new set of variables {η∗i , ηi} and relabel them as

(η∗1η1η
∗
2η2 · · · η∗nηn) ≡ (η̃1η̃2 · · · η̃2n). (3.112)

We write ζ̃ as the linear transformation of η̃:

ζ̃i = Mij η̃j , (3.113)

where M is the transformation matrix. The only non-vanishing terms in (3.110) are those polyno-

mial containing each ζ̃i as a factor, which we can write as p
∏2n
i=1 ζ̃i, where p is the interchanging

factor. Now we write

∫
dζ∗1dζ1 · · · dζ∗ndζn p

2n∏
i=1

ζ̃i = J

∫
dη∗1dη1 · · · dη∗ndηn p

2n∏
i=1

∑
j

Mij η̃j

 , (3.114)

where J is left to be determined and the form of this J gives the rule of transformation. The left

side of the above expression is just p(−1)n, and the non-vanishing terms of the right side come
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from the (2n)! distinct permutations P of the variables {η̃i}. Thus we have

p(−1)n = Jp

∫
dη∗1dη1 · · · dη∗ndηn

2n∏
i=1

∑
j

Mij η̃j


= Jp

∫
dη∗1dη1 · · · dη∗ndηn

∑
P

2n∏
i=1

MiPi η̃Pi

= Jp
∑
P

2n∏
i=1

MiPi(−1)P
∫
dη∗1dη1 · · · dη∗ndηn(η̃1η̃2 · · · η̃2n)

= Jp detM(−1)n,

(3.115)

so that

J = (detM)−1 =

∣∣∣∣∂(η∗, η)

∂(ζ∗, ζ)

∣∣∣∣ . (3.116)

Hence the transformation law for an integral under a change of variables is

∫
dζ∗1dζ1 · · · dζ∗ndζnP (ζ∗, ζ) =

∣∣∣∣∂(η∗, η)

∂(ζ∗, ζ)

∣∣∣∣ ∫ dη∗1dη1 · · · dη∗ndηnP
(
ζ∗(η∗, η), ζ(η∗, η)

)
. (3.117)

It should be emphasized that the transformation law is given by the inverse of the Jacobian instead

of the Jacobian for ordinary numbers.

Using this transformation law for a multidimensional integral over Grassmann variables, (3.109)

can be proved by defining ρi = ηi−H−1
ij ζj , ρ

∗
i = η∗i −H−1∗

ij ζ∗j , and diagonalizing H with an unitary

transformation U with ξi = U−1
ij ρj and ξ∗i = U−1∗

ij ρ∗j . Noticing that the Jacobian is unity, we have

∫ ( n∏
i=1

dη∗i dηi
)
e−η

∗
iHijηj+ζ

∗
i ηi+η

∗
i ζi =

∫ ( n∏
i=1

dρ∗i dρi
)
e−ρ

∗
iHijρj+ζ

∗
i H
−1
ij ζj

=

∫ ( n∏
i=1

dξ∗i dξi
)
e−

∑
i hiξ

∗
i ξi+ζ

∗
i H
−1
ij ζj

=
( n∏
m=1

hm

)
eζ
∗
i H
−1
ij ζj

= [detH]eζ
∗
i H
−1
ij ζj ,

(3.118)

here we have used the fact that a Gaussian integral for a single pair of conjugate Grassmann

variables is just ∫
dξ∗dξe−ξ

∗aξ =

∫
dξ∗dξ(1− ξ∗aξ) = a. (3.119)
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3.7 Coherent State Functional Integral Formalism

The partition function of a many body system is

Z = Tr e−β(Ĥ−µN̂), (3.120)

where β is the inverse of temperature, Ĥ is the Hamiltonian, µ is the chemical potential and N̂

is the particle number operator. According to (3.104), the partition function for fermions can be

written as

Z =

∫ (∏
α

dξ∗αdξα
)
e−

∑
α ξ
∗
αξα 〈−ξ| e−β(Ĥ−µN̂) |ξ〉 . (3.121)

Now we split β into M slices that β = Mδτ , then the partition function becomes

Z =

∫ (∏
α

dξ∗αdξα
)
e−

∑
α ξ
∗
αξα 〈−ξ|

M∏
i=1

e−δτ(Ĥ−µN̂) |ξ〉 . (3.122)

Inserting the identity (3.94) between every e−δτ(Ĥ−µN̂) in the above expression gives

Z =

∫ (∏
α

dξ∗αdξα
)
e−

∑
α ξ
∗
αξα
(M−1∏
i=1

∏
α

dξ∗i,αdξi,α
)(M−1∏

i=1

e−
∑
α ξ
∗
i,αξi,α

)
× 〈−ξ| e−δτ(Ĥ−µN̂) |ξM−1〉 〈ξM−1| · · · |ξ1〉 〈ξ1| e−δτ(Ĥ−µN̂) |ξ〉 .

(3.123)

and labeling −ξ as ξM we obtain

Z =

∫ ( M∏
i=1

∏
α

dξ∗i,αdξi,α
)( M∏

i=1

e−
∑
α ξ
∗
i,αξi,α

)( M∏
i=2

〈ξi| e−δτ(Ĥ−µN̂) |ξi−1〉
)
〈ξ1| e−δτ(Ĥ−µN̂) |−ξM 〉 .

(3.124)

In second quantization formalism, the Hamiltonian Ĥ is a function of annihilation operators

and creation operators Ĥ(â†α, âα). Now for convenience, we require the Hamiltonian to be normal

ordered that all creation operators are to the left of all annihilation operators in the product1. And

the operator N̂ is just
∑

α â
†
αâα. Now let M →∞, and correspondingly δτ → 0. Since the coherent

states are eigenstates of annihilation operators, we can replace the operators by their eigenvalues

1If the Hamiltonian is not normal ordered, we should interchange the operators according to the commutation
rule to make it be so.
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when acting on coherent states, hence

lim
τ→0
〈ξi| e−δτ(Ĥ−µN̂) |ξi−1〉 = lim

τ→0
〈ξi| 1− δτ [Ĥ(â†α, âα)− µ

∑
α

â†αâα] +O(δτ2) |ξi−1〉

= lim
τ→0
〈ξi| e−τ [H(ξ∗i,α,ξi−1,α)−µ∑

α ξ
∗
i,αξi−1,α] |ξi−1〉+O(δτ2).

(3.125)

Note that H(ξ∗i,α, ξi−1,α) is now not an operator but a function of Grassmann variables. With the

above formula the equation (3.124) can be written as

Z = lim
M→∞

∫ ( M∏
i=1

∏
α

dξ∗i,αdξi,α
)( M∏

i=1

e−
∑
α ξ
∗
i,αξi,α

)
×
( M∏
i=2

〈ξi| e−δτ [H(ξ∗i,α,ξi−1,α)−µ∑
α ξ
∗
i,αξi−1,α] |ξi−1〉

)
〈ξ1| e−δτ [H(ξ∗1,α,−ξM,α)+µ

∑
α ξ
∗
1,αξM,α] |−ξM 〉 ,

(3.126)

or, separating the exponential functions and the brackets,

Z = lim
M→∞

∫ ( M∏
i=1

∏
α

dξ∗i,αdξi,α
)( M∏

i=1

e−
∑
α ξ
∗
i,αξi,α

)( M∏
i=2

〈ξi|ξi−1〉
)
〈ξ1|−ξM 〉

×
( M∏
i=2

e−δτ [H(ξ∗i,α,ξi−1,α)−µ∑
α ξ
∗
i,αξi−1,α]

)
e−δτ [H(ξ∗1,α,−ξM,α)+µ

∑
α ξ
∗
1,αξM,α].

(3.127)

Finally, collaborating with (3.93) we can write the partition function as

Z = lim
M→∞

∫ M∏
i=1

∏
α

dξ∗i,αdξi,αe
−S(ξ∗,ξ), (3.128)

where

S(ξ∗, ξ) = δτ
∑
i=2

[∑
α

ξ∗iα

(
ξi,α − ξi−1,α

δτ
− µξi−1,α

)
+H(ξ∗i,α, ξi−1,α)

]

+δτ

[∑
α

ξ∗1,α

(
ξ1,α + ξM,α

δτ
+ µξM,α

)
+H(ξ∗1,α,−ξM,α)

]
.

(3.129)

We may also write this expression for the partition symbolically as

Z =

∫
ξα(β)=−ξα(0)

D[ξ∗α(τ)ξα(τ)]e−
∫ β
0 dτ [

∑
α ξ
∗
α(τ)( ∂

∂τ
−µ)ξα(τ)+H(ξ∗α(τ),ξα(τ))], (3.130)

where the symbol
∫
D[ξ∗α(τ)ξα(τ)] is understood as a functional integral over all possible tra-
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jectories. Note that the Grassmann variables satisfy an anti-periodic boundary condition that

ξα(β) = −ξα(0). This is the path integral formalism for a Fermionic many body system.

Partition Function for Non-Interacting Fermionic System

It is useful to give an example how to evaluate the path integral for Fermions. For convenience, we

choose a non-interacting system with a diagonal Hamiltonian

Ĥ =
∑
α

εαâ
†
αâα (3.131)

as an example. Then the discrete expression for the partition function (3.128) may be written as

Z = lim
M→∞

∏
α

[∫ ( M∏
i=1

dξ∗i dξi
)
e−

∑
ij ξ
∗
i S

(α)
ij ξj

]
, (3.132)

where the matrix S(α), with the convention that time index τ increases with increasing row and

column index, is

S(α) =



1 0 · · · 0 a

−a 1 0 0

0 −a 1
. . .

...

0 −a . . . 0

... 0
. . . 1 0

0 · · · −a 1


, (3.133)

and

a = 1− δτ(εα − µ). (3.134)

The expression for partition function (3.132) is a Gaussian integral over Grassmann variables, and

collaborating with (3.109) yields

Z = lim
M→∞

∏
α

detS(α). (3.135)
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The determinant of S(α) is

lim
M→∞

detS(α) = lim
M→∞

[1− (−1)M−1(−a)M ]

= lim
M→∞

[
1 +

(
1− β(εα − µ)

M

)M]
= 1 + e−β(εα−µ),

(3.136)

and accordingly

Z =
∏
α

[1 + e−β(εα−µ)]. (3.137)

The Matsubara Green’s function can be calculated in a similar manner. The Matsubara Green’s

function for a non-interacting Fermi system is defined as

Gαγ(τq, τr) = − 1

Z
Tr
[
e−β(Ĥ−µN̂)Tτ âα(τq)â

†
γ(τr)

]
. (3.138)

Writing it in path integral form, then we have

Gαγ(τq, τr) = − 1

Z
lim
M→∞

∏
δ

∫ ( M∏
i=1

dξ∗i,δξi,δ
)
e
−

M∑
i,j=1

ξ∗i,δS
(δ)
ij ξi,δ

ξq,αξ
∗
r,γ

= −δαγ
∫

(
∏
i dξ
∗
i dξi)e

−
M∑

i,j=1
ξ∗i S

(α)ξj
ξqξ
∗
r∫

(
∏
i dξ
∗
i dξi)e

−
M∑

i,j=1
ξ∗i S

(α)ξj

= δαγ
∂2

∂J∗q ∂Jr

∫
(
∏
i dξ
∗
i dξi)e

−∑
ij ξ
∗
i S

(α)
ij ξj+

∑
i(J
∗
i ξi+ξ

∗
i Ji)∫

(
∏
i dξ
∗
i dξi)e

−∑
ij ξ
∗
i S

(α)
ij ξj

∣∣∣∣∣∣
J=J∗=0

= δαγ
∂2

∂J∗q ∂Jr
e
∑
ij J
∗
i S

(α)−1

ij
Jj

∣∣∣∣
J=J∗=0

= −δαγS(α)−1
qr .

(3.139)



3.7. COHERENT STATE FUNCTIONAL INTEGRAL FORMALISM 101

The inverse matrix of S in (3.133), with a = 1− δτ(εα − µ), is

S(α)−1
=

1

1 + aM



1 −aM−1 −aM−2 · · · −a

a 1 −aM−1 −a2

a2 a 1

... a2 a
...

a2

aM−3

aM−2 aM−3 −aM−1

aM−1 aM−2 aM−3 · · · 1



, (3.140)

therefore for q ≥ r we have

lim
M→∞

S(α)−1

qr = lim
M→∞

aq−r

1 + aM

= lim
M→∞

[
1− β

M
(εα − µ)

]q−r 1− 1(
1− β

M (εα − µ)
)−M

+ 1


= e−(εα−µ)(τq−τr)

[
1− 1

eβ(εα−µ) + 1

]
= e−(εα−µ)(τq−τr)(1− nα),

(3.141)

where nα is just the Fermi distribution

nα =
1

eβ(εα−µ) + 1
. (3.142)

Similarly, if q ≤ r we have

lim
M→∞

S(α)−1

qr = lim
M→∞

−aM+q−r

1 + aM

= lim
M→∞

[
1− β

M
(εα − µ)

]q−r −1(
1− β

M (εα − µ)
)−M

+ 1

= −e−(εα−µ)(τq−τr)nα.

(3.143)
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Hence the Matsubara Green’s function is

Gαγ(τq, τr) = δαγ

 −e
−(εα−µ)(τq−τr)(1− nα), τq ≥ τr;

e−(εα−µ)(τq−τr)nα, τq < τr.
(3.144)

Now let us return to the derivation of (3.36). The Hamiltonian of the impurity model is written

as

Ĥ0 =
∑
kσ

εkâ
†
kσâkσ − µ

∑
σ

ĉ†σ ĉσ +
∑
kσ

Vk(â
†
kσ ĉσ + ĉ†σâkσ), (3.145)

and the corresponding partition function is

Z = Tr e−βĤ0

=

∫
D[c∗σ(τ)cσ(τ)]

∫
D[a∗kσ(τ)akσ(τ)]

e−
∫ β
0 dτ [

∑
kσ a

∗
kσ(τ) ∂

∂τ
akσ(τ)+

∑
σ c
∗
σ(τ)( ∂

∂τ
−µ)cσ(τ)+

∑
kσ εka

∗
kσakσ+

∑
k Vk(a∗kσcσ+c∗σakσ)]

=

∫
D[c∗σ(τ)cσ(τ)]e−

∫ β
0 dτ

∑
σ c
∗
σ(τ)( ∂

∂τ
−µ)cσ(τ)[

lim
M→∞

∏
kσ

∫ ( M∏
i=1

da∗kσdakσ

)
e−

∑
ij a
∗
i S

(kσ)
ij ak−

∑
k(Vka

∗
kσcσ+c∗σakσ)

]
,

(3.146)

where the matrix S(kσ) has the same form as (3.133) but with a = 1− δτεkσ. Using the Grassmann

Gaussian integral formula (3.109) the above formula becomes

Z =

∫
D[c∗σ(τ)cσ(τ)]e−

∫ β
0 dτ

∑
σ c
∗
σ(τ)( ∂

∂τ
−µ)cσ(τ)+

∫ β
0

∫ β
0 dτdτ ′

∑
kσ V

2
k c
∗
σ(τ)S(kσ)−1

cσ(τ ′), (3.147)

where the matrix S(kσ)−1
has the same form as (3.140) with a = 1 − δτεkσ. As the derivation

of (3.139), the above form partition function can be written as a generating function for Green’s

functions as

Z =

∫
D[c∗σ(τ)cσ(τ)]e

∫ β
0

∫ β
0 dτdτ ′

∑
σ c
∗
σ(τ)G−1

0 (τ,τ ′)cσ(τ ′). (3.148)

Following the same procedures of deriving (3.141) and (3.143) we obtain that

G−1
0 (τ, τ ′) =


−δ(τ − τ ′)( ∂

∂τ
− µ) +

∑
k

V 2
k

eεk(β−τ+τ ′)

eβεk + 1
, τ ≥ τ ′;

−δ(τ − τ ′)( ∂
∂τ
− µ)−

∑
k

V 2
k

e−εk(τ−τ ′)

eβεk + 1
, τ < τ ′,

(3.149)
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and applying a Fourier series on the range [0, β] we obtain

G−1
0 (iωn) = iωn + µ−

∑
k

V 2
k

iωn − εk
, (3.150)

which coincides with (3.36).

3.8 Linked Cluster Theorem

In this section we shall briefly introduce the linked cluster theorem, which is needed when formally

deriving dynamical mean-field theory. Let us consider a Hamiltonian consisting of a non-interacting

term Ĥ0 and a perturbation term V̂ :

Ĥ = Ĥ0 + V̂ , (3.151)

where Ĥ0 =
∑

α εαâ
†
αâα and V̂ = V̂ (â†, â). Then using path integral notation the partition function

can be written as

Z =

∫
ξα(β)=−ξα(0)

D[ξ∗α(τ)ξα(τ)]e−
∫ β
0 dτ [

∑
α ξ
∗
α(τ)( ∂

∂τ
+εα−µ)ξα(τ)+V (ξ∗,ξ)]

= Z0〈e−
∫ β
0 dτV (ξ∗,ξ)〉0,

(3.152)

where the thermal average of a function F (ξ∗, ξ) is written

〈F (ξ∗, ξ)〉0 =
1

Z0

∫
ξα(β)=−ξα(0)

D[ξ∗α(τ)ξα(τ)]e−
∫ β
0 dτ

∑
α ξ
∗
α( ∂
∂τ

+εα−µ)ξαF (ξ∗, ξ). (3.153)

Note that the time-ordering is implicit here since in path integral formalism the quantities are

always time-ordered. And the partition function of the non-interacting Hamiltonian Z0, when

written in path integral form, is

Z0 =

∫
ξα(β)=−ξα(0)

D[ξ∗α(τ)ξα(τ)]e−
∫ β
0 dτ

∑
α ξ
∗
α( ∂

∂τ
+εα−µ)ξα . (3.154)
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Accordingly the perturbation expansion can be obtained by expanding (3.152) in a power series

Z

Z0
=
∞∑
n=0

(−1)n

n!

∫ β

0
dτ1 · · · dτn〈V (ξ∗(τ1), ξ(τ1)) · · ·V (ξ∗(τn)ξ(τn))〉0. (3.155)

Wick’s Theorem

To evaluate the perturbation expansion, Wick’s theorem [73] is used. In path integral form, the

Wick’s theorem corresponds to the following identity for integral of a product of Grassmann vari-

ables with a Gaussian:

∫
D(ξ∗ξ)e−

∑
ij ξ
∗
iMijξjξi1ξi2 · · · ξinξ∗jn · · · ξ∗j2ξ∗j1∫

D(ξ∗ξ)e−
∑
ij ξ
∗
iMijξj

=
∑
P

(−1)PM−1
iPn ,jn

· · ·M−1
iP1

,j1
. (3.156)

To prove this identity, we define a generating function

G(J∗, J) =

∫
D(ξ∗ξ)e−

∑
ij ξ
∗
iMijξj+

∑
i(J
∗
i ξi+ξ

∗
i Ji)∫

D(ξ∗ξ)e−
∑
ij ξ
∗
iMijξj

= e
∑
ij J
∗
iM
−1
ij Jj .

(3.157)

Differentiation of this generating function with respect to the source J and J∗ yields

δ2nG

δJ∗i1 · · · δJ∗inδJjn · · · δJj1

∣∣∣∣∣
J=J∗=0

= (−1)n
∫
D(ξ∗ξ)e−

∑
ξ∗iMijξjξi1 · · · ξinξ∗jn · · · ξ∗j1∫

D(ξ∗ξ)e−
∑
ξ∗iMijξj

, (3.158)

note that here we have used the fact that all terms in the exponent are even in J ’s and ξ’s and thus

commute with ξ, ξ∗, J and J∗, and the factor (−1)n comes from an odd number of interchanges

for each differentiation with respect to J . However, differentiation of the generating function also

yields

δ2n

δJ∗i1 · · · δJ∗inδJjn · · · δJj1
(
e
∑
ij J
∗
iM
−1
ij Jj

)∣∣∣∣∣
J=J∗=0

= (−1)n
δn

δJ∗i1 · · · δJ∗in
(
∑
kn

J∗knM
−1
knjn

) · · · (
∑
k1

J∗k1
M−1
k1j1

)e
∑
ij J
∗
iMijJj

∣∣∣∣∣∣
J=J∗=0

= (−1)n
∑
P

(−1)PM−1
iPn ,jn

· · ·M−1
iP1

,j1
.

(3.159)

Equating (3.158) and (3.159) proves (3.156).
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To apply Wick’s theorem, first note that the Matsubara Green’s function for a non-interacting

system can be written as

G
(0)
α1α2(τ1, τ2) = −

∫
D(ξ∗i ξ)e

−
∫ β
0 dτ

∑
α ξ
∗
α( ∂

∂τ
+εα−µ)ξαξα1(τ1)ξ∗α2

(τ2)∫
D(ξ∗i ξ)e

−
∫ β
0 dτ

∑
α ξ
∗
α( ∂

∂τ
+εα−µ)ξα

= −( ∂
∂τ + εα − µ)−1

α1τ1;α2τ2 ,

(3.160)

where ( ∂
∂τ + εα − µ) is a symbol presenting the discrete matrix in the exponent and this matrix is

used to replace Mij in (3.156). Thus Wick’s theorem shows that

(−1)n〈ξα1,i1ξα2,i2 · · · ξαn,inξ∗γn,jn · · · ξ∗γ2,j2
ξ∗γ1,j1

〉0

=
∑
P

(−1)PG(0)
αPn ,γPn

(τiPn , τjPn ) · · ·G(0)
αP1

,γP1
(τiP1

, τjP1
)

=
∑

all complete contractions.

(3.161)

For example,

〈ξα1(τ1)ξα2(τ2)ξ∗α3
(τ3)ξ∗α4

(τ4)〉0

= ξα1(τ1)ξα2(τ2)ξ∗α3
(τ3)ξ∗α4

(τ4) + ξα1(τ1)ξα2(τ2)ξ∗α3
(τ3)ξ∗α4

(τ4)

= G
(0)
α1α4(τ1, τ4)G

(0)
α2α3(τ2, τ3)−G(0)

α1α3(τ1, τ3)G
(0)
α2α4(τ2, τ4).

(3.162)

Linked Cluster Theorem

With the Wick’s theorem, the partition function Z can be expanded by Feynman diagrams as usual.

In principle the expansion of Z contains both connected and disconnected diagrams. However, the

linked cluster theorem states that lnZ is given by the sum of all connected diagrams, and no

disconnected diagram is involved.

We shall use the replica technique to derive this theorem. The basic idea of the replica method

is to expand Zn for integer n as

Zn = en lnZ = 1 + n lnZ +

∞∑
m=2

(n lnZ)m

m!
. (3.163)
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And in the present case, we have

lim
n→0

d

dn
Zn = lim

n→0

d

dn
(en lnZ) = lnZ. (3.164)

We shall first evaluate Zn by perturbation theory, and according to (3.163) lnZ will be given

by the coefficient of the diagrams proportional to n. Since the partition function Z can be written

as

Z

Z0
=

1

Z0

∫
ξα(β)=−ξα(0)

D[ξ∗α(τ)ξα(τ)]e−
∫ β
0 dτ [

∑
α ξ
∗
α( ∂

∂τ
+εα−µ)ξα(τ)+V (ξ∗α(τ),ξα(τ))], (3.165)

we may write Zn as a functional integral over n sets of {ξσ∗α (τ), ξσα(τ)} where the index σ runs from

1 to n:

(
Z

Z0

)n
=

1

Zn0

∫
ξσα(β)=−ξσα(0)

D[ξσ∗α (τ)ξσα(τ)]e−
∫ β
0 dτ

∑n
σ=1[

∑
α ξ
∗
α( ∂

∂τ
+εα−µ)ξα(τ)+V (ξ∗α(τ),ξα(τ))]. (3.166)

Now each propagator carries an index σ, all propagators entering or leaving a given vertex have

the same index σ, and all σ’s are summed from 1 to n. It is clear that each connected part of a

diagram must carry a single index σ, which when summed from 1 to n, gives a factor n. Thus a

diagram with nc connected parts has a factor proportional to nnc and the diagrams proportional

to n are those with only one connected part, i.e. the connected diagrams.

In other words, lnZ contains only the connected diagrams, this is the linked cluster theorem.

It states that

ln
Z

Z0
=
∑

(all connected diagrams). (3.167)

Here we have only discussed the situation for the partition function, more details about linked

cluster theorem can be found in Ref [72].
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3.9 Derivation of the Dynamical Mean-Field Equations

In this section we shall use the Hubbard model as an example to derive the dynamical mean-field

equations. The Hamiltonian of the Hubbard model can be written as

Ĥ =
∑
ij,σ

tij ĉ
†
iσ ĉjσ + U

∑
i

n̂i↑n̂i↓ − µN̂. (3.168)

The dynamical mean-field theory becomes exact in the limit of infinity dimension. However,

when dimension goes to infinite the kinetic energy of the Hubbard model becomes infinite accord-

ingly, and the Coulomb interaction U can be then neglected. This would give a trivial result. In

order to avoid this trivial result a scaled Hamiltonian is adopted, and such a scaled Hamiltonian is

achieved by letting

tij =
t√
2d
, (3.169)

where t is a constant for connected sites i, j and d is the dimension. It should be emphasized that

this scaling is artificial. In a real situation we do not need to scale the Hamiltonian when applying

dynamical mean-field theory. With this scaling the dynamical mean-field theory becomes exact at

d→∞ limit [74].

In this section we shall use the cavity method, which is borrowed from classical statistical

mechanics, to derive the equations. Let us first demonstrate this on the Ising model [75]:

H = −
∑
ij

JijSiSj − h
∑
i

Si. (3.170)

The effective Hamiltonian Heff for site o and is defined by the partial trace over all other spins:

1

Zeff
e−βĤeff [So] ≡ 1

Z

∑
Si,i 6=o

e−βĤ . (3.171)

The Hamiltonian H in (3.170) can be split into three terms as H = −hoSo −
∑

i JioSoSi + H(o),

where H(o) is the Ising Hamiltonian in which the site o along with all bonds connecting site o are

removed. Let ηi denote JioSo, which plays the role of a field acting on site i. Then the partition
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function can be written as

Z =
∑
So

exp(βhoSo)
∑
Si,i 6=o

exp
(
−βĤ(o)

)
exp

(
β
∑
i

ηiSi

)

= Z(o)
∑
So

exp(βhoSo)〈exp

(
β
∑
i

ηiSi

)
〉(o),

(3.172)

where 〈· · · 〉(o) means the average over H(o). The term 〈exp(β
∑

i ηiSi)〉(o) can be expanded by

products of Si’s. Applying the linked cluster theorem and collecting only the connected terms we

obtain an effective Hamiltonian which contains only connected diagrams:

Heff = const +
∞∑
n=1

∑
i1···in

1

n!
ηi1 · · · ηin〈Si1 · · ·Sin〉(o)c . (3.173)

If the system is ferromagnetic, i.e. Jij > 0, then to apply the Weiss mean-field theory in infinite

dimension we need to scale Jij as 1/d|i−j|. This scaling, of course, is also artificial in order to avoid

trivial solution. And |i− j| is the Manhattan distance2 between i and j. With such a scaling, only

the first term (n = 1) survives in the expression in the d→∞ limit, hence we have

Heff = −heffSo, (3.174)

where

heff = h+
∑
i

Joi〈Si〉(o). (3.175)

〈Si〉(o) is the magnetization at site i with site o removed. Since each site has infinite neighbors

when d → ∞, removing one of them does not affect at all. This, together with the transitional

invariance, implies that 〈Si〉 = 〈So〉 ≡ m, so heff = h+ zJm with z to be the number of neighbors.

Thus we obtain the Weiss mean-field equations for the Ising model.

This derivation can be extended in a straightforward manner to the Hubbard model. The

partition function can be written in a functional integral form as

Z =

∫
D[c∗iσ(τ)ciσ(τ)]e−S , (3.176)

2Manhattan distance is also called taxicab metric, which is defined as the number of bonds of the shortest path
connecting i and j.
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where

S =

∫ β

0
dτ

∑
iσ

c∗iσ∂τ ciσ +
∑
ij,σ

tijc
∗
iσciσ − µ

∑
iσ

niσ + U
∑
i

ni↑ni↓.

 (3.177)

Here for convenience the Grassmann variables are denoted by c∗ and c. We follow the Ising analogy:

the sites are traced out except site o in order to obtain the effective action:

1

Zeff
e−Seff [c∗oσ ,coσ ] =

1

Z

∫ ∏
i 6=o,σ

D[c∗iσciσ]e−S . (3.178)

In order to obtain this effective action Seff , we split the original action S into three parts as

S = S(o) + So + ∆S, where S(o) is the lattice action without site o and

So =

∫ β

0
dτ

[∑
σ

c∗oσ(∂τ − µ)coσ + Uno↑no↓

]
, ∆S =

∫ β

0
dτ
∑
iσ

tio(c
∗
iσcoσ + c∗oσciσ). (3.179)

Now denote tiocoσ by ηi, then the partition function can be written as

Z =

∫
D[c∗oσcoσ]e−So

∫ ∏
i 6=o

D[c∗iσciσ]e−S
(o)
e−∆S

= Z(o)

∫
D[c∗oσcoσ]e−So〈e−∆S〉(o).

(3.180)

According to the linked cluster theorem, the above expression gives the generating functional of

the connected Green’s function G(o) of the cavity Hamiltonian Ĥ(o):

Seff =

∞∑
n=1

∑
i1···in

∑
j1···jn

∫
dτi1 · · · dτjn η∗i1(τi1) · · · η∗in(τin)ηj1(τj1) · · · ηjn(τjn)

×G(o)
i1···jn(τi1 · · · τin , τj1 · · · τjn) + So + const.

(3.181)

The scaling of the hopping tij is 1/
√
d
|i−j|

, and this scaling brings a crucial simplification. The nth

order term is of order (1/d)n−1 so that only the n = 1 term survives in the d → ∞ limit. This

can be seen from the first few terms. The scaling of tij ensures that G
(o)
ij ∼ (1/

√
d)|i−j| so the first

term is of order 1. The second-order term contains a connected four-point Green’s function G
(o)
ijkl

which gives (1/
√
d)|i−k|(1/

√
d)|i−l|(1/

√
d)|j−k|(1/

√
d)|j−k|. When i, j, k, l are all different, there are

four sums which give a d4 factor and four t give 1/d2. And since the sum of |i− k|, |i− j|, |j − k|

and |j − l| are at least 6, the net result is of order 1/d, which vanishes in the d → ∞ limit. Thus
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we have

Seff = const + So +
∑
ij

∫
η∗i (τi)ηj(τj)G

(o)
ij (τi, τj). (3.182)

The constant in Seff cancels with 1/Zeff , thus explicitly we have

Seff =

∫ β

0
dτ

[∑
σ

c∗oσ(∂τ − µ)coσ + Uno↑no↓

]
+
∑
ij

∫ β

0
tiotojc

∗
io(τi)G

(o)
ij (τi, τj)coj(τj) dτidτj .

(3.183)

Now we can write Seff in the form

Seff = −
∫ β

0
dτdτ ′

∑
σ

c∗oσ(τ)G−1
0 (τ − τ ′)coσ(τ ′) + U

∫ β

0
dτno↑(τ)no↓(τ), (3.184)

with

G−1
0 (iωn) = iωn + µ−

∑
ij

tiotjoG
(o)
ij (iωn). (3.185)

This G0 acts as the mean-field function and contains the information of environment. The expres-

sion (3.185) relates the mean-field function G0 and the cavity Green’s function G(o). In order to

obtain a close set of equations, we still need to relate G(o) to the original Green’s function. For a

general lattice, the relation between the cavity and full Green’s function is [55, 76]

G
(o)
ij = Gij −

GioGoj
Goo

. (3.186)

Substituting (3.186) into (3.185) we obtain

G−1
0 (iωn) = iωn + µ+

∑
ij

tiotojGij − (
∑
i

tioGio)
2/Goo. (3.187)

The hopping term tio and the Green’s function Gij can be Fourier transformed into k space, and

thus the above expression can be written as

G−1
0 (iωn) = iωn + µ−

∫
dε
ρ(ε)ε2

ζ − ε +

[∫
dε
ρ(ε)ε

ζ − ε

]2
/∫

dε
ρ(ε)

ζ − ε (3.188)

with ζ = iωn + µ − Σ(iωn) and ρ the density of states. This expression can be simplified further
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using the following relations:

∫
dε
ρ(ε)ε2

ζ − ε = ζ

∫
dε
ρ(ε)ε

ζ − ε ,
∫
dε
ρ(ε)ε

ζ − ε = −1 + ζ

∫
dε

ρ(ε)

ζ − ε. (3.189)

Recalling that G(iωn) =
∫
ρ(ε)/(ζ − ε) finally we obtain that

Σ(iωn) = G−1
0 (iωn)−G−1(iωn). (3.190)
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Chapter 4

Dynamical Mean-Field Theory for

Small Polaron

Conduction electrons interact with the vibrating atoms in the lattice. If this interaction is strong

enough, the electron can cause a local deformation of the lattice, and this deformation would create

a potential well which, in turn, binds the electron. This phenomenon is called self-trapping and

was first introduced by Lev Landau in 1933 [90]. Later, Solomon Pekar [91] proposed another

physical picture: the electron and the deformation (phonon cloud) created by it together form a

new quasi-particle which is called polaron.

Polarons are important to understand a wide variety of materials in experiments. The electron

mobility can be greatly decreased by the formation of polarons. Polaronic interaction is also

important in magnetoresistance effects of various materials [3–11].

Until now, the polaron problem is an old but not fully solved problem. It is still an active field

of research to find good numerical solutions. In this chapter we shall focus on the small polaron

problem and introduce the corresponding dynamical mean-field theory [92, 93].

4.1 Impurity Model at Zero Temperature

As in the dynamical mean-field theory for the Hubbard model discussed in the last chapter, the

essential part is the impurity model. In this section we shall discuss a simple impurity model for

electrons at zero temperature, which is needed when we deal with the dynamical mean-field theory

113
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for small polaron.

The Hamiltonian of this simple impurity model is defined as

Ĥ =
∑
k

εk ĉ
†
k ĉk +

∑
k

Vk(ĉ
†
kd̂+ d̂†ĉk) + ε0d̂

†d̂, (4.1)

where ĉ†k (ĉk) represents a creation (annihilation) operator in the electron bath and d̂† (d̂) is the

creation (annihilation) operator in the impurity. Now write the Hamiltonian in two parts as

Ĥ = Ĥ0 + V̂ , (4.2)

where

Ĥ0 =
∑
k

εk ĉ
†
k ĉk + ε0d̂

†d̂, V̂ =
∑
k

Vk(ĉ
†
kd̂+ d̂†ĉk). (4.3)

Now we define a retarded Green’s function for the impurity as

G(t) = −iθ(t) 〈0| d̂(t)d̂† + d̂†d̂(t) |0〉

= −i 〈0| d̂(t)d̂† |0〉 , t ≥ 0.
(4.4)

Applying a Fourier transform to the Green’s function then

G(ω) = 〈0| d̂ 1

ω + i0− Ĥ
d̂† |0〉 . (4.5)

Note that 1/(ω − Ĥ) can be written as

1

ω − Ĥ
=

1

ω − Ĥ0

+
1

ω − Ĥ0

V̂
1

ω − Ĥ
=

1

ω − Ĥ0

+
1

ω − Ĥ0

V̂
1

ω − Ĥ0

+
1

ω − Ĥ0

V̂
1

ω − Ĥ0

V̂
1

ω − Ĥ
,

(4.6)

thus we have

G(ω) = 〈0| 1

ω − Ĥ0

|0〉+ 〈0| 1

ω − Ĥ0

V̂
1

ω − Ĥ
|0〉+ 〈0| 1

ω − Ĥ0

V̂
1

ω − Ĥ0

V̂
1

ω − Ĥ
|0〉 . (4.7)
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It is easy to see that the second term in the above expression is just zero, then we have

G(ω) = 〈0| 1

ω − Ĥ0

|0〉+ 〈0| 1

ω − Ĥ0

V̂
1

ω − Ĥ0

V̂
1

ω − Ĥ
|0〉

=
1

ω − ε0
+

1

ω − ε0
〈0| d̂V̂ 1

ω − Ĥ0

V̂
1

ω − Ĥ
d̂† |0〉

=
1

ω − ε0
+

1

ω − ε0
〈0| d̂

∑
k

d̂†ĉk
V 2
k

ω − Ĥ0

ĉ†kd̂
1

ω − Ĥ
d̂† |0〉

=
1

ω − ε0
+

1

ω − ε0

∑
k

V 2
k

ω − εk
G(ω).

(4.8)

Therefore the inverse of the Green’s function is

G−1(ω) = ω − ε0 −
∑
k

V 2
k

ω − εk
, (4.9)

which can be written as

G−1(ω) = ω − ε0 −
∫ ∞
−∞

dε
∆(ε)

ω − ε (4.10)

with

∆(ε) =
∑
k

V 2
k δ(ε− εk). (4.11)

This expression is similar to the formal expression (3.36) of the unperturbed Matsubara Green’s

function for an impurity model.

4.2 The Impurity Solver for the Holstein Model: Zero Tempera-

ture Formalism

The Holstein model [94, 95] was introduced in the 1950s to study the small polaron problem. In

this model, tight-binding electrons interact with local dispersionless optical phonon. Although this

is a rather crude idealization of real materials, the Holstein model captures the essential physical

mechanism of small polaron.

The Hamiltonian of the Holstein model is

Ĥ =
∑
ij

tij ĉ
†
i ĉj + g

∑
i

ĉ†i ĉi(âi + â†i ) + ω0

∑
i

â†i âi, (4.12)
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where ĉ†i (ĉi) creates (destroys) an electron at site i, and â†i (âi) creates (destroys) a phonon at site

i. The frequency of the dispersionless optical phonon is denoted by ω0 and the electron-phonon

interaction strength is denoted by g. Similarly to what we have done for the Hubbard model, the

Hamiltonian of Holstein model can also be split into three parts: bath, impurity and hybridization

term, and formally be rewritten as

Ĥ = Ĥ0 + V̂ , (4.13)

where

Ĥ0 =
∑
k

εk ĉ
†
k ĉk +

∑
k

Vk(ĉ
†
kd̂+ d̂†ĉk) + ω0â

†â (4.14)

with ĉ†k, ĉk the electron operators in the bath, d̂†, d̂ the electron operator in the impurity and â†, â

the phonon operator in the impurity. And

V̂ = gd̂†d̂(â+ â†) (4.15)

represents the electron-phonon interaction at the impurity. Then, formally solving Ĥ0 yields an

unperturbed Green’s function

G(0)(ω) = 〈0| d̂ 1

ω + i0− Ĥ0

d̂† |0〉 . (4.16)

In this section we consider the zero temperature formalism, therefore the Green’s function and

its Fourier transform are defined as

G(t) = −iθ(t) 〈0| d̂(t)d̂† |0〉 , G(ω) = 〈0| d̂ 1

ω + i0− Ĥ
d̂† |0〉 . (4.17)

To proceed further, we need to introduce generalized matrix elements for the Green’s function as

Gnm(ω) = 〈0| â√
n!
d̂

1

ω − Ĥ
d̂†

(â†)m√
m!
|0〉 . (4.18)

Now introduce a set of zero electron p-phonon states and a set of one electron p-phonon states

|0, p〉 =
(â†)p√
p!
|0〉 , |1, p〉 =

(â†)p√
p!
d̂† |0〉 , (4.19)
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and then we can write

Gnm(ω) = 〈0, n| d̂ 1

ω − Ĥ
d̂† |0,m〉 . (4.20)

Recalling that

1

ω − Ĥ
=

1

ω − Ĥ0

+
1

ω − Ĥ0

V̂
1

ω − Ĥ
(4.21)

we can write

Gnm(ω) = 〈0, n| d̂ 1

ω − Ĥ0

d̂† |0,m〉+ 〈0, n| 1

ω − Ĥ0

V̂
1

ω − Ĥ
|0,m〉

= G(0)
nm + g

∑
p1,p2

〈0, n| d̂ 1

ω − Ĥ0

d̂† |0, p1〉 〈0, p1| d̂(â+ â†)d̂† |0, p2〉 〈0, p2| d̂
1

ω − Ĥ
d̂† |0,m〉

= G(0)
nm + g

∑
p1,p2

G(0)
n,p1

Xp1,p2Gp2,m.

(4.22)

This is just the Dyson equation and it can be written in matrix form as

G = G(0) + gG(0)XG or G−1 = [G(0)]−1 − gX, (4.23)

where X is the phonon displacement matrix with the elements

Xnp =
√
p+ 1δn,p+1 +

√
pδn,p−1. (4.24)

According to the discussion in the previous section, the generalized unperturbed Green’s func-

tion matrix elements are

G
(0)
nm(ω) = 〈0, n| d̂ 1

ω + i0− Ĥ0

d̂† |0,m〉

=

[
ω − nω0 −

∑
k

V 2
k

ω − εk

]−1

δnm

= δnmG
(0)
00 (ω − nω0).

(4.25)

It is easy to see that G(0) and [G(0)]−1 are diagonal matrices and X is a tridiagonal matrix, and
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G−1 is also a tridiagonal matrix:

G−1 =



[G
(0)
00 ]−1 −g 0 · · · · · ·

−g [G
(0)
11 ]−1 −

√
2g · · · · · ·

0 −
√

2g [G
(0)
22 ]−1 −

√
3g · · ·

0 0 −
√

3g [G
(0)
33 ]−1 · · ·

...
...

...
...

. . .


. (4.26)

In principle, the Green’s function matrix G can be obtained by solving an algebra equation G−1G =

I and the first element in the matrix G00 is what we want. Now define a quantity Tk as the

determinant of G−1 with first k rows and columns removed, then according to Cramer’s rule we

have

G00 =
T1

T0
. (4.27)

From the explicit matrix form (4.26) we can find a recursive relation of Tk that

Tk = [G(0)]−1
kk Tk+1 − (k + 1)Tk+2, (4.28)

or

Tk
Tk+1

= [G
(0)
kk ]−1 − (k + 1)g2Tk+2

Tk+1
, (4.29)

thus we have

T1

T0
=

1

[G
(0)
00 ]−1 − g2 T2

T1

. (4.30)

Expanding the above expression recursively we shall obtain a continued-fraction expansion for the

Green’s function G(ω):

G(ω) = G00(ω) =
1

[G(0)(ω)]−1 − g2

[G(0)(ω − ω0)]−1 − 2g2

[G(0)(ω − 2ω0)]−1 − 3g2

[G(0)(ω − 3ω0)]−1 − · · ·
(4.31)
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and the expression for the self-energy Σ = [G(0)]−1 −G−1:

Σ(ω) =
g2

[G(0)(ω − ω0)]−1 − 2g2

[G(0)(ω − 2ω0)]−1 − 3g2

[G(0)(ω − 3ω0)]−1 − · · · .

(4.32)

This form of self-energy can be defined recursively as

Σ(p)(ω) =
pg2

[G(0)(ω − pω0)]−1 − Σ(p+1)
. (4.33)

Finally we obtain an analytic continued-fraction expansion formula for impurity solver. Such an

impurity solver allows us to use retarded Green’s function, rather than Matsubara Green’s function,

to do the dynamical mean-field theory calculation. This is a crucial advantage of such an impurity

solver. More details about the recursion technique used here can be found in Ref [96].

4.3 The Impurity Solver for Holstein Model: Finite Temperature

Formalism

The zero temperature formalism of the impurity solver for the Holstein model can be easily gen-

eralized to finite temperature. Here, a fundamental assumption has to be made: since only one

electron is considered, the temperature would not affect the electron. In other words, when dealing

with electron the temperature still remains zero, and the effect of temperature enters only in the

phonons. Thus the trace over the canonical distribution of phonon states gives the expression for

the Green’s function at finite temperature as

G(ω) = (1− eβω0)
∑
n

e−βnω0Gnn(ω), (4.34)

where β = 1/T .

It is clear that in order to obtain G(ω) we need to calculate Gnn(ω). Since G−1 is a tridiagonal

matrix, according to the equation G−1G = I we have a recursive relation that

Gnn = G(0)
nn + gG(0)

nn(
√
nGn−1,n +

√
n+ 1Gn+1,n), (4.35)
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where G−1,0 and G0,−1 are defined to be zero. Now we seek to write this expression in a form as

Gnn = G(0) +G(0)(AGnn +BGnn). (4.36)

Define a quantity Dk as the determinant comprising the first k + 1 rows and columns of G−1 and

D−1 = 1, D−2 = 0, then it is easy to find that

D0 = [G
(0)
00 ]−1,

D1 = [G
(0)
11 ]−1[G

(0)
11 ]−1 − g2 = [G

(0)
11 ]−1D0 − g2,

D2 = · · · = [G
(0)
22 ]−1D1 − 2g2D0,

(4.37)

and so on. In general, a recursive relation is obtained that

Dk = [G
(0)
kk ]−1Dk−1 − kg2Dk−2. (4.38)

Using Cramer’s rule again we obtain the expressions

Gn−1,n =
√
ng
Dn−2Tn+1

T0
, Gnn

Dn−1Tn+1

T0
, Gn+1,n =

√
n+ 1g

Dn−1Tn+2

T0
. (4.39)

The recursive relation (4.38) can be written as

Dk−1

Dk
=

1

[G
(0)
kk ]−1 − kg2Dk−2

Dk−1

, (4.40)

and substituting this expression into (4.39) yields

Gn−1,n =
√
ng
Dn−2

Dn−1

Dn−1Tn+1

T0
=
√
ng
Dn−2

Dn−1
Gnn, (4.41)

i.e.,

A = ng2Dn−2

Dn−1
=

ng2

[G(0)
nn(ω + ω0)]−1 − (n− 1)g2

[G(0)
nn(ω + 2ω0)]−1 − (n− 2)g2

. . . − g2

[G
(0)
nn(ω + nω0)]−1.

(4.42)
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Note that this expression for A is a finite continued-fraction expansion. Following a similar ap-

proach, we have

Gn+1,n =
√
n+ 1g

Dn−1Tn+2

T0
=
√
n+ 1g

Tn+2

Tn+1
Gnn. (4.43)

The recursive relation (4.28) of Tk can be written as

Tk+1

Tk
=

1

[G
(0)
kk ]−1 − (k + 1)g2 Tk+2

Tk+1

, (4.44)

therefore we have

B = (n+ 1)g2Tn+2

Tn+1
=

(n+ 1)g2

[G(0)
nn(ω − ω0)]−1 − (n+ 2)g2

[G(0)
nn(ω − 2ω0)]−1 − (n+ 3)g2

[G(0)
nn(ω − 3ω0)]−1 − · · · .

(4.45)

This expression is an infinite continued-fraction expansion. Finally we obtain the expression for

Gnn:

Gnn =
1

[G
(0)
nn ]−1 −A−B

. (4.46)

4.4 Dynamical Mean-Field Equations

Following the same procedure of deriving dynamical mean-field equations for the Hubbard model,

we can derive the corresponding equations for the small polaron. We use the cavity method again.

Now choose a site o as the impurity and consider V̂ in real space representation as

V̂ =
∑
i

(tioĉ
†
i d̂+ toid̂

†ĉi). (4.47)

In this representation, the Green’s function G(ω) becomes

G(ω) = 〈0| d̂ 1

ω − Ĥ0

d̂† |0〉+ 〈0| d̂ 1

ω − Ĥ0

V̂
1

ω − Ĥ0

V̂
1

ω − Ĥ
d̂† |0〉

= 〈0| d̂ 1

ω − Ĥ0

d̂† |0〉+
∑
ij

tiotoj 〈0| d̂
1

ω − Ĥ0

d̂†ĉi
1

ω − Ĥ0

ĉ†j d̂
1

ω − Ĥ
d̂† |0〉

= G0(ω) +
∑
ij

tiotjoG0(ω)G
(o)
ij G(ω),

(4.48)
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note that here G0 and G are Green’s functions of the impurity and G
(o)
ij is the Green’s function of

the lattice with site o removed. The above expression can be written in another form as

G−1(ω) = G−1
0 (ω)−

∑
ij

tiotjoG
(o)
ij . (4.49)

For a general lattice we have

G(o) = Gij −
GioGoj
Goo

, (4.50)

therefore (4.49) becomes

G−1 = G−1
0 −

∑
ij

tiotjoGij +
(
∑

iGoi)

Goo
. (4.51)

The summation over site i, j can be transformed into k space and we obtain that

G−1 = G−1
0 −

∫
dε
ρ(ε)ε2

ζ − ε −
(∫

dε
ρ(ε)ε

ζ − ε

)/∫
dε

ρ(ε)

ζ − ε, (4.52)

where ζ = ω − Σ(ω). This can be simplified further using the following relations:

∫
dε
ρ(ε)ε2

ζ − ε = ζ

∫
dε
ρ(ε)ε

ζ − ε ,
∫
dε

ρ(ε)

ζ − ε = −1 + ζ

∫
dε

ρ(ε)

ζ − ε, (4.53)

here we have used too =
∑

k tk =
∫
ρ(ε)ε = 0. Finally the required equation is obtained that

G−1
0 = Σ +G−1. (4.54)



Chapter 5

Strong Electron-Phonon Interaction

and Colossal Magnetoresistance in

EuTiO3

In this chapter we shall apply the technique described in the previous chapters to investigate the

electron transport properties in a real material: EuTiO3. Especially, we shall explain the colossal

magnetoresistance phenomenon in EuTiO3 by a dynamical mean-field theory. EuTiO3 is magnetic

material, its magnetization rises as magnetic field increases and temperature decreases. Its Néel

temperature is about 5.4 K. At around 15 K, EuTiO3 also exhibits colossal magnetoresistance: in

the presence of magnetic field its resistivity drops dramatically.

5.1 Magnetoresistance

Before go to colossal magnetoresistance, we need to first know what is magnetoresistance. The

concept is simple: the electrical resistivity of the material changes in the presence of an external

magnetic field, such phenomenon is called magnetoresistance effect. The first ordinary magnetore-

sistance effect was discovered by William Thomson (Lord Kelvin) in 1856 [97].

123
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Giant Magnetoresistance

The resistivity change in ordinary magnetoresistance is small. In 1988 giant magnetoresistance was

discovered by Mario Baibich et al. [98]. At the same time G. Binasch et al. also discovered giant

magnetoresistance independently [99]. The resistivity can change up to 50% which is much larger

than ordinary magnetoresistance effect. The giant magnetoresistance effect is widely used in com-

puter industry. A typical example is the hard disk we use everyday. The giant magnetoresistance is

so important that Albert Fert [98] and Peter Grüberg [99] shared the 2007 Nobel Prize in Physics

for the discovery of giant magnetoresistance.

Colossal Magnetoresistance

Colossal magnetoresistance was first discovered in mixed-valence manganites in the 1950s by G. H. Jonker

and J. H. van Santen [100]. In the 1990s colossal magnetoresistance was discovered in La1−xAxMnO3

(A = Ca,Sr) by S. Jin et al. [101]. The term “colossal” arise from the huge change of the resistivity,

if normalized to zero field values the resistivity changes up to 99.9%.

A first theoretical description for colossal magnetoresistance is based on double exchange mech-

anism. However, Andrew Millis et al. pointed out that double exchange alone is not enough to

explain the colossal magnetoresistance in La1−xSrxMnO3 [3]. Later they explained the colossal

magnetoresistance by double exchange mechanism and strong electron-phonon interaction [4].

Here we give a brief introduction on double exchange mechanism in order to get an quick view

on the colossal magnetoresistance in La1−xSrxMnO3.

Figure 5.1: Schematic diagram for double exchange mechanism.

In LaMnO3 electrons fill the 3d shell of the Mn ions, see left side of Figure 5.1. When doped

with Sr, there would be 4− x electrons, or x holes, in the 3d shell of the Mn ions. These holes (or
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electrons) can hop from a Mn ion to another through oxygen ions, but due to strong Hund coupling

this hopping process is inhibited if the ionic spins of the Mn are antiparallel. In other words,

hopping is dependent on the relative orientation of the ionic spins. Such mechanism is called

“double exchange” which was first proposed by Clarence Zener [12]. The effective Hamiltonian

presenting double exchange mechanism is usually written in the form of the Hamiltonian of Kondo

model [13, 14].

In the system features double exchange mechanism, there would be strong exchange interaction

between itinerant electrons and Mn ionic spins. This would cause strong spin scatterings for

itinerant electrons.

The calculated resistivity done by Millis et al. is shown in Figure 5.2. Here we quote the

Figure 5.2: A. J. Millis, Nature, 392, 147 (1998)

explanation from the work of Millis et al. as the explanation of the colossal magnetoresistance of

La1−xSrxMnO3:

At small λ and T > Tc, ρ is small and has a T -independent piece due to

the spin disorder and a T -linear piece due to electron-phonon scattering. As

T is decreased through Tc, ρ drops as the spin scattering is frozen out and

the phonon contribution changes slightly. For larger λ a gap opens in the

electron spectral function at T > Tc and ρ rises as T is lowered to Tc. Be-

low Tc, ρ drops sharply as the gap closes and metallic behavior is restored.

A. J. Millis et al. [4]

It is clear from the description above that there exists a phase transition for spins and different
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phases of spins would affect the transport properties of electrons greatly. Therefore the transition

temperature of spins Tc has significant effects on the turning point of resistivity.

5.2 Magnetization of EuTiO3

In this section we shall calculate the magnetization of EuTiO3, which is closely related to the

colossal magnetoresistance, by usual Weiss mean-field theory. It is shown that Weiss mean-field

theory calculation fits the experimental data quite well [102–105], thus we shall just use mean-field

results instead of experimental ones for magnetization data.

The ions Eu2+(4f7) in EuTiO3 have a large localized spin (S = 7/2), which is the source of

magnetism. The magnetic properties of EuTiO3 can be described by a Heisenberg model with the

Hamiltonian [106]

Ĥ = −J1

∑
〈ij〉
ŝi · ŝj − J2

∑
[ij]

ŝi · ŝj − gµBB ·
∑
i

ŝi, (5.1)

where 〈ij〉 denotes the summation over nearest neighbors and [ij] denotes the summation over next

nearest neighbors. The values of the parameters are

J1 = −0.037 kBK, J2 = 0.069 kBK, (5.2)

and with such values the Néel temperature of EuTiO3 is about 5.4 K. The Landé factor g is 2 and

µB is the Bohr magneton.

In order to apply mean-field theory for an anti-ferromagnetic system, we need to separate the

lattice into two sublattices and label them as a lattice and b lattice, see Figure 5.3.

a b a

b a b

b a b

a b a

Ti

Eu

Figure 5.3: The localized spin model for EuTiO3.

It can be seen that the nearest neighbors of sites a are sites b, and the next nearest neighbors of
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sites a are sites a again, vice versa for sites b. Accordingly, the Hamiltonian (5.1) can be separated

into two parts:

Ĥ = Ĥa + Ĥb, (5.3)

where

Ĥa = −Fa · ŝa, Ĥb = −Fb · ŝb. (5.4)

Here Fa and Fb are the effective fields for sites a and b respectively, and they are related to the

average spins by formula

Fa = 6J1〈ŝb〉+ 12J2〈ŝb〉+ gµB, Fb = 6J1〈ŝa〉+ 12J2〈ŝa〉+ gµB, (5.5)

where the factor 6 and 12 are the numbers of nearest and next nearest neighbors. The equation

(5.4) then can be written in a component form as

Ĥa = −F xa ŝxa − F ya ŝya − F za ŝza, Ĥb = −F xb ŝxb − F yb ŝ
y
b − F zb ŝzb . (5.6)

From standard quantum mechanics we know the matrix elements for spin operators are just

〈σ| ŝx |σ − 1〉 = 〈σ − 1| ŝx |σ〉 =
1

2

√
(S + σ)(S − σ + 1) ;

〈σ| ŝy |σ − 1〉 = −〈σ − 1| ŝy |σ〉 = − i
2

√
(S + σ)(S − σ + 1) ;

〈σ| ŝz |σ〉 = σ,

(5.7)

where σ is the spin index.

Now suppose the Hamiltonian is already diagonalized and let En denote the eigenvalue and |n〉

denote the corresponding eigenvector, then the canonical distribution probability can be written as

ρn =
1

Z
e−

En
T , (5.8)

where Z is the partition function. Thus the average localized spin is just

〈ŝ〉 =
∑
n

ρn 〈n| ŝ |n〉 , (5.9)
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or in component form

〈ŝx〉 =
∑
n

ρn 〈n| ŝx |n〉 , 〈ŝy〉 =
∑
n

ρn 〈n| ŝy |n〉 , 〈ŝz〉 =
∑
n

ρn 〈n| ŝz |n〉 . (5.10)

Equations (5.5) and (5.9) together form a system of self-consistent equations, and we can find

the numerical solutions by iteration. Finally we obtain the magnetization as

M = gµB
〈ŝa + ŝb〉

2
. (5.11)

Since the Landé factor is 2 here and for latter calculation, it is convenient to define the magnetization

as a dimensionless quantity as

M = 〈ŝ〉 =
1

2
〈ŝa + ŝb〉. (5.12)

The results of mean-field calculation for M = |M | are shown in Figure 5.4.
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M

B (T)

Figure 5.4: Experimental data (dots) and Mean-Field calculation (solid lines) of
magnetization for EuTiO3 with different temperature and magnetic field. The
experimental data are provided by Km Rubi and Prof. Mahendiran.

The above formulas can be simplified considering the rotation symmetry of the spins. Let us

define the direction of magnetic field B as the z-axis, then a localized spin has a rotation symmetry

with respect to z-axis. In other words, any vector in the xy plane can be rotated to the x-axis and

the equation (5.6) can be then reduced to

Ĥa = −F xa ŝxa − F za ŝza, Ĥb = −F xb ŝxb − F zb ŝzb , (5.13)
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with (here B = |B|)


F xa = 6J1〈ŝxb 〉+ 12J2〈ŝxa〉, F za = 6J1〈ŝxb 〉+ 12J2〈ŝxa〉+ gµB;

F xb = 6J1〈ŝxa〉+ 12J2〈ŝxb 〉, F zb = 6J1〈ŝxa〉+ 12J2〈ŝxb 〉+ gµB.

(5.14)

According to (5.4) the Hamiltonian for spin can be written as Ĥ = −F · ŝ. Note that F is a

vector with length
√
F 2
x + F 2

z and the inner product F · ŝ is an invariant quantity under rotation,

thus we can take the direction of F as the z-axis for the moment. Then the canonical distribution

probability and the partition function becomes

ρσ =
1

Z
exp

(√
F 2
x + F 2

z

T
σ

)
, Z =

∑
σ

exp

(√
F 2
x + F 2

z

T
σ

)
, (5.15)

where σ = −7/2,−5/2, · · · , 5/2, 7/2 is the spin index. Let χ denote
√
F 2
x + F 2

z /T , then the average

spin in the direction of F is

∑
σ

σρσ =

(∑
σ

σeχσ

)(∑
σ

eχσ

)−1

=
d

dχ
ln
∑
σ

eχσ

=
d

dχ
ln

[
e−

7
2
χ − e 9

2
χ

1− eχ

]

=

(
−7

2
e−

7
2
χ − 9

2
e

9
2
χ + eχ

e−
7
2
χ − e 9

2
χ

1− eχ

)(
e−

7
2
χ − e 9

2
χ
)−1

=

(
−4e−

7
2
χ − 4e

9
2
χ +

1

2
e−

7
2
χ − 1

2
e

9
2
χ + eχ

e−
7
2
χ − e 9

2
χ

1− eχ

)(
e−

7
2
χ − e 9

2
χ
)−1

= 4
e4χ + e−4χ

e4χ − e−4χ
− 1

2

e
1
2
χ + e−

1
2
χ

e
1
2
χ − e− 1

2
χ

= 4 coth 4χ− 1
2 coth 1

2χ

=
7

2
B 7

2
(
7

2
χ),

(5.16)

where BJ(x) is the Brillouin function which is defined as

BJ(x) =
2J + 1

2J
coth

(
2J + 1

2J
χ

)
− 1

2J
coth

(
1

2J
χ

)
. (5.17)
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Let us return to normal x − z plane, the components of the average spin in x, z directions can be

then written as

〈ŝx〉 =

7
2FxB 7

2
(7

2χ)√
F 2
x + F 2

z

, 〈ŝz〉 =

7
2FzB 7

2
(7

2χ)√
F 2
x + F 2

z

. (5.18)

We can write the above formulas for different sublattices explicitly as

〈ŝxa〉 =

7
2F

x
aB 7

2
(7

2χa)√
(F xa )2 + (F za )2

, 〈ŝza〉 =

7
2F

z
aB 7

2
(7

2χa)√
(F xa )2 + (F za )2

;

〈ŝxb 〉 =

7
2F

x
b B 7

2
(7

2χb)√
(F xb )2 + (F zb )2

, 〈ŝzb〉 =

7
2F

z
b B 7

2
(7

2χb)√
(F xb )2 + (F zb )2

. (5.19)

5.3 Colossal Magnetoresistance in EuTiO3

The colossal magnetoresistance observed in manganites (doped R1−xAxMnO3 oxides, where R and

A are a trivalent rare earth) has attracted much attention for the past two decades [3–11], both

for its possible utility in technology and a better theoretical understanding of magnetoresistance.

Reports on magnetoresistance in rare earth titantes of formula RTiO3 are scarce due to their large

resistivities at low temperature. Recently Km Rubi et al. [15, 16] found that the undoped perovskite

titanium oxide EuTiO3 exhibits colossal magnetoresistance below 40 K [15]. In the experiments,

polycrystalline EuTiO3 sample was prepared using a standard solid state reaction method in re-

duced atmosphere (95% Ar and 5% H2). More details about the sample preparation can be found

in references [16, 105]. The DC resistivity was measured in a Physical Property Measurement

System using an electrometer in two probe configuration. The experimental resistivities and the

corresponding magnetization are shown in Fig 5.5.

It can be seen that resistivities are quite high: most resistivities are larger than 105 Ω ·cm. Such

values of resistivity can almost compare to the values of an insulator. When an external magnetic

field is present, the resistivity drops dramatically. The resistivity changes more dramatically when

the magnetic field is larger, and larger magnetic field means larger magnetization. This reminds us

that the change of resistivity may relate to the change of magnetization.

Here we should notice the differences between colossal magnetoresistance in La1−xSrxMnO3

and EuTiO3. It can be seen from Figure 5.2 that even without external magnetic field when
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(a) Experimental resistivities with different tempera-
ture and magnetic field. The inset represents the same
data but with a larger scale. The data are provided by
Km Rubi and Prof. Mahendiran.
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(b) Mean-field calculation of magnetization, where M =
|M | is defined to a dimensionless quantity.

Figure 5.5: Experimental resistivities and mean-field calculation of magnetiza-
tion of EuTiO3.

temperature is decreased through some Tc the resistivity of La1−xSrxMnO3 drops. But without

external magnetic field the resistivity of EuTiO3 (see Figure 5.5(a)) always increases as temperature

decreases. La1−xSrxMnO3 is essentially a metallic system, this is the reason it owns such a resistivity

behavior. Considering the high resistivity and the resistivity behavior without magnetic field of

EuTiO3, this indicates that EuTiO3 is essentially an insulator or semiconductor. According to

the description of Millis et al., the Tc of La1−xSrxMnO3 is related to the phase transition point of

spins. However, we already know that the transition temperature (Néel temperature) of EuTiO3

is about 5.4 K while the turning point of resistivity is about 15 K. This indicates that the colossal

magnetoresistance in EuTiO3 may be irrelevant with spin phase transition.

Simple Fitting

Based on these observations, we first try a simple model to fit the experimental data. The schematic

depiction of the model is shown in Fig 5.6. We assume the conduction electrons hop between

different Ti atoms and form a tight-binding model. The localized spins on Eu2+, as we mentioned

earlier, are described by a Heisenberg model, and the interaction between conduction electrons

and localized spins is assumed to be a simple exchange interaction [107]. Therefore, we write the
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Hamiltonian for conduction electrons as

Ĥ = Ĥ0 + Ĥ1, (5.20)

with

Ĥ0 = −
∑
ij,α

tij ĉ
†
iαĉjα, Ĥ1 = J

∑
i

ŝi ·M(T,B), (5.21)

where ĉ†iα (ĉiα) creates (destroys) an electron with spin α at site i, J is the exchange coupling

strength and ŝi =
∑

αβ ĉiασαβ ĉiβ is the electron spin operator at site i with σαβ. Here σαβ is the

Pauli matrices vector and M(T,B) is the magnetization of the material which, according to the

previous section, is a function of temperature and magnetic field.

e

Eu

Ti

Figure 5.6: Schematic depiction of the EuTiO3 model

For simplicity, we shall apply Einstein’s formula introduced in section 2.1 to calculate the

conductivity:

σ = neb, b =
eD

T
, (5.22)

where D is the diffusion constant and b is the electrical mobility. The term Ĥ0 is just the Hamil-

tonian of a cubic tight-binding model which can be solved exactly and the resulting dispersion

relation is well known as

εk = −2t[cos(kxa) + cos(kya) + cos(kza)], (5.23)

where a is the lattice constant. For EuTiO3, the lattice constant is about 4 Å = 4 × 10−8 cm

[106, 108, 109]. The behavior of the resistivity of EuTiO3 indicates it is semiconductor, i.e., the

position of the chemical potential is below the band bottom. Therefore we can expand the dispersion
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up to second order and obtain

εk = −6t+ ta2k2, (5.24)

where k = |k|. Here −6t is the position of the band bottom. Since the chemical potential is

below the band bottom the electrons obey a Boltzmann distribution f(ε) = exp[(µ− ε)/T ], and

the carrier density is then

n = 2

∫
e(µ−εk)/T dk3

(2π)3

=
2

(2π)3

∫
k2e(µ+6t−ta2k2)/T sin θdθdφdk

=
2

2π2

∫
k2e(µ+6t−ta2k2)/Tdk

= 2

(
T

2πta2

) 3
2

e−∆E/T ,

(5.25)

where the factor 2 is the electron spin degeneracy, ∆E = −6t− µ is the gap between band bottom

and the chemical potential. In the above integration we have used the formulas of transformation

from Cartesian coordinates to spherical coordinates. With this carrier density, the conductivity is

simply

σ = 2
e2D

T

(
T

2πta2

) 3
2

e−∆E/T . (5.26)

From the above formula it can be seen that the value of ∆E is of fundamental importance since

it dominates the conductivity. Thus we shall first try to extract the value of ∆E from experimental

data. Since the exponential factor dominates, the formula of conductivity may be approximately

written as

σ ≈ constant× e−∆E/T , (5.27)

and fitting it to the experimental resistivity without magnetic field yields, see Figure 5.7, ∆E ≈

153 kBK ≈ 0.013 eV. It should be noted that such value of ∆E is fairly small for such large

resistivities of EuTiO3. And with this value of ∆E the typical values of carrier density are, suppose

t = 0.1 eV ≈ 1160 kBK1,

n(T = 40 K) ≈ 9.8× 1016 cm−3, n(T = 300 K) ≈ 5.54× 1019 cm−3. (5.28)

1This value of t corresponds to a conduction band with bandwidth 1.2 eV, which is a rather narrow conduction
band.
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Figure 5.7: Resistivity without magnetic field. A function y = e152.53/x+6.66 is
used to fit the experimental resistivity, where y = ρ/(Ω · cm) and x = T/K.

Now let us return to Ĥ1. It is easy to see that Ĥ1 just shifts the energy band by ±1
2JM for

spin up and down. With this shifting, the carrier density becomes

n =

(
T

2πta2

) 3
2

[
exp

(
−∆E − 1

2JM

T

)
+ exp

(
−∆E + 1

2JM

T

)]
, (5.29)

and the conductivity accordingly becomes

σ =
e2D

T

(
T

2πta2

) 3
2

[
exp

(
−∆E − 1

2JM

T

)
+ exp

(
−∆E + 1

2JM

T

)]
. (5.30)

For simplicity, we assume the diffusion constant is a constant at different temperature. Let

D = 9× 10−6 cm2/s and J = 0.005 eV, and we shall get fitting results shown in Figure 5.8.
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Figure 5.8: Simple fitting resistivities (lines), and the experimental data (dots)
are plotted here for comparison.
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It can be seen from the figure that this simple fitting, although the result with B = 1 T is not

good, indeed reflects the essential part of colossal magnetoresistance. From this point we can say

that the band shift caused by magnetization of the material plays a fundamental rule in colossal

magnetoresistance in EuTiO3. However, here is a significant flaw in this fitting: the value of

diffusion constant D is too small.

This simple fitting can not explain such a small diffusion constant. If a diffusion constant

with normal value is desired then we need a much smaller carrier density. The gap ∆E is already

determined by experimental data, the only thing we can do to reduce the carrier density is to

decrease the bandwidth of the conduction band. But the conduction band we use now (with

bandwidth 12t = 1.2 eV) is already a narrow band, if we decrease the bandwidth further then the

electrons would be considered as localized electrons, not conduction electrons. This contradiction

indicates that some other factors need to be taken into consideration rather than applying the

theory of semiconductors directly as in this simple fitting.

5.4 Strong Electron-Phonon Interaction in EuTiO3

In the 1990s, several works show that in manganites the strong electron-phonon interaction plays

an important role in colossal magnetoresistance [3–11]. Andrew Millis first pointed out that double-

exchange mechanism is not enough to explain the colossal magnetoresistance in manganites and

Jahn-Teller effects must be taken into consideration:

Double Exchange Alone Does Not Explain the Resistivity of La1xSrxMnO3

· · · · · ·

We present a solution of the double-exchange model, show it is incompatible

with many aspects of the data, and propose that in addition to double- exchange

physics a strong electron-phonon interaction arising from the Jahn-Teller split-

ting of the outer Mn d level plays a crucial role.

A. J. Millis et al [3]
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The interplay of these two effects (Jahn-Teller and double exchange) as the

electron phonon coupling is varied reproduces the observed behavior of the

resistivity and magnetic transition temperature.

A. J. Millis et al [4]

The strong Jahn-Teller effect would lead to a polaronic effect, therefore Millis wrote

The novelty of the manganites is the occurrence of self-trapping at a high density

of electrons.

A. J. Millis [6]

Jun Zang also showed that Jahn-Teller effect contributes to the magnetoresistance in manganites:

We also found that JT distortion fluctuations will contribute to magnetoresis-

tance at moderate and high temperatures, especially concerning its T depen-

dence.

J. Zang et al [7]

Later Guo-Meng Zhao showed that the resistivity behavior in La1−xCaxMnO3 is consistent with

small polaron coherent motion:

We report measurements of the resistivity in the ferromagnetic state of epi-

taxial thin films of La1−xCaxMnO3 · · · . Such behavior is consistent with small-

polaron coherent motion which involves a relaxation due to a soft optical phonon

mode that is strongly coupled to the carriers.

G.-M. Zhao et al [11]

From the above quotations, it is clear that strong electron-phonon interaction indeed plays a

fundamental role in the colossal magnetoresistance of manganites. So, here comes a question: is the

electron-phonon interaction also important for the colossal magnetoresistance in EuTiO3? Despite

the quotations above, we have another reason to believe there also exists strong electron-phonon

interaction in EuTiO3: the small polaron effect has been observed in a titanium oxide, rutile (TiO2),

single crystal by Vladislav Bogomolov [110, 111]. The observed transition temperature from small

polaron coherent motion to thermal activated motion of rutile is about 300◦C, this is also mentioned

in Gerald Mahan’s book:



5.5. STRONG ELECTRON-PHONON INTERACTION AND COLOSSALMAGNETORESISTANCE IN EUTIO3137

There have been many experimental systems with these characteristics which

have been ascribed to small-polaron theory. One example is TiO2 (Bogomolov).

They observe the transition from band to hopping conductivity at about 300◦C.

G. D. Mahan [112]

In view of the above mentioned reasons, we shall also take strong electron-phonon interaction

into consideration for colossal magnetoresistance in EuTiO3 and use small polaron to model it.

5.5 Strong Electron-Phonon Interaction and Colossal Magnetore-

sistance in EuTiO3

According to discussions in previous sections, we decided to take strong electron-phonon interaction

into consideration and use a small polaron formalism to model it in EuTiO3 [15]. Therefore we

replace Ĥ0 in (5.20) by a Holstein model Hamiltonian [94, 95]:

Ĥ0 = −
∑
ij,α

tij ĉ
†
iαĉiα + ω0

∑
i

â†i âi + g
∑
iα

ĉ†iαĉiα(âi + â†i ). (5.31)

The operator ĉ†iα (ĉiα) creates (destroys) an electron with spin α at site i, while â†i (âiα) creates

(destroys) a dispersionless optical phonon at site i. The frequency of the optical phonon is denoted

by ω0 and the coupling strength of the electron-phonon interaction is denoted by g. The term Ĥ1

remains the same as (5.20), which would just shift the energy band obtained via Ĥ0.

Back to (5.27), it should be emphasized that although the thermally activated hopping process

of small polaron gives the same form of conductivity [92, 93], (5.27) is unlikely due to this process.

This can be argued as follows. The hopping process begins to dominate when temperature is above

a transition temperature which is about 0.4ω0 [92, 93, 112]. However, according to first principle

calculations, the highest frequency of optical phonons is about 0.1 eV [113], and we assume it to

be the value of ω0. This value means that the transition temperature is about 464 K, which is far

above 40 K. Besides, experiments showed that the transition temperature of rutile (TiO2) is about

300 K [110–112], which is also far above 40 K.

Here we shall apply the dynamical mean-field theory for small polaron at zero temperature2

2The temperature here is low enough to be treated as zero temperature when calculating the electronic structure.



138 CHAPTER 5. STRONG EPI AND CMR IN EUTIO3

discussed in the previous chapter to handle Ĥ0. To obtain the electronic structure of a specified

material, the density of states given by a first principle calculation is needed. The conduction band

of EuTiO3 consists of t2g orbitals of Ti atom, and its density of states was calculated via density

functional theory by Quantum Expresso [114] which is shown in Figure 5.9.
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Figure 5.9: The density of states of t2g orbitals of Ti atom by a first principle
calculation. The Fermi level, which needs to be fitted by experimental data
later, is not specified here. The first principle density functional theory calcula-
tion is carried out within the spin-polarized generalized gradient approximation
(GGA) [115] using norm-conserving pseudopotentials. We use a kinetic energy
cutoff of 60 Ry and a 10 × 10 × 10 Γ-centered k-point mesh for the unit cell
simulations. Then the mesh is interpolated up to 40 × 40 × 40 by Wannier
functions [116, 117]. This calculation is done by Ji-Chang Ren.

After the dynamical mean-field theory calculation for Ĥ0, an energy dependent self-energy Σ0(ε)

and the corresponding retarded Green’s function G0(ε) are obtained, and the spectral density is

then given by − 1
π ImG0(ε). The spectral density calculated by dynamical mean-field theory with

Ĥ0 for different values of g is shown in Figure 5.10.

The spectral density with g < 0.6 eV is nothing special, but when g increases to 0.6 eV a small

peak appears at the bottom of the band, see Figure 5.10 (a). As g goes to 0.8 eV a second peak

appears and the first one becomes lower, see Figure 5.10 (b). When g becomes larger, the second

peak becomes much more obvious and the first becomes much smaller but still remains. It can

be also seen in (d) that the main band starts to split into several subbands, these subbands are

narrower than the original band, but they are still much broader than the first two peaks. In (f)

the first peak is shifted outside the figure.

The first two peaks can be treated as two tiny subbands of the conduction band and they can
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Figure 5.10: The spectral density calculated by dynamical mean-field theory
with g = (a) 0.6 eV, (b) 0.8 eV, (c) 1.0 eV, (d) 1.2 eV, (e) 1.6 eV, and (f) 2.0 eV.

provide conduction electrons. At first glance, the first is too small and may be neglected. However,

our calculation of resistivities shows that the second subband still provides too many electrons for

such large resistivities of EuTiO3. Thus we just focus on the first subband. If this subband is close

to the Fermi level, then it can explain the smallness of ∆E. And, since this subband is tiny, the

carrier density would still be low, this can explain the high resistivities.

Now let us turn to the details of Ĥ1. The magnetization M in Ĥ1 is an average quantity, and

writing Ĥ1 in this form means that scattering due to localized spins is neglected. This is true only

when the exchange coupling strength J is small. We shall see it is indeed this case later. The

term Ĥ1 would only shift the self-energy according to different spins of electrons, therefore the final

self-energy is Σα = Σ0 ± 1
2JM(T,B) with M = |M | for spin up and down respectively. And the

final Green’s function Gα would change according to the self-energy shift for different spin, which

is equivalent to the band shift for different spin.

Instead of Einstein formula used in Simple fitting, the static conductivity can be calculated via

the Kubo-Greenwood formula discussed in section 2.7:

σ =
e2~
πV

∫ (
−∂f
∂ε

)
Tr[v̂xImG(ε)v̂xImG(ε)]dε, (5.32)

where V is the volume of system and v̂x is the operator for a component of velocity. Since the carrier
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density is low, we can use Boltzmann’s distribution f = exp[(µ− ε)/T ]. Due to the band shift, the

distribution function can be equivalently written as f = exp
[
(µ− ε∓ 1

2JM)/T
]
. The band with

spin down is shifted by −1
2JM , thus it goes closer to the Fermi level and provides more conduction

electrons. While another band with spin up would be shifted away from the Fermi level and the

carrier density in it would be reduced. However, because the distribution function is exponential,

the total carrier density increases and the resistivity decreases accordingly. An important point

here is that ∆E is very small. Thus, even a small amount of shift, say 30 kBK ≈ 0.0026 eV, would

cause an obvious difference, while in other materials such a small shift may be just ignored. This

is the origin of colossal magnetoresistance in EuTiO3.

Based on the first peak in figure 5.10 (c) with g = 1.0 eV we have calculated resistivities of

EuTiO3. This value of g, of course, may not be accurate for the real situation, so we need to adjust

our parameters to fit experimental data. We set the Fermi level at −3.0778 eV. Note that, because

the carrier density is very sensitive to the band shift, the position of the Fermi level needs to be

carefully placed. The group velocity vx(k) of electrons is obtained by our first principle calculation.

The maximum velocity is about 105 m/s. The value of J is set equal to 0.0025 eV ≈ 29 kBK.

Resistivities calculated by Kubo-Greenwood formula are shown in Figure 5.11.
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Figure 5.11: Resistivities of EuTiO3. Solid lines represent theoretical results,
and experimental data (dots) are plotted here for comparison.

It can be seen that this value of J fitted by experimental data is indeed small, this confirms our

assumption. But, because the tiny subband is quite close to the Fermi level, such a small J still

has a strong effect on the resistivity.
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It is clear that such mechanism occurs in semiconductors and involves no strong intraatomic

exchange interaction as in the double exchange model. Unlike in La1−xSrxMnO3 system which is

metallic, the change in carrier density caused by the band shift plays a main role in the colossal

magnetoresistance of EuTiO3.

The Value of Parameters

Here we shall discuss some details about the values of parameters ω0 and g.

It has been mentioned earlier that the value of ω0 is assumed to be the highest frequency optical

phonon. The main reason is that the highest phonon band is well separated with other bands and

is relatively flat. The flatness of the band indicates that the band is relatively local, which is

consistent with the assumption of Holstein model.

The value of g is chosen to be 1 eV, it should be noted that this value is a large value for electron-

phonon interaction. Especially, applying Lang-Firsov [118] transformation, which is the standard

method for small polaron theory, on Holstein model yields some unphysical polaron parameters. The

bandwidth renormalization constant for small polaron is exp
(
−g2/ω2

0

)
= exp(−100) = 3.72×10−44,

which means the bandwidth of polaron subband would be at the order of 10−44 and thus this

subband would be so fragile that it would be immediately washed out in a real material. However,

Lang-Firsov transformation also shows the position of small polaron subband should be located

around −g2/ω0 = −10 eV, which is far from the subband we obtain. Therefore what we obtain is

not the fragile polaron subband but another relatively robust subband caused by strong electron-

phonon interaction.

So is this large g possible? Our first principle calculation shows it is indeed possible in EuTiO3

system.

The DFT calculatons are performed using Quantum ESPRESSO package [114]. The Troullier-

Martins norm-conserving pseudopotentials with the Perdew-Burke-Ernzerhof (PBE) exchange-

correlation functionals [115] are employed to describe the interactions between valence electrons in

our system. The cutoff energies of plane waves are chosen as 80 Ry. A 20×20×20 Monkhorst-Pack

k-point mesh is used for electronic self-consistent field calculations and a 4× 4× 4 Monkhorst-Pack

k-point mesh is used for phonon calculations. The convergence threshold of energy is set to be

10−14 Ry for electron, while for phonon calculations, the threshold is set to be 10−18 Ry to get
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Figure 5.12: Density of states of the coupling constants between electronic states
with localized LO mode phonon states. This calculation is done by Ji-Chang
Ren.

a better convergence. The electron phonon coupling matrix is calculated by applying formula

[119]: gmnν(k, q) = 〈umk+q|∆qνv
KS|unk〉, where unk is the lattice-periodic function in Bloch wave-

function, the bra and ket indicate an integral over one unit cell, and the operator ∆qνv
KS is the

derivative with a coefficient of the self-consistent potential with respect to a collective ionic dis-

placement corresponding to a phonon with branch index ν and momentum q. In order to get a

densier mesh to calculate the electron phonon coupling matrix, we apply Wannier interpolation

technique, as implemented in EPW code [120]. After Fourier transformation back into momentum

space, we obtain a dense 40× 40× 40 k-point mesh for states of electron and 40× 40× 40 q-point

mesh for states of phonon.

The DFT results can be found in Fig. 5.12, it can be seen that the highest values of the elements

of the electron-phonon coupling matrix elements are around 1.1 eV. Since Holstein model is used,

in which electrons are coupled with localized phonons, we focus on the coupling between electrons

and phonons of highest longitudinal optical mode. Therefore in Fig. 5.12 only those results of LO

mode with coupling constant larger than 0.4 eV are represented. These results show that the value

of g can reach about 1.1 eV, and thus our value is consistent with the DFT results.

The Extreme Dilute Limit

In a strongly correlated system, usually the value of electron occupation number would greatly

affect the electronic spectral density. For instance, the DMFT results for La1−xSrxMnO3 system



5.6. RESULTS AND DISCUSSIONS 143

[3–6] differ much around half filling situation for different occupation numbers.

However, in our calculations the rigid band approximation is applied, i.e., the spectral density

remains unchanged when carrier density changes. Here we shall explain the reason why we can

adopt this approximation.

It has been mentioned earlier that the electron occupation number per site at 20 K without the

magnetic field is about 8.457×10−7, and such small occupation number enables us to apply extreme

dilute limit and single electron approximation used in DMFT for small polaron. In the presence

of an external magnetic field, the occupation number increases dramatically. However, even the

occupation increases 1000 times, it is at an order of 10−4 which is still very small. Therefore we

can say that during CMR the occupation number, although dramatically changes, is always small

enough to apply extreme dilute limit and single electron approximation, and so the rigid band

approximation. This is also an important difference between EuTiO3 system and La1−xSrxMnO3.

5.6 Results and Discussions

We have applied DFT+DMFT method to calculate the electronic structure of t2g orbitals of Ti

atom in EuTiO3. Based on this electronic structure we have calculated the transport properties of

EuTiO3 and explained the CMR in it. It is found that due to strong electron-phonon interaction

the conduction band can form a tiny subband. This subband may be close to the Fermi level and

responsible for conduction electrons. Since the subband is very small, the mobility of electrons in

this subband would also be small. This is the reason why resistivities of EuTiO3 are quite high.

Conduction electrons are also coupled with magnetic atoms via exchange interaction, and this

interaction would slightly shift the electronic band when the material is magnetized. And because

the subband is close to the Fermi level, a slight shift is enough to cause colossal magnetoresistance.

It is clear that this mechanism occurs in semiconductor and involves no strong intraatomic

exchange interaction as in the double exchange model. Unlike in La1−xSrxMnO3 system which is

metallic [3–7, 9–11], the change of carrier density caused by band shift plays a main role in the

CMR of EuTiO3. Besides, because at low temperature the carrier density for different electron spin

changes dramatically when material is magnetized, EuTiO3 has a potential for spintronic device.

However, there are some flaws in our model. First, our model is a simplified model. It is not
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enough to obtain really the fine electronic structure of EuTiO3, thus the agreement with experi-

mental data remains at a qualitative level. A more careful treatment on first principle calculation

and DMFT procedure may improve the accuracy. Second, there are some arbitrariness in the choice

of some parameters. There are four main parameters chosen by hand to fit the experiments: µ, J ,

ω0 and g. These arbitrariness weaken the reliability of our model. Experiments which can measure

the carrier density change for different spin respectively, or just the total density change, in the

presence of magnetic field can help to verify or falsify the validity of our theoretical description.



Chapter 6

Summary

In chapter 2–4 we have reviewed the theories needed for the final calculation for transport properties

of EuTiO3.

In chapter 2, a comprehensive review of transport theories is given. Among all these formulas,

Einstein formula is adopted for simple fitting of experimental resistivities of EuTiO3, and Kubo-

Greenwood formula is used for final resistivity calculation.

In chapter 3, a brief introduction to dynamical mean-field theory based on Hubbard model is

given. It gives the basic idea and a derivation of dynamical mean-field theory. In bulk system

dynamical mean-field theory is, perhaps, the best method to handle strongly correlated electron

systems until now. If we want to investigate the strong interaction in EuTiO3, dynamical mean-field

theory is needed. However, Hubbard model is not for a electron-phonon interaction system, and

a dynamical mean-field theory for electron-phonon interaction is needed. In chapter 4 we briefly

introduce dynamical mean-field theory for small polaron which is used for the Holstein model.

Holstein model is the simplest model presents the electron-phonon interaction. This dynamical

mean-field theory assumes single electron and zero temperature for electron. These two assump-

tions enable an impurity solver in real frequency domain, and this is the crucial advantage of the

dynamical mean-field theory for small polaron.

In chapter 5, we introduce the magnetoresistance in EuTiO3. At low temperature (< 40 K),

in the presence of external magnetic field the magnetization of EuTiO3 rises and the resistivity

of EuTiO3 drops dramatically. The magnetization of EuTiO3 under different temperature and

magnetic field is calculated by Weiss mean-field theory, the calculated results fit the experimental
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data well. Based on the magnetization of EuTiO3 a simple fitting for the resistivity is done, which

shows the change of carrier density due to the magnetization may be the essential reason of the

colossal magnetoresistance. However, the simple fitting can not explain the very small mobility.

After taken strong electron-phonon interaction into consideration, we have applied DFT+DMFT

method to calculate the electronic structure of t2g orbitals of Ti atom in EuTiO3. It is found that

due to strong electron-phonon interaction the conduction band can form a tiny subband. Since the

subband is very small, the mobility of electrons in this subband would be also small. This is the

reason why resistivities of EuTiO3 are quite high. This subband may be close to the Fermi level.

Conduction electrons are also coupled with magnetic atoms via exchange interaction, and this in-

teraction would slightly shift the electronic band when the material is magnetized. And because

the subband is close to the Fermi level, a slight shift is enough to cause dramatic carrier density

change and thus colossal magnetoresistance. This mechanism occurs in semiconductor and involves

no strong intraatomic exchange interaction as in the double exchange model. This is different from

the mechanism of colossal magnetoresistance in La1−xSrxMnO3.

Our model is a simplified model. It is not enough to obtain really the fine electronic structure

of EuTiO3, a more careful treatment on first principle calculation and dynamical mean-field theory

procedure may improve the accuracy. Experiments which can measure the carrier density change

for different spin respectively, or just the total density change, in the presence of magnetic field can

help to verify or falsify the validity of our theoretical description. What’s more, if our description

is true, then because at low temperature the carrier density for different electron spin changes

dramatically when the material is magnetized, EuTiO3 has a potential for spintronic device.
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