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Abstract

In this thesis, we consider energy transport or equivalently thermal transport in

insulating lattice systems. We typically establish the nonequilibrium processes

by sudden switching on the (linear) coupling between the leads and the junction,

which are initially in their respective thermal equilibrium states. Since the leads are

semi-infinite, the temperatures of the leads are maintained in their initial values.

We have first examined if, when, and how the onset of the steady-state thermal

transport occurs by determining the time-dependent thermal current in a phonon

system consisting of two linear chains, which are abruptly attached together at

initial time. The crucial role of the on-site pinning potential in establishing the

steady state of the heat transport was demonstrated both computationally and

analytically. Also the finite-size effects on the thermal transport have been care-

fully studied. Furthermore, using this specific model, we have explicitly verified

the subtle assumption employed in the nonequilibrium Green’s function (NEGF)

method that the steady-state thermal transport could be reached even for ballistic

systems after long enough time.

The Landauer formula describing the steady-state thermal current assumes that
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the two leads are decoupled. However, through modern nanoscale technology, a

small junction is easily realized and frequently used in real experiments so that the

coupling between the two leads is inevitable due to long-range interaction. Thus

using the NEGF method, we have established a generalized Landauer-like formula

explicitly taking the lead-lead coupling into account, which is computationally

efficient to calculate steady-state heat current across various junctions.

To fully understand thermal transport, the distribution of heat transfer in a given

time duration is desired. From consistent quantum history point of view, we have

analytically obtained the cumulant generating function (CGF) formula of heat

transfer in general coupled left-right-lead systems, which contains valuable infor-

mation on microscopic transport process not available from current and considers

transient and steady-state on an equal footing. It has been noticed that the cou-

pling between the leads does not affect the validity of the Gallavotti-Cohen (GC)

symmetry. In addition, the CGF can be directly used to obtain probability distri-

bution of heat transfer based on the fundamental principle of the large deviation

theory. Using the CGF formula, we have partly answered a question raised by

Caroli et al. in 1971 regarding the (non)equivalence between the partitioned and

partition-free approaches. Also, in the corresponding appendix, we have obtained

the CGF formula under quasi-classical approximation, which ‘nearly’ match the

pure quantum result to the second cumulant.

Finally, we have established a general formalism to study the distribution of

heat transfer across arbitrary nonlinear junctions. Based on the nonequilibrium

Feynman-Hellman method, we have related the CGF with the generalized contour-

ordered Green’s function depending on the counting field in phononic systems. By
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introducing the interaction picture defined on the contour, the closed equations for

calculating the generalized contour-ordered Green’s functions are obtained. This

formalism is meaningful for the analysis of phononics involving the nonlinearity,

which is the counterpart technology of electronics.

In conclusion, we have established a general formalism to study various aspects

of quantum thermal transport using the unified language of consistent quantum

theory. The study in this thesis may further our understanding on the statistical

properties of quantum thermal transport and gives guidelines to experimentalists

for devising transport devices at the nanoscale.
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Chapter 1

Introduction

Quantum thermal transport is an active research field in nonequilibrium statistical

mechanics. In insulating lattice systems, the energy transport is carried mainly

by phonons—quantized vibration modes, in the case of which we can equally well

say heat transport or thermal transport. During the recent decades, it becomes

feasible to manufacture devices with sizes of 10–100 nm. Thus we are now at a new

stage of control energy and matter at nanoscale. At these scales quantum effects

dominate almost all properties of such systems including their thermal conduc-

tivity and thermal fluctuation. For example, the quantized thermal conductance

was observed at low temperatures [1], which showed conclusive phonon ballistic

transport. Even in the electronic case, the real-time counting of electrons tunnel-

ing through a quantum dot has been performed [2], which involves the probability

distribution of the transferred particle number. However, the phonon counting is a

little tricky since the number of phonons is not a conserved quantity [3]. Therefore,
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Chapter 1. Introduction

what we really care is the amount of energy, a continuous variable, transported out

of a subsystem in a given time duration.

The study of energy transport involves not only the frequently calculated steady

thermal current, but also the higher-order cumulants of the cumulant generating

function (CGF) of the energy transferred or even the corresponding probability

distribution, which satisfies certain ‘fluctuation theorem’ [4, 5]. All these problems

will be studied by using the unified language of consistent quantum theory. In

the following, we will introduce the research status of energy transport and the

probability distribution of the energy transferred and the fundamental knowledge

of consistent quantum theory separately.

1.1 Energy transport

In recent years there has been a huge increase in the research and development of

nanoscale science and technology, with the study of energy and electron transport

playing an important role. Focusing on thermal transport, Landauer-like results

for the steady-state heat flow have been proposed earlier [6, 7]. Subsequently,

based on the quantum Langevin equation approach, many authors successfully

obtained a Landauer-type expression [8–10]. Alternatively, the nonequilibrium

Green’s function (NEGF) method has been introduced to investigate mesoscopic

thermal transport, which is particularly suited for the use with ballistic thermal

transport and readily allows the incorporation of nonlinear interactions [11–13].

Generally speaking, in the lead-junction-lead system, the steady-state heat current

2



Chapter 1. Introduction

of ballistic thermal transport flowing from left lead to right lead has been described

by the Landauer-like formula, which was derived first for electrical current, as

I =

ˆ ∞

0

dω

2π
~ω T [ω] (fL − fR) , (1.1)

where f{L,R} =
{
exp

(
~ω/kBT{L,R}

)
− 1
}−1

is the Bose-Einstein distribution for

phonons, and T [ω] is the transmission coefficient. Based on the NEGF method,

T [ω] can be calculated through the Caroli formula in terms of the Green’s functions

of the junction and the self-energies of the leads,

T [ω] =Tr (GrΓRG
aΓL) , (1.2)

where Gr,a is the Green’s function of the junction, and

Γ{L,R} =i
(
Σr

{L,R} − Σa
{L,R}

)
, (1.3)

where the self-energy terms Σr,a
{L,R} are due to the semi-infinite leads on the left, L,

and on the right, R, respectively. The superscript r and a denote retarded and ad-

vanced, respectively, both for the self-energies as well as for the Green’s functions

in the formula. We will recover this Caroli formula explicitly in the Subsec. 3.1.4

of the Chapter 3, by when all the relevant terminologies will automatically be-

come clear. The specific form (1.2) was given from NEGF formalism by Meir and

Wingreen [14] for the electronic case and later by Yamamoto and Watanabe for

phonon transport [15], while Caroli et al. first obtained a formula for the electronic

transport in a slightly more restricted case [16]. Also, Mingo et al. have derived

a similar expression for transmission coefficient using an “atomistic Green’s func-

tion” method [17, 18]. Very recently, Das and Dhar [19] derived the Landauer-like

expression from the plane-wave picture using the Lippmann-Schwinger scattering

approach.
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Chapter 1. Introduction

The Landauer-like formula describes the situation in which the junction is small

enough compared to the coherent length of the waves so that it could be treated

as elastic scattering where the energy is conserved. Furthermore, it has been

assumed that the two leads are decoupled, which physically means there is no di-

rect tunneling between the two leads. Through modern nanoscale technology, a

small junction is easily realized in certain nanoscale systems, for instance, a single

molecule or, in general, a small cluster of atoms between two bulk electrodes. In

that case, the electrode surfaces of the bulk conductors may be separated by just

a few angstroms so that some finite electronic coupling between the two surfaces

is inevitable, taking into account the long-range interaction. In order to solve this

problem, Di Ventra suggested that [20] we can choose our “sample” region (junc-

tion) to extend several atomic layers inside the bulk electrodes, where screening

is essentially complete, so that the above coupling could be negligible. This turns

out to be correct when using this trick to avoid the interaction between the two

leads, which will be discussed in the Chapter 3, even though we, to some limited

extent, modify the initial condition necessary to derive a Landauer-like formula in

NEGF formalism and repartition the total Hamiltonian. However, this procedure

could not be always done, due to some topological reason, such as studying heat

current in the Rubin model [21], in which the other end of the two semi-infinite

leads is connected (a ring problem). Actually this somewhat trivial example is not

so artificial since it is equivalent to using a periodic boundary condition in the Ru-

bin model. Furthermore, the modification of the initial product state will certainly

affect the behavior of the transient heat current. If we want to study the transient

and steady heat current [22] in a unified way, the repartitioning procedure, which

changes the model, is not acceptable.
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Chapter 1. Introduction

1.2 Probability distribution of energy transferred

The physics of nonequilibrium many-body systems is one of the most rapidly ex-

panding areas of theoretical physics. In the combined field of non-equilibrium

states and statistics, the distribution of transferred charges in the electronic case

or heat in the phononic case, the so-called full counting statistics (FCS), plays an

important role, according to which we could understand the general features of

currents and their fluctuations. Also, it is well known that the noise generated

by nanodevices contains valuable information on microscopic transport processes

not available from only transient or steady current. In FCS, the key object we

need to study is the CGF, which presents high-order correlation information of the

corresponding system for the transferred quantity.

The study of the FCS started from the field of electronic transport pioneered by

Levitov and Lesovik, who presented an analytical result for the CGF in the long-

time limit [23]. After that, many works followed in electronic FCS [4, 24–26],

while much less attention is given to phonon transport. Saito and Dhar were

the first ones to borrow this concept for thermal transport [27]. Later, Ren and

co-workers gave results for two-level systems [28]. And very recently, transient

behavior and the long-time limit of CGF have been obtained in lead-junction-lead

harmonic networks both classically and quantum-mechanically using the Langevin

equation method and NEGF method, respectively [29–31]. Experimentally, the

FCS in the electronic case has been carefully studied, and the cumulants to very

high orders have been successfully measured in quantum-dot systems [2, 32]. In

principle, similar measurements could be carried out for thermal transport, e.g., in
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Chapter 1. Introduction

a nanoresonator system. Again, whether Di Ventra’s trick that repartitioning the

total Hamiltonian for the case of small junctions applies to all the higher cumulants

of heat transfer in steady state is still a question, which we will discuss in Chap-

ter 4. Obviously, this trick can not be applied to study the transient behavior of

all the cumulants of heat transfer. On the other hand, although some works have

already been devoted to the analysis of fluctuation considering the effect of nonlin-

earity in the classical limit through Langevin simulations [27], or approximately in

a restricted electronic transport case, such as the FCS in molecular junctions with

electron-phonon interaction [33], the present works are mainly restricted to nonin-

teracting systems [26, 30, 34]. Also, so far the developed approaches dealing with

nonlinear FCS problems mainly focus on single-particle systems, such as Ref. [35].

1.3 Consistent quantum theory

In this section, we briefly introduce the consistent quantum theory due to Griffiths,

which will be used to properly assign probabilities to certain sequences of quantum

events in a closed system while probability distribution of heat transferred is our

main concern in this thesis. The consistent histories approach was first proposed by

Robert Griffiths in 1984 [36] , and further developed by Roland Omnès in 1988 [37],

and by Murray Gell-Mann and James Hartle, who used the term “decoherent

histories”, in 1990 [38]. For more detail about the consistent quantum theory, one

may refer to Ref. [39].
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Chapter 1. Introduction

1.3.1 Terminology

Physical property refers to something which can be said to be either true or false

for a particular physical system. And a physical property of a quantum system

is associated with a subspace P of the quantum Hilbert space H, onto which the

(orthogonal) projector P plays a key role. The projector P satisfies two conditions

P † = P, P 2 = P, (1.4)

where the superscript † means hermitian conjugate.

If the state |Ψ⟩ describing the quantum system lies in the subspace P so that

P |Ψ⟩ = |Ψ⟩, one can say the quantum system has the property P ; On the other

hand, if P |Ψ⟩ = 0, then one say the quantum system does not have the property

P . When the state |Ψ⟩ is not an eigenstate of P , we will say that the property P is

undefined for the quantum system, which does not have the classical counterpart.

Considering two different quantum properties P and Q, we can have three logical

operations :

Negation of P̃ : P̃ ≡ I − P is defined as the property which is true if and only

if P is false, and false if and only if P is true.

Conjunction of P and Q: P ∧Q ≡ PQ in the case of [P,Q] = 0. Furthermore,

If PQ = QP = 0, i.e., P and Q are mutually orthogonal, the corresponding

properties are said to be mutually exclusive.

Disjunction of P and Q: P ∨Q ≡ P +Q− PQ in the case of [P,Q] = 0.

7



Chapter 1. Introduction

One can easily verify that the results after logical operations are still projectors.

We must point out that if the two projectors P and Q do not commute with each

other, the two properties of any quantum system are incompatible and it makes no

sense to ascribe both properties to a single system at the same instant of time so

that P ∧Q and P ∨Q are meaningless.

A decomposition of the identity was defined to be a collection of mutually orthog-

onal projectors Pj, which sum to the identity, i.e., I =
∑

j Pj. Then a Quantum

sample space is taken as any decomposition of the identity, corresponding to which

the quantum event algebra consists of all projectors of the form R =
∑

j πjPj with

each πj equal to 0 or 1. Certainly, the decomposition of the identity is not unique.

As we know, a quantum physical variable is represented by a Hermitian operator on

the Hilbert space. For every Hermitian operator, there is a unique decomposition

of the identity {Pj}, determined by the Hermitian operator A so that

A =
∑
j

ajPj, (1.5)

where the {aj} are the eigenvalues of A and aj ̸= ak for j ̸= k. In this case, the

collection {Pj} is the natural quantum sample space for the physical variable A.

Perhaps the most important concept in consistent quantum theory is quantum

histories, a realization of which consists of a sequence of quantum events occurred

at successive times. A quantum event at a particular time can be any quantum

property of the system so that it can be represented by a projector. Therefore,

given a finite set of times t1 < t2 < . . . < tf , a specific quantum history can be

8



Chapter 1. Introduction

specified by a collection of projectors {P1, P2, . . . Pf}, which is expressed by

Y = P1 ⊙ P2 ⊙ . . .⊙ Pf , (1.6)

where ⊙ is a variant of the tensor product symbol ⊗, emphasizing that the factors

in the quantum history refer to different times. Thus Y † = Y = Y 2 and Y itself is

also a projector. So we can define a history Hilbert space as a tensor product

H̆ = H1 ⊙H2 ⊙ . . .⊙Hf , (1.7)

where Hj is a copy of the Hilbert space H used to describe the system at a single

time tj. Then the quantum history Y is just a single element in the history Hilbert

space H̆. Also all the logical operations are equally well suited to quantum histories.

Next we can similarly define a sample space of quantum histories, which is a

decomposition of the identity on the history Hilbert space H̆:

Ĭ =
∑
α

Y α. (1.8)

Here, the superscript α label a specific quantum history of the form Eq. (1.6).

Associated with a sample space of histories is a quantum history algebra, called a

family of histories, consisting of projectors of the form

Y =
∑
α

παY α (1.9)

with each πα equal to 0 or 1.

1.3.2 How to assign a probability to a quantum history?

In standard quantum mechanical textbooks, see Eg. [40], the Born rule is the

unique way to assign the probability to a quantum event. Now let us consider a

9



Chapter 1. Introduction

simple situation in which the initial state is specified by a normalized ket |ψ0⟩ at

time t0. And the system evolves to time t1 according to the Schrödinger equation,

when the physical variable A is measured. Then the probability P(an) of obtaining

the eigenvalue an is

P(an) =

gn∑
i=1

∣∣⟨uin∣∣U(t1, t0) |ψ0⟩
∣∣2 , (1.10)

where U(t1, t0) is the evolution operator, |uin⟩, i = 1, 2, . . . , gn are orthonormalized

eigenvectors associated with the eigenvalue an of the physical variable A and gn

is the degree of degeneracy of an. The (orthogonal) projector onto the subspace

associated with the eigenvalue an is expressed as

Pan
1 =

gn∑
i=1

∣∣uin⟩ ⟨uin∣∣ . (1.11)

By virtue of this projector Pan
1 , the normalized state after the measurement at time

t1 is simply ∣∣ψ(t+1 )⟩ = Pan
1 U(t1, t0) |ψ0⟩√

⟨ψ0|U(t0, t1)Pan
1 U(t1, t0) |ψ0⟩

. (1.12)

This state
∣∣ψ(t+1 )⟩ continues to evolve unitarily until the next measurement is

performed, corresponding to which is another projector Pbm
2 onto the subspace

associated with the eigenvalue bm of another quantum variable B.

Actually the whole process can be re-expressed by the compact language in the

consistent quantum theory. What we study here is the join probability of the

quantum event

Y = |ψ0⟩ ⟨ψ0| ⊙ Pan
1 ⊙ Pbm

2 . (1.13)

For convenience, we can introduce the chain operator K(Y ) and its adjointK†(Y ),

10



Chapter 1. Introduction

given by

K†(Y ) = |ψ0⟩ ⟨ψ0|U(t0, t1)Pan
1 U(t1, t2)P

bm
2 , (1.14)

which is obtained by replacing⊙s with the corresponding evolution operators inside

the expression for the quantum event Y . Then the joint probability of the quantum

event Y is just

Pr(Y ) = Tr
(
K†(Y )K(Y )

)
, (1.15)

which is easily verified using the standard quantum mechanical language shown

above.

In more general case, the initial state is specified by a density matrix ρini instead of

pure state |ψ0⟩. One can similarly show that the joint distribution for the quantum

history Y = I ⊙ P an
1 ⊙ Pbm

2 is

Pr(Y ) = Tr
(
ρiniK†(Y )K(Y )

)
, (1.16)

In the quantum history Y , I is the identity operator since we have not performed

any measurement at initial time t0 and have already explicitly written down the

initial condition ρini in the right-hand side of Eq. (1.16). In addition, one can

convince himself that this approach can be applied to any quantum history.

1.3.3 How to assign probabilities to a family of histories?

At first glance, one might consider this section to be the same as the last section.

However, the focus of the attention of this section is completely different. According

to the probability theory, probabilities should be assigned to a sample space and

satisfy three fundamental axioms [41]:

11
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1. The probability of an event is a non-negative real number.

2. The probability that some elementary event in the entire sample space will

occur is 1.

3. Any countable sequence of mutually exclusive events satisfies additive rule.

We can easily verify that the probabilities assigned to any quantum sample space

satisfy the first and second axiom. However the third axiom require much more

attention, which impose strong restrictions on the choice of the family of histories.

Mathematically, this restrictions turn out to be consistency conditions which we

will discuss now.

Suppose the quantum sample space we are considering is a decomposition of {Y α}

of the history identity. Then any quantum history in this sample space can be

expressed as

Y =
∑
α

παY α, (1.17)

with each πα equal to 0 or 1. According to the third axiom of probability theory,

the probability of the quantum history Y is equal to

Pr(Y ) =
∑
α

παPr(Y α) =
∑
α

παTr
(
ρiniK†(Y α)K(Y α)

)
(1.18)

However, the joint probabilities assigned to the quantum histories according to the

Born rule, see Eq. (1.16), do not necessarily satisfy Eq. (1.18). With the chain

operator being a linear map, according to Eq. (1.17) we know that

K(Y ) =
∑
α

παK(Y α) (1.19)
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Chapter 1. Introduction

Thus, employing the general formula for the probability of a quantum history

Eq. (1.16), we have

Pr(Y ) =
∑
α

∑
β

παπβTr
(
ρiniK†(Y α)K(Y β)

)
. (1.20)

We observe that Eq. (1.18) and Eq. (1.20), coming from the third axiom of prob-

ability theory and the Born rule respectively, are generally not equal. And we im-

mediately realized that a sufficient condition for probabilities in a quantum sample

space satisfying the axiom of probability theory is

Tr
(
ρiniK†(Y α)K(Y β)

)
= 0, ∀α ̸= β, (1.21)

which are known as consistency conditions. A quantum sample space which fulfills

consistency conditions will be referred as a consistent quantum framework, and the

approach of consistent quantum theory is to limit ourselves to consistent quantum

frameworks.

Before the ending of this section, we want to clarify several points: first, the

consistency conditions Eq. (1.21) are by no means necessary conditions; second,

the probability assigned to a specific quantum history does not depend on the

choice of the quantum sample space; third, according to the probability theory

inconsistent quantum frameworks turn out to be meaningless.

1.4 Objectives

In this thesis, we aim to develop a rigorous and systematic formalism to study

the thermal current and probability distribution of the heat transfer in a given
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Chapter 1. Introduction

time duration for both ballistic systems and nonlinear systems in terms of unified

language of consistent quantum theory. Specifically, both the main objective of

this thesis and the contributions are

1. to examine if, when, and how the onset of the steady-state thermal transport

occurs incorporating finite-size effects of the leads [42];

2. to establish generalized Landauer-like formula explicitly taking the lead-lead

coupling into account [43];

3. to derive the CGF formula of the heat transfer in coupled left-right-lead

ballistic systems [44];

4. to extend the study regarding the CGF formula of heat transfer to nonlinear

quantum systems [45].

The results of the present research may have significance on the systematic un-

derstanding of the quantum thermal transport carried by phonons, which can be

readily extended to the transport by other kinds of particles such as electrons and

photons. This research may provide insights into statistics aspect of the quantum

thermal transport by using microphysics model to approach the fluctuation the-

orem. Also, the analytical results obtained in this thesis could give guidelines to

experimentalists for devising transport devices at the nanoscale.

The structure of the thesis is as follows: we introduce the nonequilibrium Green’s

function (NEGF) method in Chapter 2, which will be used throughout the thesis,

followed by the study on the steady-state thermal current in coupled left-right-

lead systems in Chapter 3. In Chapter 4, the study is extended to the probability
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Chapter 1. Introduction

distribution of energy transport in a given time duration. In Chapter 5, we consider

the probability distribution of energy transport across nonlinear quantum systems.

Finally, the summary of the study and future works are given in Chapter 6.
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Chapter 2

Nonequilibrium Green’s function

method

In this thesis, we focus on the study of various aspect of energy transport from

quantum histories point of view. As is known, the nonequilibrium Green’s function

(NEGF) method is a powerful and compact tool to study energy transport. There-

fore, as a preliminary step this chapter is largely devoted to develop the NEGF

method self-containedly using an insulating lattice system as a typical model, where

energy transport is due to atomic vibrations (phonons).

The NEGF method was initiated by Schwinger for a treatment of Brownian motion

of a quantum oscillator [46]. Later Kadanoff and Baym used the NEGF method to

derive quantum kinetic equations [47]. Further, Keldysh introduced the concept

of contour order to perform diagrammatic expansion for nonequilibrium processes
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Chapter 2. Nonequilibrium Green’s function method

[48]. For the first time, Caroli, et al. gave an explicitly formula for the transmis-

sion coefficient in terms of Green’s functions when studying transport [16], whose

modern form is due to Meir and Wingreen [14]. For a thorough understanding of

the NEGF method to quantum thermal transport, one can resort to the review

article in Ref. [49] and a updated one [50].

In the first section, we will briefly recall three different pictures in quantum me-

chanics: Schrödinger picture, Heisenberg picture, and interaction (Dirac) picture,

emphasizing the convention used throughout the thesis such as the choice of the

synchronization time. In the second section, we discuss the basic formalism of

the NEGF method around the contour-ordered Green’s function. Finally, we ex-

plore the subtle conditions employed in the NEGF method for the existence of the

steady-state thermal transport.

2.1 Pictures in quantum mechanics

Let us consider the total Hamiltonian Htot (t) in the Schrödinger picture of a quan-

tum system, which can be separated to a noninteracting solvable part H0 and a

generally time-dependent interacting part V (t), namely

Htot (t) = H0 + V (t) . (2.1)

Here, the ‘solvable’ simply means all the eigenfunctions and eigenvalues of H0 are

explicitly known.

Suppose that at the initial time t0, the normalized state of the quantum system is
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Chapter 2. Nonequilibrium Green’s function method

specified by |ψ (t0)⟩S, then the Schrödinger equation

i~
∂ |ψ (t)⟩S

∂t
= Htot (t) |ψ (t)⟩S (2.2)

govern the subsequent evolution of the state. Equivalently,

|ψ (t)⟩S = US (t, t0) |ψ (t0)⟩S , t ≥ t0 (2.3)

since Eq. (2.2) is a first-order differential equation with respect to time. Here

US (t, t0) is just the evolution operator mentioned in the Eq. (1.10) of the last

chapter, formally expressed as

US (t, t0) = T exp

[
− i

~

ˆ t

t0

Htot (t
′) dt′

]
, (2.4)

where T is time-order super-operator arranging the position of the operator at

earlier time to the right. Similarly, the evolution operator US (t1, t2) when t1 < t2

can be shown to be

US (t1, t2) = U−1
S (t2, t1) = U †

S (t2, t1) = T̄ exp

[
− i

~

ˆ t1

t2

Htot (t
′) dt′

]
, (2.5)

where T̄ is anti-time-order super-operator arranging the position of the operator

at earlier time to the left. Frequently, what we are concerned is the quantum

average of some observable AS (t), which might be explicitly time-dependent due

to a presumed protocol such as the power operator ∂Htot

∂t
. The quantum average at

arbitrary time t is experimentally verifiable, defined to be

⟨ψ (t)|S AS (t) |ψ (t)⟩S (2.6)

in the Schrödinger picture.

Until now, what we discussed is the quantum language in the Schrödinger pic-

ture, labeled by the subscript ‘S’. Alternatively, we can use the Heisenberg picture
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to study the quantum system. We choose the synchronization time between the

Heisenberg picture and the Schrödinger picture to be the time t0 when the initial

state of the quantum system is known, which means

|ψ (t)⟩H = US (t0, t) |ψ (t)⟩S = |ψ (t0)⟩S (2.7)

so that we can freely set the synchronization time t0 to be 0 or −∞ or any value,

whichever is much more convenient. Since the experimentally measurable quantum

average should not depend on the picture we used, the operator in the Heisenberg

picture is correspondingly defined as

AH (t) = US (t0, t)AS (t)US (t, t0) , (2.8)

so that

⟨ψ (t)|H AH (t) |ψ (t)⟩H = ⟨ψ (t)|S AS (t) |ψ (t)⟩S . (2.9)

As far as I am concerned, the interaction (Dirac) picture is just a calculation tool,

much simpler much better. Thus the reference time for the interaction picture in

this thesis is always chosen to be 0 except when explicitly mentioned so that

|ψ (t)⟩I = e
i
~H0t |ψ (t)⟩S (2.10)

AI (t) = e
i
~H0tAS (t) e

− i
~H0t. (2.11)

Typically the operator in the interaction picture is quite easy to deal with, while

the calculation of the ket in the interaction picture satisfying

i~
∂ |ψ (t)⟩I

∂t
= VI (t) |ψ (t)⟩I (2.12)

require much more effort. The Schrödinger equation in the interaction picture

Eq (2.12) can be formally solved as

|ψ (t)⟩I = UI (t, t0) |ψ (t0)⟩I (2.13)
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Chapter 2. Nonequilibrium Green’s function method

with the interaction-picture evolution operator UI (t, t0) to be

UI (t, t0) = e
i
~H0tUS (t, t0) e

− i
~H0t0 (2.14)

= T exp

[
− i

~

ˆ t

to

VI (t
′) dt′

]
. (2.15)

It is helpful to relate the Heisenberg-picture operator with the corresponding

interaction-picture form using the interaction-picture evolution operator, which

turns out to be

AH (t) = e−
i
~H0t0UI (t0, t)AI (t)UI (t, t0) e

i
~H0t0 (2.16)

under our convention by Eqs. (2.8), (2.11) and (2.14).

2.2 Contour-ordered Green’s Function

In the NEGF formalism, contour-ordered Green’s functions are the central quanti-

ties. On restricting the variation of the arguments of the contour-ordered Green’s

functions to the separate branches of the contour, one can get four conventional

Green’s functions: the greater, lesser, time-ordered, and anti-time ordered Green’s

functions.

2.2.1 Motivation for closed-time contour

Those familiar with ground-state quantum field theory might consider it to be

strange to introduce the forward-backward contour, see Fig. 2.1. So in this sub-

section, let us see what really happened in the ground-state formalism.
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Figure 2.1: Contour C used to define the nonequilibrium Green’s functions. The

upper branch is called + and lower one − so that a particular time point τ1 on the

upper branch is denoted by t+1 while τ2 on the lower one by t−2 . The time order

follows the direction of the arrows.

In the ground-state quantum field theory, the time-dependence of the interacting

Hamiltonian V (t) is only due to an adiabatic switch-on factor e−ε|t|, ε → 0+,

which fully switches the interaction on at time t = 0. It should be noted that

in the ground-state quantum field theory the synchronization time t0 between the

Heisenberg and the Schrödinger picture is chosen to be 0, so that the quantum

average at time t of the operator AS (t) with respect to the initial interacting

ground state |GS⟩ at time t = 0 is

⟨GS|AH (t) |GS⟩

= ⟨GS|UI (0, t)AI (t)UI (t, 0) |GS⟩

= ⟨0|UI (−∞, 0)UI (0, t)AI (t)UI (t, 0)UI (0, −∞) |0⟩

= ⟨0|UI (−∞, ∞)UI (∞, t)AI (t)UI (t, 0)UI (0, −∞) |0⟩ ,

(2.17)
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Chapter 2. Nonequilibrium Green’s function method

where in the second equality we have employed the Gell-Mann and Low theo-

rem [51], which says that

|GS⟩ = UI (0, −∞) |0⟩ (2.18)

with |0⟩ to be the ground state of non-interacting Hamiltonian H0. It is worth

mentioning that UI (0, −∞) |0⟩ is usually but not necessarily the interacting ground

state. The key trick comes now that the state UI (∞, −∞) |0⟩ is equal to |0⟩ up

to an infinite phase factor when ε→ 0+, namely

UI (∞, −∞) |0⟩ = eiL |0⟩ , (2.19)

due to the adiabatic switch-on and subsequent switch-off process, which can be

also considered as a corollary of the Gell-Mann and Low theorem. Therefore,

⟨GS|AH (t) |GS⟩ =
⟨0|UI (∞, t)AI (t)UI (t, −∞) |0⟩

eiL
(2.20)

=
⟨0|UI (∞, t)AI (t)UI (t, −∞) |0⟩

⟨0|UI (∞, −∞) |0⟩
. (2.21)

Now we realized that the reason why the backward contour is eliminated is due

to the fact that in some restricted situation the state in future may be identified

as a state in the past, see Eq. (2.19). However, for some general initial states

and general evolution processes it is hopeless to expect this ‘good luck’ to happen

again. In that case, we really need to consider both the forward and the backward

branch of the closed-time contour, which will be studied in the following sections.

2.2.2 Exploring the definition

Let us consider a general lattice system described by vibrational displacement uj,

where the single subscript index j runs over all the relevant degrees of freedom.
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Chapter 2. Nonequilibrium Green’s function method

For example, j may refer to the l-th atom shifting in the x direction in a three-

dimensional lattice model. Thus the formalism we are introducing can be used to

study a general network.

The contour C is explicitly defined to be going forward from the initial time t0 in the

upper branch, up to a maximum time tM relevant to the problem (which actually

could be ∞), then returning backward to the time t0 from the lower branch, see

Fig. 2.1. Typically we use τ to denote a particular position on the contour, and

τ = t+1 denotes the position at time t1 on the upper branch while τ = t−2 at time

t2 on the lower branch.

For clarity, we introduce a new evolution operator US (τ2, τ1) which is defined on

the contour C. Assuming that τ2 ≻ τ1, namely τ2 succeeds τ1 on the contour, we

will encounter three different situations depending on the relative position of the

arguments τ2 and τ1:

US (τ2, τ1) =


U+
S (t2, t1) ,

(
τ2 = t+2

)
>
(
τ1 = t+1

)
U−
S (t2, tM)U+

S (tM , t1) , τ2 = t−2 , τ1 = t+1

U−
S (t2, t1) .

(
τ2 = t−2

)
<
(
τ1 = t−1

) (2.22)

Where in the second situation we need not specify the relative magnitude of t−2

and t+1 , since the time on the lower branch always succeeds the time on the upper

branch along the contour. Also we should notice that the superscript + or − for the

evolution operator simply tell us that the ordinary Schrödinger evolution operator

is for the upper branch or the lower branch, respectively. Because frequently

the Hamiltonian determining the evolution does not depend on the branch of the

contour, the superscript + or − for the evolution operator is completely redundant
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and finally US (τ2, τ1) = U±
S (t2, t1). However, for me in a formalism it is always

much better to tolerate extra freedoms and the real value of allowing a branch-

dependent Hamiltonian will be appreciated when we deal with the nonlinear case

in Chapter 5, where due to the measurement procedure the convenient effective

Hamiltonian depends on the branch of the contour through the counting field

parameter. Compactly, the evolution operator defined on the contour US (τ2, τ1)

could be written as

US (τ2, τ1) = Tτ exp

(
− i

~

ˆ
C[τ2, τ1]

Htot (τ) dτ

)
, τ2 ≻ τ1. (2.23)

Where Tτ is contour-ordered super-operator arranging the position of the operator

at later contour time to the left, and C [τ2, τ1] denotes part of the whole contour

C from earlier contour time τ1 to the later contour time τ2 along the contour. In

order to keep group properties of the evolution operator, the evolution operator

US (τ1, τ2) , τ2 ≻ τ1 is defined to be

US (τ1, τ2) = US (τ2, τ1)
−1 = US (τ2, τ1)

† , τ2 ≻ τ1. (2.24)

By virtue of the evolution operator defined on the contour, we can define a gener-

alized Heisenberg-picture operator which is given as

AH (τ) = US

(
t+0 , τ

)
ASUS

(
τ, t+0

)
. (2.25)

One can easily verify by himself that the generalized Heisenberg-picture operator

AH (τ) agrees with the usual one if the Hamiltonian determining the evolution of

the system does not depend on the branch of the contour, which normally is. But,

nonetheless, employing Heisenberg-picture operators defined on the contour, the

component form of contour-ordered Green’s function will be quite clearly defined
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as

Gjk (τ2, τ1) = − i

~
Tr
[
ρini (t0)Tτu

H
j (τ2)u

H
k (τ1)

]
. (2.26)

2.2.3 The basic formalism

Basically, there are two approaches to study the contour-ordered Green’s function:

the equation of motion method and the perturbation expansion method.

We first consider how to obtain the equation of motion satisfied by the the contour-

ordered Green’s function. At the beginning, we need to solve several technical

problems. The first one is on the precise meaning of the time derivative of contour-

time dependent functions, which is shown below:

df (τ)

dτ
= lim

∆τ→0

f (τ +∆τ)− f (τ)

∆τ
(2.27)

=


df+(t)

dt
, τ = t+

df−(t)
dt

, τ = t−
(2.28)

where the function f (τ) is equal to f+ (t) or f− (t), when the argument contour-

time τ is on the upper branch t+ or lower branch t−, respectively. Equipped well

with the contour-time derivative, we can develop a generalized Heisenberg equation

of motion for the Heisenberg-picture operator on the contour AH (τ), which turns

out to be

i~
d

dτ
AH (τ) =

[
AH (τ) , HH

tot (τ)
]
. (2.29)

The second one is the definition of Heaviside step function θ (τ, τ ′) on the contour,
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which is given below:

θ (τ, τ ′) =


1, τ ≻ τ ′

1
2
, τ = τ ′

0. τ ≺ τ ′

(2.30)

Since we want to keep the identity θ (τ, τ ′) + θ (τ ′, τ) = 1 for arbitrary value of τ

and τ ′, the special case θ (τ, τ) is set to be 1/2. In addition, the δ function on the

contour is defined to be

δ (τ, τ ′) ≡ ∂θ (τ, τ ′)

∂τ
= −∂θ (τ, τ

′)

∂τ ′
. (2.31)

In order to get a feeling about what the equation of motion for the contour-ordered

Green’s function looks like, we give a simple example, in which the total Hamilto-

nian is

Htot =
1

2
pTp+

1

2
uTKu, KT = K, (2.32)

where K is a symmetric, positive definite spring constant matrix, the superscript

T stands for matrix transpose, u is a column vector with component uj and p is the

conjugate momentum vector. It is easily verified that the standard commutation

relation for uH (τ) and pH (τ) on the contour still holds, namely,

[
uH (τ) , pTH (τ)

]
= i~I (2.33)

with I to be an identity matrix. In this simple case, HH
tot (τ) = Htot and all

the Heisenberg-picture operators on the contour are completely equivalent to the

usual Heisenberg-picture ones, since the total Hamiltonian Htot is contour-time
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independent. After noticing that

G (τ2, τ1) = − i

~
⟨
TτuH (τ2)u

T
H (τ1)

⟩
= − i

~
θ (τ2, τ1)

⟨
uH (τ2)u

T
H (τ1)

⟩
− i

~
θ (τ1, τ2)

⟨
uH (τ1)u

T
H (τ2)

⟩T
(2.34)

with ⟨. . .⟩ denoting Tr [ρini (t0) . . .],
duH(τ)

dτ
= pH (τ) and dpH(τ)

dτ
= −KuH (τ), we

can obtain the equation of motion for the contour-ordered Green’s function using

contour-time derivative:

∂2G (τ2, τ1)

∂τ 22
+KG (τ2, τ1) = −δ (τ2, τ1) I. (2.35)

The δ function appearing on the right-hand side of this equation of motion justifies

the name of the ‘Green’s function’. Also this equation of motion is generally true

for arbitrary initial density matrix ρini (t0). Just due to this fact, this equation is

generally hard to solve directly which requires the careful specification of boundary

conditions. We do not pursue to conquer this difficulty here and readers interested

in this problem can refer to Ref. [52].

Now we try to use the perturbation expansion method to study contour-ordered

Green’s function. The main idea will be illustrated by a typical ballistic-transport

model, which consists of three parts: a left lead (L), a right lead (R) and a center

part (C) and the two couplings between the two leads and the center are both

bilinear with respect to displacement operators in the leads and the center part.

Explicitly, the total Hamiltonian is

Htot = HL +HC +HR +HLC +HCR, (2.36)

where Hα = 1
2
pTαpα + 1

2
uTαK

αuα, α = L,C,R represents coupled harmonic oscil-

lators, uα =
√
mxα and pα are column vectors of transformed coordinates and
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corresponding conjugate momenta in region α. The coupling between the cen-

ter and the two leads are HLC = uTLV
LCuC and HCR = uTCV

CRuR. Essentially,

this model can be taken account as a specific partition of the harmonic network

considered above with K in Eq. (2.32) to be

K =


KL V LC 0

V CL KC V CR

0 V RC KR

 . (2.37)

A natural question will immediately come about the effects of the different partition

of the total Hamiltonian on thermal transport, which will be discussed in the later

Chapters 3 and 4. The relevant contour-ordered Green’s functions to this model

are

Gαβ (τ2, τ1) = − i

~
Tr
[
ρiniprod (t0)Tτu

H
α (τ2)u

H,T
β (τ1)

]
, α, β = L, C, R. (2.38)

Where the initial density state at time t0 is specified by the direct product state,

i.e.,

ρiniprod (t0) = ρL ⊗ ρC ⊗ ρR, ρα =
e−βαHα

Tr [e−βαHα ]
for α = L, C, R (2.39)

with βα = 1
kBTα

, α = L, C, R to be the inverse temperature. The first step

is to transform the Heisenberg-picture operators appearing in the contour-ordered

Green’s function to the interaction-picture ones with respect toH0 = HL+HC+HR,

which can be readily done as

Gαβ (τ2, τ1) = − i

~
Tr
[
ρiniprod (t0)Tτu

I
α (τ2)u

I,T
β (τ1) e

− i
~
´
C VI(τ)dτ

]
, (2.40)

where

VI (τ) = e
i
~H0τ (HLC +HCR) e

− i
~H0τ = uI,TL (τ)V LCuIC (τ) + uI,TC (τ)V CRuIR (τ) ,

(2.41)
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after noticing that the commutator
[
ρiniprod (t0) , H0

]
= 0. The contour variables

such as τ only influence the ordering of the operators under Tτ , and e
i
~H0τ has the

same meaning as e
i
~H0t with real time t after ordering. For a better treatment of

this contour-time interaction picture, please refer to the Sec. 5.2 of the Chapter 5.

Observing the exponent of Eq. (2.40), we know that there are only two kinds of

2-connector bare vertices V LC and V CR in this simple model, which describe the

possible interactions allowed to take place. Then the second step is try to group

the diagrams using Wick’s theorem and the basic rule that a particle has two

options: to interact or not to interact, see Chapter 9 of the Ref. [53]. Since, roughly

speaking, the initial density state is quadratic, the Wick Theorem is justified for the

interaction-picture form of the contour-ordered Green’s function and for a detailed

discussion about the Wick theorem, please refer to the Sec. 5.5 of the chapter 5.

The goal of the perturbation expansion method is try to build nonequilibrium

contour-ordered Green’s functions from the known ones, which in this model are

equilibrium contour-ordered Green’s functions, namely,

gαα′ (τ, τ ′) = − i

~
Tr
[
ρiniprod (t0)Tτu

I
α (τ)u

I,T
α′ (τ ′)

]
= δαα′gα (τ, τ

′) , α = L, C, R (2.42)

Let us first give a plausible reasoning for the perturbation study ofGLC (τ2, τ1). On

the one hand, the external leg uIL (τ2) can not be directly connected with the other

external leg uI,TC (τ1) since gLC (τ2, τ1) = 0. Instead, it can be connected to just one

of the two vertices V LC and the summation of all the remaining connected part

simply contribute to a factor GCC (τ, τ1). On the other hand, the summation of

all the disconnected diagrams is equivalent to Tr
[
ρiniprod (t0)Tτe

− i
~
´
C VI(τ)dτ

]
, which

is simply 1. Taken together, see Fig. 2.2, the Dyson equation for GLC (τ2, τ1) can
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Figure 2.2: An illustration for the Dyson equation satisfied by GLC (τ2, τ1).

be written as

GLC (τ2, τ1) =

ˆ
C

dτgL (τ2, τ)V
LCGCC (τ, τ1) . (2.43)

Similarly, GRC (τ2, τ1) satisfies the Dyson equation

GRC (τ2, τ1) =

ˆ
C

dτgR (τ2, τ)V
LCGCC (τ, τ1) . (2.44)

One should notice that the above equation Eq. (2.43) and Eq. (2.44) are also true

for the nonlinear center, since the extra nonlinear vertices introduced for the center

such as 3-connector vertex does not change the above reasoning.

More importantly, we can obtain a closed Dyson equation for GCC (τ2, τ1). The

reasoning is like the following: on the one hand, the external leg uIC (τ2) can be

directly connected with the other external leg uI,TC (τ1) to contribute a separate

term gC (τ2, τ1). Also, it can be connected to both 2-connector vertex V CL and

V RC and the summation of all the remaining connected part simply contribute to a

factor GLC (τ, τ1) and GRC (τ, τ1) respectively. On the other hand, the summation

of all the disconnected diagrams is equivalent to Tr
[
ρiniprod (t0)Tτe

− i
~
´
C VI(τ)dτ

]
and
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Figure 2.3: An illustration for the Dyson equation satisfied by GCC (τ2, τ1).

contribute to a factor 1. Thus, see Fig. 2.3, GCC (τ2, τ1) satisfies

GCC (τ2, τ1) = gC (τ2, τ1) +

ˆ
C

dτgC (τ2, τ)
(
V CLGLC (τ, τ1) + V CRGRC (τ, τ1)

)
.

(2.45)

Combining Eq. (2.43), Eq. (2.44) and Eq. (2.45), an important closed Dyson equa-

tion for GCC (τ2, τ1) is given as

GCC (τ2, τ1) = gC (τ2, τ1) +

ˆ
C

dτ

ˆ
C

dτ ′gC (τ2, τ) Σ (τ, τ ′)GCC (τ ′, τ1) (2.46)

with the total self energy to be

Σ (τ, τ ′) = ΣL (τ, τ
′) + ΣR (τ, τ ′) (2.47)

= V CLgL (τ, τ
′)V LC + V CRgR (τ, τ ′)V RC . (2.48)

It is worth mentioning that the above three Dyson equations Eq. (2.43) and

Eq. (2.44) and Eq. (2.46) could be also obtained by equation of motion method, in

which the boundary conditions need to be properly considered, see, Eg. Ref. [54].
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2.2.4 The connection to conventional Green’s functions

After obtaining the contour-ordered Green’s function relevant to the problem and

specifying the ranges of variation of its arguments as mentioned before, we can get

four conventional Green’s functions: greater (>), lesser (<), time-ordered (t), and

anti-time-ordered (t̄) Greens functions, the respective component forms of which

are shown as:

G>
jk (t2, t1) = Gjk

(
t−2 , t

+
1

)
= − i

~
⟨
uHj (t2)u

H
k (t1)

⟩
(2.49)

G<
jk (t2, t1) = Gjk

(
t+2 , t

−
1

)
= − i

~
⟨
uHk (t1)u

H
j (t2)

⟩
(2.50)

Gt
jk (t2, t1) = Gjk

(
t+2 , t

+
1

)
= − i

~
⟨
T uHj (t2)u

H
k (t1)

⟩
= θ (t2 − t1)G

>
jk (t2, t1) + θ (t1 − t2)G

<
jk (t2, t1) (2.51)

Gt̄
jk (t2, t1) = Gjk

(
t−2 , t

−
1

)
= − i

~
⟨
T̄ uHj (t2)u

H
k (t1)

⟩
= θ (t2 − t1)G

<
jk (t2, t1) + θ (t1 − t2)G

>
jk (t2, t1) , (2.52)

where ⟨. . .⟩ = Tr [ρini (t0) . . .] with respect to arbitrary initial density matrix ρini (t0),

the ordinary step function θ (t) = 1 if t > 0 and 0 if t < 0 and 1/2 if t = 0 in-

herited from the step function on the contour defined in Eq. (2.30). Notice that

when transforming from contour-ordered Green’s function to the four conventional

Green’s functions by specifying the range of variation of the contour-time argu-

ments, we have implicitly assumed that the total Hamiltonian does not depend

on the branch of the contour so that U+
S (t2, t1) = U−

S (t2, t1) appearing on the

Eq. (2.22). Thus the Heisenberg-picture operators on the real time in the above

definition for G>, G<, Gt, Gt̄ are exactly the same as the definition in Eq. (2.8).
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Using the greater and lesser Green’s functions, we can define additional two conven-

tional Green’s functions, which are retarded (r) and advanced (a) Green’s functions

shown below:

Gr
jk (t2, t1) = θ (t2 − t1)

(
G>

jk (t2, t1)−G<
jk (t2, t1)

)
(2.53)

= − i

~
θ (t2 − t1)

⟨[
uHj (t2) , u

H
k (t1)

]⟩
, (2.54)

Ga
jk (t2, t1) = −θ (t1 − t2)

(
G>

jk (t2, t1)−G<
jk (t2, t1)

)
(2.55)

=
i

~
θ (t1 − t2)

⟨[
uHj (t2) , u

H
k (t1)

]⟩
. (2.56)

In the case of equilibrium or nonequilibrium steady state for the initial density

matrix, the six conventional Green’s functions only depend on the time difference

such as G> (t2, t1) = G> (t2 − t1). Therefore it is helpful to introduce the Fourier-

transformation pair of Green’s functions, the convention of which throughout the

thesis is shown below:

G [ω] =

ˆ +∞

−∞
dtG (t) eiωt, (2.57)

G (t) =

ˆ +∞

−∞

dω

2π
G [ω] e−iωt. (2.58)

By virtue of the definitions of all the six conventional Green’s function, we can

show that

Gt = Gr +G< = G> +Ga, (2.59)

Gt̄ = G< −Ga = G> −Gr. (2.60)

Since these relations are true in both frequency and time domains, we do not

specify the arguments of the Green’s functions. Notice that generally out of the

six Green’s functions, only three of them are linearly independent.
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If the system admits time translational invariance, retarded Green’s function and

advanced Green’s function are hermitian conjugate of each other, namely,

Ga [ω] = (Gr [ω])† . (2.61)

Then in this case only two conventional Green’s functions are independent, which

can be taken as Gr [ω] and G< [ω]. Since we have the relations

Gr [−ω] = Gr [ω]∗ , (2.62)

G< [−ω] = −G< [ω]∗ +Gr [ω]T −Gr [ω]∗ , (2.63)

the positive frequency part of the Green’s functions Gr [ω] and G< [ω] are com-

pletely sufficient.

Furthermore, in thermal equilibrium, fluctuation-dissipation theorem holds, which

says

G< [ω] = f (ω) (Gr [ω]−Ga [ω]) , (2.64)

where f (ω) = 1
eβ~ω−1

is the Bose-Einstein distribution function at inverse tempera-

ture β = 1
kBT

. So in equilibrium, there is really one independent Green’s function.

It has been already realized from Dyson equation that in dealing with the contour-

ordered Green’s functions, we often encounter convolution of the form

C (τ, τ ′) =

ˆ
C

dτ ′′A (τ, τ ′′)B (τ ′′, τ ′) . (2.65)

The transformation rules from contour-time convolution equations to real-time

ones are generally named as the Langreth theorem. Corresponding to Eq. (2.65),
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the following rules are commonly used:

C<,> (t, t′) =

ˆ tM

t0

dt′′Ar (t, t′′)B<,> (t′′, t′)

+

ˆ tM

t0

dt′′A<,> (t, t′′)Ba (t′′, t′) (2.66)

Cr,a (t, t′) =

ˆ tM

t0

dt′′Ar,a (t, t′′)Br,a (t′′, t′) (2.67)

Here we only show a sample proof:

C< (t, t′) = C
(
t+, t′−

)
=

ˆ
C

dτ ′′A
(
t+, τ ′′

)
B
(
τ ′′, t′−

)
(2.68)

=

ˆ tM

t0

dt′′A
(
t+, t′′+

)
B
(
t′′+, t′−

)
+

ˆ t0

tM

dt′′A
(
t+, t′′−

)
B
(
t′′−, t′−

)
(2.69)

=

ˆ tM

t0

dt′′At (t, t′′)B< (t′′, t′)

−
ˆ tM

t0

dt′′A< (t, t′′)B t̄ (t′′, t′) (2.70)

=

ˆ tM

t0

dt′′ [Ar (t, t′′) + A< (t, t′′)]B< (t′′, t′)

−
ˆ tM

t0

dt′′A< (t, t′′) [B< (t′′, t′)−Ba (t′′, t′)] (2.71)

=

ˆ tM

t0

dt′′Ar (t, t′′)B< (t′′, t′)

+

ˆ tM

t0

dt′′A< (t, t′′)Ba (t′′, t′) (2.72)
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Ct (t, t′) = C
(
t+, t′+

)
=

ˆ
C

dτ ′′A
(
t+, τ ′′

)
B
(
τ ′′, t′+

)
(2.73)

=

ˆ tM

t0

dt′′A
(
t+, t′′+

)
B
(
t′′+, t′+

)
+

ˆ t0

tM

dt′′A
(
t+, t′′−

)
B
(
t′′−, t′+

)
(2.74)

=

ˆ tM

t0

dt′′At (t, t′′)Bt (t′′, t′)

−
ˆ tM

t0

dt′′A< (t, t′′)B> (t′′, t′) (2.75)

Cr = Ct − C< (2.76)

=
(
AtBt − A<B>

)
− (ArB< + A<Ba)

= AtBt − A< (B> +Ba)− ArB<

= AtBt − A<Bt − ArB<

=
(
At − A<

)
Bt − ArB<

= ArBt − ArB<

= ArBr (2.77)

In the final piece of proof, we have used self-explanatory short-hand notations.

And in the whole sample proof, the general relations between the six conventional

Green’s functions are heavily used. Moreover, we want to point out that the

Langreth theorem shown above can be readily extended to the frequency domain

and the case of the convolution integral involving more than two contour-ordered

Green’s function by method of induction.
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(a) two separate systems

(b) combined system
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Figure 2.4: An illustration of how two finite independent systems at temperature

TL and TR, both containing N particles are abruptly combined at t = 0 into a

composite system containing 2N particles. The interparticle spring constant is k1

and the on-site spring constant is k0.

2.3 Transient and nonequilibrium steady state in

NEGF

In the early stage, NEGF is mainly applied to study steady-state current. When

studying steady-state current using NEGF method, two heat baths at different

temperature driving the heat current are typically modeled by collections of infinite

harmonic oscillators. Frequently, see Ref. [49], we assume that steady-state thermal

transport could be dynamically reached from initial product state after sudden

switch-on of the coupling between the two heat baths. In this section we want

to explicitly examine this subtle assumption using a straightforward Heisenberg

equation of motion method.

We examine if, when, and how the onset of the steady-state transport occurs by
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determining the time-dependent thermal current in a phonon system consisting of

two linear chains, which are abruptly attached together at time t = 0 [42]. The

analytical analysis appearing in the appendix of the Ref. [42] is my contribution,

much more detail of which will be given in the following.

Shown in Fig. 2.4(a) are the two separate linear chains. The interparticle spring

constant is k1 and the on-site spring constant is k0. The left and right chains

are initially in their respective thermal equilibrium with inverse temperature βL =

1/(kBTL) and βR = 1/(kBTR) and both contain N sites. In addition, fixed bound-

ary conditions are used, wherein particles at the left and right edges are attached

to fixed walls. At time t = 0 the chains are abruptly coupled with spring constant

k1, as shown in Fig. 2.4(b). Then the total Hamiltonian is written as

Ĥtot = ĤL + ĤR + ĤLR

with

ĤL =
N∑

n=1

p̂2n
2

+

{
1

2
k1

N−1∑
n=1

(x̂n+1 − x̂n)
2 +

1

2
k1x̂

2
1 +

1

2
k1x̂

2
N

}

+
1

2
k0

N∑
n=1

x̂2n, (2.78)

ĤR =
2N∑

n=N+1

p̂2n
2

+

{
1

2
k1

2N−1∑
n=N+1

(x̂n+1 − x̂n)
2 +

1

2
k1x̂

2
1 +

1

2
k1x̂

2
2N

}

+
1

2
k0

2N∑
n=N+1

x̂2n, (2.79)

ĤLR = −k1x̂N x̂N+1. (2.80)

And the initial density matrix is specified by

ρ̂ini (0) = ρ̂L ⊗ ρ̂R =
e−βLĤL

Tr
(
e−βLĤL

) ⊗ e−βRĤR

Tr
(
e−βRĤR

) . (2.81)
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Now we introduce a new notation system to simplify the whole calculation:

⟨k| n⟩† = ⟨n| k⟩ ≡
√

2

2N + 1
sin (kn) , (2.82)

⟨n| x̂⟩ ≡ x̂n,
⟨
x̂†
∣∣ n⟩ ≡ x̂†n, ⟨p̂| n⟩ ≡ p̂n, ⟨n| p̂†

⟩
≡ p̂†n, (2.83)

⟨k| x̂⟩ ≡ x̂k,
⟨
x̂†
∣∣ k⟩ ≡ x̂†k, ⟨p̂| k⟩ ≡ p̂k, ⟨k| p̂†

⟩
≡ p̂†k, (2.84)

where n = 1, 2, · · · , 2N and k = πj
2N+1

j = 1, 2, · · · , 2N . According to these

definitions, we have some useful results:

∑
n

⟨k| n⟩ ⟨n| k′⟩ =δkk′ (2.85)

∑
k

⟨n| k⟩ ⟨k| n′⟩ =δnn′ (2.86)

2N−1∑
n=1

(⟨k| n+ 1⟩ ⟨n| k′⟩+ ⟨k| n⟩ ⟨n+ 1| k′⟩) =2 cos kδkk′ (2.87)

Or equivalently,

∑
n

|n⟩ ⟨n| = Î , ⟨n| n′⟩ =δnn′ , (2.88)

∑
k

|k⟩ ⟨k| = Î , ⟨k| k′⟩ =δkk′ , (2.89)

2N−1∑
n=1

|n+ 1⟩ ⟨n|+ |n⟩ ⟨n+ 1| =2 cos k̂, (2.90)

where k̂|k⟩=k |k⟩, k = πj
2N+1

, j = 1, 2, · · · , 2N .
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In addition,

Ĥtot =
2N∑
n=1

1

2
⟨p̂| n⟩ ⟨n| p̂†

⟩
+

1

2
(2k1 + k0)

2N∑
n=1

⟨
x̂†
∣∣ n⟩ ⟨n| x̂⟩

−1

2
k1
⟨
x̂†
∣∣(2N−1∑

n=1

|n+ 1⟩ ⟨n|+ |n⟩ ⟨n+ 1|

)
|x̂⟩ (2.91)

=
1

2
⟨p̂| p̂†

⟩
+

1

2
(2k1 + k0)

⟨
x̂†
∣∣ x̂⟩ − 1

2
k1
⟨
x̂†
∣∣ 2 cos k̂ |x̂⟩ (2.92)

=
1

2
⟨p̂| p̂†

⟩
+

1

2

⟨
x̂†
∣∣ ω̂2 |x̂⟩ (2.93)

with ω̂ ≡
√

2k1

(
1− cos k̂

)
+ k0.

Solving Heisenberg equation of motion, we could obtain

|x̂ (t)⟩ = cos (ω̂t) |x̂⟩+ sin (ω̂t)

ω̂

∣∣p̂†⟩ (2.94)

⟨p̂ (t)| = −
⟨
x̂†
∣∣ ω̂ sin (ω̂t) + ⟨p̂| cos (ω̂t) , (2.95)

where ⟨n |x̂ (t)⟩ ≡ x̂Hn (t) and ⟨p̂ (t)| n⟩ ≡ p̂Hn (t).

Moreover, we specify the initial correlation according to initial product state ρ̂ini (0),

which turns out to be

⟨
x̂αn1

x̂βn2

⟩
= δαβ ⟨n1|

~
2ˆ̃ω

(
1 + 2f̂α

)
|n2⟩ (2.96)

⟨
p̂αn1

p̂βn2

⟩
= δαβ ⟨n1|

~ ˆ̃ω
2

(
1 + 2f̂α

)
|n2⟩ (2.97)⟨

x̂αn1
p̂βn2

⟩
=

i~
2
δαβδn1n2 (2.98)⟨

p̂αn1
x̂βn2

⟩
= − i~

2
δαβδn1n2 (2.99)
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where,

x̂n1 =


x̂Ln1

1 ≤ n1 ≤ N

x̂R(n1−N) N + 1 ≤ n1 ≤ 2N

(2.100)

p̂n1 =


p̂Ln1

1 ≤ n1 ≤ N

p̂R(n1−N) N + 1 ≤ n1 ≤ 2N

(2.101)

ˆ̃ω
∣∣∣k̃⟩ =

√
2k1

(
1− cos k̃

)
+ k0

∣∣∣k̃⟩ , (2.102)

k̃ =
πj̃

N + 1
, j̃ = 1, 2, · · · , N

f̂α =
1

eβα~ ˆ̃ω − 1
, α = L,R (2.103)

⟨n| k̃
⟩

=

√
2

N + 1
sin
(
k̃n
)
, n = 1, 2, · · · , N. (2.104)

We try to group the terms into two parts. The first part, which involves terms that

are proportional to the difference between the Bose distributions of the left and

right leads, becomes steady current in the proper limit specified later. The rest

of the terms constitutes the other part and are interpreted to be the fluctuating

contribution around the steady-current. The detailed steps are shown below:

IL(t) =−

⟨
dĤL (t)

dt

⟩

=− k1

⟨
⟨p̂ (t)| N⟩ ⟨N + 1| x̂ (t)⟩

⟩
(2.105)

=− k1

⟨{
−
⟨
x̂†
∣∣ ω̂ sin (ω̂t) |N⟩+ ⟨p̂| cos (ω̂t) |N⟩

}
·
{
⟨N + 1| cos (ω̂t) |x̂⟩+ ⟨N + 1| sin (ω̂t)

ω̂

∣∣p̂†⟩}⟩ (2.106)
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Since ⟨
−
⟨
x̂†
∣∣ ω̂ sin (ω̂t) |N⟩ ⟨N + 1| sin (ω̂t)

ω̂

∣∣p̂†⟩
+ ⟨p̂| cos (ω̂t) |N⟩ ⟨N + 1| cos (ω̂t) |x̂⟩

⟩
=

2N∑
n1=1

2N∑
n2=1

⟨n1| ω̂ sin (ω̂t) |N⟩ ⟨N + 1| sin (ω̂t)
ω̂

|n2⟩ ⟨−x̂n1 p̂n2⟩

+
2N∑

n1=1

2N∑
n2=1

⟨n1| cos (ω̂t) |N⟩ ⟨N + 1| cos (ω̂t) |n2⟩ ⟨p̂n1 x̂n2⟩

=
2N∑

n1=1

⟨n1| ω̂ sin (ω̂t) |N⟩ ⟨N + 1| sin (ω̂t)
ω̂

|n1⟩
(
−i~

2

)

+
2N∑

n1=1

⟨n1| cos (ω̂t) |N⟩ ⟨N + 1| cos (ω̂t) |n1⟩
(
− i~

2

)
=

(
− i~

2

)
⟨N + 1|

(
sin (ω̂t)

ω̂
ω̂ sin (ω̂t) + cos2 (ω̂t)

)
|N⟩

=0,

two terms ‘xp’ and ‘px’ inside Eq. (2.106) can be exactly canceled.

Defining

⟨k| k̃
⟩L

≡
N∑

n1=1

⟨k| n1⟩ ⟨n1

∣∣∣k̃⟩
⟨k| k̃

⟩R
≡

2N∑
n1=N+1

⟨k| n1⟩ ⟨n1 −N
∣∣∣k̃⟩ , (2.107)

we can directly verify that ⟨k |k̃ ⟩R = ⟨k| k̃ ⟩L (−1)j+j̃, and ⟨ k̃| k2⟩L⟨k2 |N + 1 ⟩ =

⟨ k̃| k2⟩L⟨k2 |N ⟩ (−1)j2+1.

Thus the expression for the current IL(t) can be separated into two parts, ILfluct(t)
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and ILstdy(t), where the fluctuating contribution is

ILfluct(t) = ~k1
∑
k̃

(
fL
k̃
+ fR

k̃
+ 1
)

×
∑
k odd

(
ωk

ωk̃

− ωk̃

ωk

)
sin (ωkt) ⟨N |k⟩⟨k| k̃ ⟩L

×
∑
k2 odd

cos (ωk2t) ⟨ k̃| k2⟩
L⟨k2|N⟩

− ~k1
∑
k̃

(
fL
k̃
+ fR

k̃
+ 1
)

×
∑
k even

(
ωk

ωk̃

− ωk̃

ωk

)
sin (ωkt) ⟨N | k ⟩⟨k| k̃ ⟩L

×
∑

k2 even

cos (ωk2t) ⟨ k̃|k2 ⟩
L⟨k2|N⟩ .

(2.108)

and the steady-state contribution is

ILstdy(t) = ~k1
∑
k̃

(
fL
k̃
− fR

k̃

)
×
∑
k even

(
ωk

ωk̃

+
ωk̃

ωk

)
sin (ωkt) ⟨N |k⟩⟨k| k̃ ⟩L

×
∑
k2 odd

cos (ωk2t) ⟨ k̃|k2 ⟩
L⟨k2|N⟩

− ~k1
∑
k̃

(
fL
k̃
− fR

k̃

)
×
∑
k even

cos (ωkt) ⟨N |k⟩⟨k| k̃ ⟩L

×
∑
k2 odd

(
ωk̃

ωk2

+
ωk2

ωk̃

)
sin (ωk2t) ⟨ k̃| k2⟩

L⟨k2|N⟩ .

(2.109)

In the above, the summation for k̃ extends over all πj̃
N+1

for j̃ = 1, ..., N , the

summation involving “k even” is on k ∈
{

πj
2N+1

}2N
j=1

, j is even, and the summation

involving “k2 odd” is on k2 ∈
{

πj2
2N+1

}2N
j2=1

, j2 is odd, and so on. The dispersion
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Figure 2.5: Plots of the current as a function of time when the left and right chains

are finite with lengths (a) N = 100 and (b) N = 50. The average temperatures

between the leads are T = 10 K (black line), T = 100 K (red (gray) line), and

T = 300 K (blue (dark gray) line). The temperature bias between the leads

α = 0.1. There is no on-site potential, i.e., k0 = 0, and the nearest-neighbor spring

constant k1 = 1 eV/Å2u.

relation satisfied is ωq =
√

2k1 (1− cos q) + k0, and f
α
k̃
= 1/(eβα~ωk̃ − 1), α = L,R.

The sum in Eq. (2.107) can be carried out analytically, resulting in

⟨N |k⟩⟨k| k̃ ⟩L =
−1

(2N + 1)
√
2(N + 1)

× sin(k̃N)
cos k − (−1)j

cos k̃ − cos k
.

(2.110)

A similar expression can be derived for ⟨ k̃| k2⟩L⟨k2|N⟩. Using Eqs. (2.108) to

(2.110), the current can now be exactly calculated in computer time proportional

to O(N2).

Shown in Fig. 2.5 are plots of the current flowing out of the left lead when there is

no on-site spring potential. The length of the leads are both N = 100 in Fig. 2.5(a)
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Figure 2.6: Plots of the current when the on-site spring constant is k0 = 0.1 eV/Å2u

at 10% of the value of k1 = 1 eV/Å2u. The left and right chains have lengths

(a) N = 100 and (b) N = 50. the average temperature between the chains are

T = 100 K (green (lowest gray) line), T = 300 K (red (middle gray) line), and

T = 500 K (blue (upper gray) line). The temperature offset α = 10%. The dash

lines are the values of the steady-state current, corresponding to T = 100 K, 300 K,

and 500 K, calculated independently from the Landauer-like formula.

and N = 50 in Fig. 2.5(b). The left lead initially has temperature TL = (1 + α)T ,

where α = 0.1, while the right lead has initial temperature TR = (1 − α)T . The

plots in Fig. 2.5 correspond to T = 10 K, 100 K, and 300 K. Notice that he overall

behavior is roughly periodic with a period proportional to the full length of the

chain due to the finite size effect.

Shown in Fig. 2.6 are plots of the current when k0 = 0.1 eV/Å2u, i.e., at 10% of the

value of k1 = 1 eV/Å2u. Also shown in the figure are dashed lines representing the

steady-state current calculated using the Landauer-like formula. We now see that

the current approaches a quasi-steady-state value and that this quasi-steady-state
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lasts longer for longer leads. Note, however, that the quasi-steady-state does not

last for more than 2tm (tm is defined to be the time when sound wave travels the left

or right chain). After time 2tm, the waves or disturbances that have been reflected

back at the hard walls, which is at the edges of the leads, have returned back to

the interleads coupling and interfere with the other waves there. This results in

the current to begin oscillating wildly.

In the following, we recover the Landauer-like formula for the thermal current in

the large-size limit using Heisenberg equation of motion method directly. All of

the expressions derived at this point are exact. We now make an approximation in

order to extend our calculations for the steady-state contribution to large N and

eventually arrive at the Landauer formula.

Notice that in Eq. (2.110) and the corresponding expression for k2 that the terms

involving k ≈ k̃ ≈ k2 would dominate the summation, especially when N ap-

proaches infinity. Consequently,

ILstdy(t) ≈ ~k1
1

N + 1

∑
k̃

(
fL
k̃
− fR

k̃

)
sin4 k̃

×

{
1

2N + 1

1

2

∑
k2

sin (ωk̃ − ωk2) t

cos k̃ − cos k2

}

×

{
1

2N + 1

{∑
k even

−1

cos k̃ − cos k

+
∑
k odd

1

cos k̃ − cos k

}}
.

(2.111)
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Let N → ∞ and then followed by t→ ∞, we get

1

(2N + 1)

1

2

∑
k2

sin (ωk̃ − ωk2) t(
cos k̃ − cos k2

)
=

1

(2N + 1)

∑
k2

sin (ωk̃ − ωk2) t

ω2
k2
− ω2

k̃

≈ 1

π

ˆ π

0

dk2
sin (ωk̃ − ωk2) t

(ωk2 − ωk̃) (ωk2 + ωk̃)

=−
ˆ √

4k1+k0

√
k0

dωk2

ωk2

sin k2

1

(ωk2 + ωk̃)
δ (ωk̃ − ωk2)

=− 1

2 sin k̃
(2.112)

Furthermore, we have

lim
N→∞

1

2N + 1

{∑
k even

−1

cos k̃ − cos k

+
∑
k odd

1

cos k̃ − cos k

}
= − 1

sin2 k̃

(2.113)

for some k̃ ∈
{

πj̃
N+1

}N

j̃=1
, which can be directly verified by the software Mathemat-

ica. We then recover the Landauer formula

ILstdy =
1

2
~k1

1

N + 1

∑
k̃

(
fL
k̃
− fR

k̃

)
sin k̃

=
1

2π

ˆ √
4k1+k0

√
k0

dω ~ω
(
fL(ω)− fR(ω)

)
,

(2.114)

the specific form of which can be also obtained from the application of Eq. (1.1)

on this model. Note in the above that the discrete summation over wavevector k̃

is converted into a continuous integration over the angular frequency ω. Further-

more, we want to emphasize that although the on-site constant k0 appears in the

expressions for both Istdy and Ifluct, its presence in the steady-state contribution

Istdy does not prevent the contribution to approach a steady-state value in the long-

time limit. In contrast, the value of k0 is crucial for the fluctuating contribution

47



Chapter 2. Nonequilibrium Green’s function method

Ifluct to decay away. A zero k0 would result in Itrans having a strong time-dependent

zigzag-like behavior that dominates the total energy current at all times. There

would be no steady current flow even when N → ∞. However, even a small on-site

potential, say k0/k1 = 0.1, would result in the fluctuating contribution to decay

away in the long-time limit and leave only the contribution from the steady-state

term.
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Energy transport in coupled

left-right-lead systems

Generally in nonequilibrium state energy will transfer into or out of an open system

HL, the notation of which remind us of the left lead of the whole system Htot =

HL+HC +HR+HLC +HCR we discussed in the last chapter. In order to describe

the energy transfer, we first consider the energy stored in the open system HL at

time t, which is

EL (t) = Tr
[
ρiniHH

L (t)
]
. (3.1)

Then the energy current flowing out of the open system can be obtained as

IL (t) = −dEL (t)

dt
= −Tr

[
ρini

dHH
L (t)

dt

]
≡ Tr

[
ρiniÎHL (t)

]
, (3.2)

where correspondingly we have defined the current operator ÎSL , whose Heisenberg-

picture form is just ÎHL (t).
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Now we try to understand the ensemble average defining the energy current from

quantum histories point of view. With the specified initial density matrix ρini, the

quantum histories used to study the energy current shown in Eq. (3.2) simply con-

sists of one-time events, which is expressed by the projectors onto the eigenstates

of the current operator ÎSL :

P iL = |iL⟩ ⟨iL| , ÎSL |iL⟩ = iL |iL⟩ , (3.3)∑
iL

|iL⟩ ⟨iL| = I, (3.4)

where without loss of generality we assume the eigenstates are nondegenerate. A

realization of the history relevant to the energy current is given as Y = I ⊙ P iL
t .

Then the energy current at time t is obtained as

IL (t) =
∑
iL

iLPr (Y ) (3.5)

=
∑
iL

iLTr
[
ρiniK (Y )†K (Y )

]
(3.6)

=
∑
iL

iLTr
[
ρiniU (t0, t)P

iL
t P iL

t U (t, t0)
]

(3.7)

= Tr
[
ρiniU (t0, t) Î

S
LU (t, t0)

]
(3.8)

= Tr
[
ρiniÎHL (t)

]
(3.9)

which is consistent with the original definition in Eq. (3.2). In the derivation, we

have used the spectrum decomposition of the current operator ÎSL =
∑

iL
iL |iL⟩ ⟨iL|

and the property of the projector P iL
t P iL

t = P iL
t .

The family of the quantum histories we used to study the energy current is au-

tomatically consistent due to the orthogonality of different projectors defined in

Eq. (3.3), which is briefly shown as below:

Tr
[
ρiniK (Y )†K (Y ′)

]
= Tr

[
ρiniU (t0, t)P

iL
t P

i′L
t U (t, t0)

]
= 0 (3.10)
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for Y ̸= Y ′.

Here for the simplicity of notations and discussion, we implicitly assume that the

eigenstates of the current operator are discrete, which normally is not true in lattice

systems. However for the case of continuous spectrum of the current operator, the

projector can be written as P iL
t = |iL⟩ ⟨iL| diL, which generally depends on the

accuracy of the ‘measurement’ diL.

In this chapter, we study energy transport and present a generalized transmission

coefficient formula for the lead-junction-lead system, in which interaction between

the leads has been taken into account [43]. Based on this formula, the Caroli for-

mula could be easily recovered and a transmission coefficient formula for interface

problem in the ballistic system can be obtained. The condition of validity for the

formula is carefully explored. Also, an illustrative example is given to clarify the

precise meaning of the quantities used in the formula, such as the concept of the

reduced interacting matrix in different situations. In addition, an explicit trans-

mission coefficient formula for a general one-dimensional interface setup is obtained

based on the derived interface formula.
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3.1 Formalism

3.1.1 Model system

We consider the lead-junction-lead model initially prepared in product state ρ̂ (t0) =

e−βLHL

Tr(e−βLHL)
⊗ e−βCHC

Tr(e−βCHC )
⊗ e−βRHR

Tr(e−βRHR)
. We can imagine that left lead (L), center

junction (C), and right lead (R) in this model were in contact with three differ-

ent heat baths at the inverse temperatures βL = (kBTL)
−1, βC = (kBTC)

−1, and

βR = (kBTR)
−1, respectively, for time t < t0. At time t = t0, all the heat baths are

removed, and coupling of the center junction with the leads and the interaction

between the two leads are switched on abruptly. Now the total Hamiltonian of the

lead-junction-lead system becomes

Htot =HL +HC +HR +HLC +HCR +HLR, (3.11)

where Hα = 1
2
pTαpα+

1
2
uTαK

αuα, α = L,C,R represents coupled harmonic oscilla-

tors, and uα ≡
√
mxα and pα are column vectors of transformed coordinates and

corresponding conjugate momenta in region α. The superscript T stands for ma-

trix transpose. HLC = uTLV
LCuC and HCR = uTCV

CRuR are the usual couplings

between the junction and the two leads, which are certainly necessary to establish

the heat current. Now the new term representing interaction between two leads

HLR = uTLV
LRuR will greatly modify transmission coefficient, which is our main

interest.

It is worth mentioning that nonlinear interaction could be added inside the center

junction and dealt with using a self-consistent approach in the framework of NEGF,

which has been done by some authors [12, 55, 56].
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3.1.2 Steady-state contour-ordered Green’s functions

As was mentioned in the previous Chapter, contour-ordered Green’s functions are

the central objects in the NEGF formalism, among which the directly derived rela-

tion, say, the Dyson equation, could be readily transformed to all kinds of relations

among the real-time Green’s functions by the Langreth theorem [57]. Many inter-

esting quantities, such as the current we consider in the following subsection, could

be easily related to the proper real-time Green’s functions.

Steady-state contour-ordered Green’s functions are defined as

Gαβ
jk (τ1, τ2) =− i

~
Tr
{
ρ̂ss (s)Tτ

[
uαj (τ1)u

β
k (τ2)

]}
, α, β = L, C, R, (3.12)

where ρ̂ss (s) = U (s, t0) ρ̂ (t0)U (t0, s) is the steady-state density operator, in which

time s > t0 introduced for convenience in later discussion could take any finite time

since the switch-on time t0 will go to −∞ at the end in order to establish steady-

state heat current. uαj (τ1) = U (s, τ1)u
α
j U (τ1, s) is the coordinate operator of jth

degree of freedom in region α in the Heisenberg picture and similarly for uβk (τ2).

The variables τ1 and τ2 are on the contour from time s to ∞ and back from ∞ to

time s. U (t0, s) are the time evolution operators of the full Hamiltonian. Tτ is the

contour-ordering superoperator. There is a strong assumption here which is all we

need in the whole derivation, where we assume steady state could be established

from initial product state after infinite time so that all the steady-state real-time

Green’s functions depend only on the difference of the two-time arguments. This

intuitively reasonable assumption is not always guaranteed and in the Sec. 2.3 of

the last chapter we have carefully examined if, when, and how the onset of the

steady-state occurs using a specific example.
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After t0 → −∞ , s → t+0 , and transforming to the interaction picture, where the

total Hamiltonian Htot is separated into the free part H0 = HL+HC +HR and the

interaction part Hint = HLC +HCR +HLR, we obtain

Gαβ
jk (τ1, τ2) =

− i

~
Tr
{
ρ̂ (−∞)Tτ

[
e−

i
~
´
K HI

int(τ
′)dτ

′

uαI,j (τ1)u
β
I,k (τ2)

]}
, (3.13)

where uαI,j (τ1) = e
i
~H0τ1uαj e

− i
~H0τ1 is the operator in the interaction picture and

similarly for uβI,k (τ2) and H
I
int (τ

′). Now the variables τ1 and τ2 are on the Keldysh

contour [58, 59] K from −∞ to ∞ and back from ∞ to −∞. Expanding the

exponential to perform a perturbation expansion and using Feynman diagrammatic

technique, we can obtain Dyson equations for Gαβ (τ1, τ2) , α, β = L,C,R such as

GCL
ij (τ1, τ2) =∑
l,n

ˆ
K

dτgCil (τ1, τ)V
CL
ln GLL

nj (τ, τ2) +
∑
l,n

ˆ
K

dτgCil (τ1, τ)V
CR
ln GRL

nj (τ, τ2). (3.14)

All these Dyson equations could be symbolically lumped into a compact matrix

expression,

G = g + gV G = g +GV g, (3.15)

where G =


GLL GLC GLR

GCL GCC GCR

GRL GRC GRR

 , g =


gL 0 0

0 gC 0

0 0 gR

 , V =


0 V LC V LR

V CL 0 V CR

V RL V RC 0


(V T = V ), and

gαjk (τ1, τ2) = − i

~
Tr

{
e−βαHα

Tr (e−βαHα)
Tc
[
uαI,j (τ1)u

α
I,k (τ2)

]}
, (3.16)

α = L,C,R are equilibrium contour-ordered Green’s functions for the free subsys-

tems, which are easy to calculate directly. No approximation is needed here, since

the coupling Hint is quadratic.
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3.1.3 Generalized steady-state current formula

Certainly, heat current flowing out of the left lead in steady state does not depend

on time and based on its definition IssL ≡ −Tr [ρ̂ss (s) dHL (t)/dt] for t > s, we

could simply obtain

IssL =−
ˆ ∞

−∞

dω

2π
~ωTr [(V G< [ω])LL]

=−
ˆ ∞

−∞

dω

2π
~ωTr [(VredG

<
red [ω])LL] , (3.17)

where (V G< [ω])LL denotes the LL part submatrix of V G< [ω].

Observing the structure of Tr [(V G< [ω])LL], we note that the size of the G< [ω]

making nonzero contribution to IssL is completely determined by nonzero entries

in the symmetric total coupling matrix V . So we do not need the full G< [ω]

which is an infinite matrix due to the two semi-infinite leads. According to this

observation, we choose the reduced square matrix G<
red [ω] to be the corresponding

submatrix of G< [ω] determined by the row indexes of nonzero row vectors of

coupling matrices V LC , V LR, V RC , V RL plus full center part row indexes inside

the total coupling matrix V for the rows of G<
red [ω], and the column indexes of

nonzero column vectors of coupling matrices V CL, V RL, V CR, V LR plus full center

part column indexes inside the total coupling matrix V for the columns of G<
red [ω].

In order to calculate the lesser Green’s function G<
red [ω], a closed Dyson equa-

tion for reduced contour-ordered Green’s function Gred (τ1, τ2) is needed. Equation

(3.15) is the starting point, and it is also true that Gred = gred+gredVredGred, where

gred is similarly defined as Gred and Vred is the submatrix of original V after cross-

ing out all the zero column and row vectors except for the possible zero vectors
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whose row or column indexes are the center (junction) ones. Actually, Gred is the

corresponding submatrix of G just like Vred.

From now on, for notational simplicity, we omit the subscript red of all the steady-

state Green’s functions and all the coupling matrices with the understanding that

these matrices are of finite dimensions.

Using the Langreth theorem [57] and Fourier transforming the obtained real-time

Green’s functions, we can get

G< [ω]

=Gr [ω]


−ifLΓ̃L [ω] 0 0

0 0 0

0 0 −ifRΓ̃R [ω]

Ga [ω] , (3.18)

where

Γ̃{L,R} ≡ i

[(
gsur,a{L,R}

)−1

−
(
gsur,r{L,R}

)−1
]
, (3.19)

gsur,aL is the advanced surface Green’s function for the left lead coming from the

corresponding part of the advanced reduced Green’s function gared, and similarly

for the retarded one. This new function plays an important role for our generalized

Caroli formula and for an interface formula, derived below. Here, fluctuation dis-

sipation theorem g<α [ω] = fα [ω] (g
r
α − gaα) , α = L,C,R, has been used as well as

(gaC)
−1−(grC)

−1 = 0, which is responsible for the vanishing of junction temperature

dependence of the final steady-state current formula.

Substituting Eq. (3.18) into steady current expression (3.17), we easily obtain

IssL =

ˆ ∞

−∞

dω

2π
~ω
(
fLT1 [ω] + fRT2 [ω]

)
, (3.20)
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where

T1 [ω] = iTr
(
V LCGr

CLΓ̃LG
a
LL + V LRGr

RLΓ̃LG
a
LL

)
, (3.21)

T2 [ω] = iTr
(
V LCGr

CRΓ̃RG
a
RL + V LRGr

RRΓ̃RG
a
RL

)
. (3.22)

Again applying Langreth theorem and Fourier transform to the corresponding re-

duced one of Eq. (3.15), we get Ga
LR = Ga

LLV
LRgsur,aR +Ga

LCV
CRgsur,aR and Ga

LC =

Ga
LLV

LCgaC + Ga
LRV

RCgaC . Using the relations such as (Gr
CL)

† = Ga
LC ,

(
Γ̃L

)†
=

Γ̃L(where the superscript † stands for transpose conjugate), we obtain

T1 [ω] + T ∗
1 [ω] =Tr

(
Gr

RLΓ̃LG
a
LRΓ̃R

)
, (3.23)

In deriving it, the cyclic property of the trace was used. Following similar steps,

we get

T2 [ω] + T ∗
2 [ω] =−Tr

(
Ga

RLΓ̃LG
r
LRΓ̃R

)
, (3.24)

Because Γ̃T
α = Γ̃α, α = L,R, (Gr

RL)
T = Gr

LR, and (Ga
RL)

T = Ga
LR, it is easy to show

that T1 + T ∗
1 = − (T2 + T ∗

2 ) . Now we define the general transmission coefficient

TG [ω] ≡T1 [ω] + T ∗
1 [ω] = Tr

(
Ga

RLΓ̃LG
r
LRΓ̃R

)
. (3.25)

Since current is certainly a real number, and this property has been kept in the

whole derivation, we have IssL = 1
2
(IssL + Iss∗L ) = 1

2

´∞
−∞

dω
2π

~ω TG [ω] (fL − fR).

According to the definitions of retarded and advanced Green’s functions in the fre-

quency domain, we knowGa
RL [−ω] = (Gr

LR [ω])Tand Γ̃{L,R} [−ω] =
(
−Γ̃{L,R} [ω]

)T
.

Together with fL [−ω] − fR [−ω] = −fL [ω] + fR [ω], we see that the integrand is

even in ω; steady current IssL can be simplified further to the final expression

IssL =

ˆ ∞

0

dω

2π
~ω TG [ω] (fL − fR) . (3.26)
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Thus, it is the same as expected that the Landauer-like formula still applies to

this general case, taking lead-lead interaction into account. This Landauer-like

formula with the explicit general transmission coefficient expression (3.25) is the

contribution in the thesis.

Now we need to know how to calculate Gr
LR for specific applications. According to

the corresponding reduced one of Eq. (3.15), we can obtain a closed equation for

Gr
LR,

Gr
LR =g̃rLṼ

LR,rg̃rR + g̃rLṼ
LR,rg̃rRṼ

RL,rGr
LR, (3.27)

where g̃rα ≡
(
(gsur,rα )−1 − V αCgrCV

Cα
)−1

, α = L,R, and
(
Ṽ RL,r

)T
= Ṽ LR,r =

V LR + V LCgrCV
CR. Since Ga

RL = (Gr
LR)

†, now all the quantities necessary to

obtain general transmission coefficient TG could be expressed in terms of retarded

or advanced form of submatrix of gred and submatrix of Vred, which are both easily

obtained.

3.1.4 Recovering the Caroli formula and deriving an inter-

face formula

First, we recover the Caroli formula for transmission coefficient. In this case, cou-

pling between the two leads V LR has been assumed to be 0. Thus, similar to

what we did in Subsec. 3.1.3, we could easily derived Gr
LR = gsur,rL V LCGr

CR =

gsur,rL V LCGr
CCV

CRgsur,rR . Together with Ga
RL = (Gr

LR)
†, we could immediately ob-

tain from formula (3.25) that T [ω] = Tr (Gr
CCΓRG

a
CCΓL), where ΓL = iV CL(gsur,rL −

gsur,aL )V LC , and similarly for ΓR. Here, we should remember that all the quantities
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inside the trace now are reduced ones. However, it is still equal to expression (1.2),

in which all the quantities could be the full ones, taking the trace operation and

the reducing procedure for G and V into account. Method for calculating T [ω] and

applying this efficient formula to specific applications have been stated by many

authors, e.g. [49].

Now we derive an interface formula still based on formula (3.25). By interface

we simply mean that the left lead and right lead have been connected directly

and the center junction has been removed. Mathematically, we know V CL = 0

and V CR = 0 in this situation. Consequently, Gr
LR = gsur,rL V LRGr

RR and Ga
RL =

(Gr
LR)

† = Ga
RRV

RLgsur,aL . Straightforwardly, we get the transmission coefficient

formula in this interface problem [60]

TI [ω] =Tr
(
Gr

RRΓ̃RG
a
RRΓL

)
. (3.28)

In order to apply this formula, still we need a closed equation for Gr
RR, which could

be simply obtained to be

Gr
RR =gsur,rR + gsur,rR Σ̃r

LG
r
RR, (3.29)

where the reduced retarded self-energy is given by Σ̃r
L = V RLgsur,rL V LR.

3.2 An illustrative application

The illustrative example is a one-dimensional central ring problem, in which there

is only one particle in the center junction connected with two semi-infinite spring

chain leads, see Fig. 3.1(a). In this model, the interaction between the two nearest
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Figure 3.1: An illustration of the model (a)before and (b)after repartitioning the

total Hamiltonian. The temperature of the left lead and the right lead are main-

tained in TL and TR respectively. The interparticle spring constant is k1 = ω2
1

and the on-site spring constant is k0 = ω2
0. The coupling between the two lead is

βk1 = βω2
1.

particles inside the two leads also exists and is taken into account as V LR. Thus, the

form of the total Hamiltonian is the same as in Eq. (5.1) with Kα
0 , α = L,R being

the semi-infinite tridiagonal spring constant matrix consisting of 2ω2
1 + ω2

0 along

the diagonal and −ω2
1 along the two off-diagonals, KC = 2ω2

1 + ω2
0, V

LC
red = −ω2

1,

V CR
red = −ω2

1, and V LR
red = −βω2

1, where β is the coupling strength between two

leads. The on-site potential term ω2
0 is necessary in establishing the steady-state

current dynamically. In this simple case, there is an analytical expression for

gsur,rα,0 [ω] , α = L,R, which is gsur,rα,0 = −λ1/ω2
1, λ1 = (−Ω ±

√
Ω2 − 4ω4

1)/(2ω
2
1),

where Ω = (ω + i0+)
2 − 2ω2

1 − ω2
0 and the choice between the plus or minus sign

depends on satisfying |λ1| < 1. Also, gsur,rC [ω] = 1/Ω. After all these preparations,

the transmission coefficient is simply calculated by the formula (3.25).
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An alternative method to deal with this problem was suggested by Di Ventra.

Essentially we repartition the total Hamiltonian so that interaction between leads

is absent, see Fig. 3.1(b). Thus, in this model, the form of the total Hamiltonian

is still the same as in Eq. (5.1) but with

KC =


2ω2

1 + ω2
0 −ω2

1 −βω2
1

−ω2
1 2ω2

1 + ω2
0 −ω2

1

−βω2
1 −ω2

1 2ω2
1 + ω2

0

 , (3.30)

V LC
red =

[
−ω2

1 0 0

]
, (3.31)

V CR
red =


0

0

−ω2
1

 . (3.32)

Since now V LR
red = 0, we can use either the Caroli formula (1.2) or the general one

(3.25) to calculate the transmission coefficient. The results of the two methods

are compared in Fig. 3.2. It turns out to be that the results of the two methods

are the same, which justifies the suggestion of Di Ventra from the NEGF point

of view in this example. For β = 0, perfect transmission (T [ω] = 1) is reached.

From Fig. 3.2, we notice that the transmission decreases with increasing coupling

strength between the two leads, which is very typical for transmission with bro-

ken translational invariance. Also, roughly speaking, the new peak in Fig. 3.2(d)

originates from the interference of the two waves coming from the two different

paths.

Probably a much more efficient way to calculate the transmission coefficient in this

type of noninteracting problem is to use the interface formula (3.28). Frequently,

the surface Green’s functions become complex when we separate the total system
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Figure 3.2: The transmission coefficient T [ω] as a function of frequency for coupling

between leads (a) β = 0.2, (b) β = 0.4, (c) β = 0.6, and (d) β = 0.8. The results

was calculated directly (red solid line), and by repartitioning the total Hamiltonian

(blue circles). ω0 = 0.1ω1 in all cases.
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into two parts in order to apply the interface formula. However, there are some

efficient algorithms for surface Green’s functions see, for example, Ref. [49]. Now

we show a specific application of the interface formula (3.28).

3.3 Explicit interface transmission function for-

mula

In this section we derive an explicit expression for the transmission function TI [ω]

using Eq. (3.28) for the single interface setup; that is the left and right lead are

directly connected and the center part is removed.

Let us consider that the normalized force constants for left and the right leads are

ω2
1 and ω2

2 respectively and the normalized interface coupling strength is ω2
12. Also,

on-site potential ω2
0 to all the atoms exists to ensure that the steady state could

be established dynamically. This is a quite general scenario for a one-dimensional

harmonic chain, which is useful for the study of interface effects. One of the force

constant matrix, say KL, is equal to KL
0 + ∆K, where ∆K is the semi-infinite

matrix with only first element being nonzero ∆K11 = ω2
12 − ω2

1 while KL
0 is the

same as defined in the last application. The same holds for KR with ω2
1 replaced by

ω2
2. In order to obtain the explicit form, only inputs that are required are retarded

surface Green’s function gsur,rα for both the leads. G
{r,a}
RR in Eq. (3.28) can then be

easily obtained from these expressions.

Let us calculate the surface Green’s function for one of the leads, say, the left lead.
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Then for the right lead it can be obtained by replacing ω2
1 with ω2

2. The surface

Green’s function for a semi-infinite lead when all force constants are the same is

given as before, that is gsur,rL,0 . For this interface case, we can obtain the surface

Green’s function as follows. The retarded Green’s function for the left lead satisfies

the following equation [
(ω + i0+)2 −KL

]
grL = I. (3.33)

Taking KL = KL
0 + ∆K into account, and using ∆K as a perturbation, we can

write

grL = grL,0 + grL,0∆Kg
r
L. (3.34)

Since in this case only first atom of the left lead is connected with the first atom

of the right lead, the retarded surface Green’s function of the left lead is just the

(1, 1)− th element of grL and we obtain

gsur,rL =
1

ω2
1 − ω2

12 − ω2
1/λ1

, (3.35)

and the self-energy for the lead is given by

Σ̃r
L =

ω4
12

ω2
1 − ω2

12 − ω2
1/λ1

. (3.36)

Knowing this surface Green’s function and self-energy, we can easily obtain TI [ω]

from Eq. (3.28), which can be written as

TI [ω] = − ω2
1ω

2
2ω

4
12(λ1 − λ∗1)(λ2 − λ∗2)∣∣(ω2

1 − ω2
12 − ω2

1/λ1)(ω
2
2 − ω2

12 − ω2
2/λ2)− ω4

12

∣∣2 , (3.37)

where λ2 is similarly defined as λ1 with ω1 replaced by ω2. We note that it matches

exactly with the result in Ref. [61], where this expression is obtained from a wave-

scattering method. Now if ω2
1 = ω2

2 = ω2
12, then we have perfect transmission (i.e.,

TI [ω] = 1 for ω within the phonon band ω2
0 ≤ ω2 ≤ 4ω2

1 + ω2
0 and 0 outside this

region).
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3.4 Summary

We examine the heat current in a lead-junction-lead quantum system, in which

coupling between the leads has been taken into account. After assuming an ideal

steady state could be established from initial product state, we rigorously derived

a general Landauer-like formula in the NEGF framework, from which the corre-

sponding transmission coefficient was obtained. Based on this general transmission

coefficient formula, Caroli formula was recovered and a computationally efficient

interface formula applicable to the case in which the total noninteracting Hamil-

tonian could be repartitioned was derived. Also an illustrative example was given

as both verification of the validity of the repartitioning procedure which does not

affect the steady current value, and clarification of the meaning of some quantities

used in the formula, such as V LC
red , in different situations. Finally, we derived an

explicit transmission coefficient formula in a general one-dimensional interface sit-

uation based on the interface formula, which turned out to be perfectly consistent

with result obtained by the wave-scattering method.
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Distribution of energy transport

in coupled left-right-lead systems

In this chapter, we first briefly discuss the general theory of large deviations. Then

based on two-time observation protocol (two-time quantum histories), we consider

heat transfer in a given time interval tM in lead-junction-lead system taking cou-

pling between the leads into account. In view of the two-time quantum histories,

consistency conditions are carefully verified in our specific family of quantum his-

tories. Furthermore, its implication is briefly explored. Then using the nonequi-

librium Green’s function method, we obtain an exact formula for the cumulant

generating function for heat transfer between the two leads valid in both transient

and steady-state regimes. Also, a compact formula for the cumulant generating

function in the long-time limit is derived, for which the Gallavotti-Cohen fluctu-

ation symmetry is explicitly verified. In addition, we briefly discuss Di Ventra’s
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repartitioning trick regarding whether the repartitioning procedure of the total

Hamiltonian affects the nonequilibrium steady-state current fluctuation. All kinds

of properties of nonequilibrium current fluctuations, such as the fluctuation the-

orem in different time regimes, could be readily given according to these exact

formulas.

4.1 Large deviation theory

The large deviation theory in terms of its mathematical version was initiated by

Cramér [62] in the 1930s. Later several authors, such as Donsker and Freidlin [63,

64], contribute a lot to the development of this topic. For a thorough understanding

of large deviation theory, one can resort to the books in Refs. [65, 66]. The brief

discussion in this section mainly follows Touchette [67].

The theory of large deviations is concerned with the exponential decay of probabili-

ties of large fluctuations in stochastic processes. The cornerstone of large deviation

theory is the so-called large deviation principle. For our purpose, the large devia-

tion principle is restricted to the situation as below: Let At be a random variable

indexed by the positive integer t1, and let Pr (At = a) be the probability that At

takes on a value a. In case that the value a the random variable At can take on is

1The label t here stands for an integer number while for our purpose it means time, which

certainly is real. The contradiction will be compromised when later t becomes very large.
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continuous, then

Pr (At = a) ≡ Pr (At ∈ [a, a+ da]) (4.1)

= p (At = a) da (4.2)

with p (At = a) being the probability density of At. We say that Pr (At = a) sat-

isfies a large deviation principle with rate function I (a) if the limit

lim
t→∞

−1

t
ln Pr (At = a) = I (a) (4.3)

exists. For convenience, we introduce the sign “≍” and interpret it as expressing an

equality relationship on a logarithmic scale; that is at ≍ bt means limt→∞
1
t
lnat =

limt→∞
1
t
lnbt. Thus, alternatively, we can use

Pr (At = a) ≍ e−tI(a)da (4.4)

to mean that Pr (At = a) satisfy a large deviation principle, where we implicitly

assume that At is a continuous random variable.

The theory of large deviations can be considered as a collection of methods de-

veloped to establish the large deviation principle for a given random variable if it

exists and further derive the expression of the associated rate function. A funda-

mental result of large deviation theory known as the Gärtner-Ellis theorem can

solve these two problems.

The Gärtner-Ellis Theorem

Consider a real continuous random variable At parameterized by the positive inte-

ger t, and define the (scaled) cumulant generating function of At by the limit

λ (k) = lim
t→∞

1

t
ln
⟨
etkAt

⟩
(4.5)
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and ⟨
etkAt

⟩
≡
ˆ +∞

−∞
etkAtp (At = a) da (4.6)

with the parameter k being real.

The Gärtner-Ellis theorem claims that, if λ (k) exists and is differentiable for all

k ∈ ℜ, then At satisfies a large deviation principle, i.e.,

Pr (At = a) ≍ e−tI(a)da (4.7)

with a rate function given by

I (a) = sup
k∈ℜ

{ka− λ (k)} . (4.8)

Where the mathematical symbol “sup” stands for “supremum of”.

In the following we give a plausible proof for the Gärtner-Ellis Theorem. Let

us assume that the real random variable At (ω) is a function of t real random

variables ω = (ω1, ω2, . . . , ωt). Denoting by p (ω) the probability density of ω, the

probability density of At can be given as

p (At (ω) = a) =

ˆ
ℜt

δ (At (ω)− a) p (ω) dω. (4.9)

Employing the Laplace transform representation of Dirac’s delta function

δ (a) =
1

2πi

ˆ b+i∞

b−i∞
eξadξ, ∀b ∈ ℜ, (4.10)

the probability density of At can be written as

p (At (ω) = a) =
1

2πi

ˆ b+i∞

b−i∞
e−ξadξ

ˆ
ℜt

eξAt(ω)p (ω) dω. (4.11)

Performing the change of variable ξ → tξ, and notice that we have assumed

ˆ
ℜt

etξAt(ω)p (ω) dω ≡
⟨
etξAt(ω)

⟩
≍ etλ(ξ) (4.12)
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with λ (ξ) being differentiable, we can write

p (At = a) ≍
ˆ b/t+i∞

b/t−i∞
dξe−t(ξa−λ(ξ)). (4.13)

Choosing a proper parameter b so that the contour goes through the saddle-point

ξ∗ of ξa− λ (ξ), then using the saddle-point approximation, we can obtain

p (At = a) ≍ e−t(ξ∗a−λ(ξ∗)). (4.14)

Furthermore, assuming that λ (ξ) is analytic, then ξ∗ is both the unique minimum

of ξa − λ (ξ) along the contour, which runs parallel to the imaginary axis from

ξ = ξ∗ − i∞ to ξ = ξ∗ + i∞, and the maximum of ξa − λ (ξ) along the real axis.

Therefore, we can get

lim
t→∞

−1

t
ln p (At = a) = sup

ξ∈ℜ
{ξa− λ (ξ)} . (4.15)

It is interesting to notice that the cumulant generating function λ (k) is always

convex: Considering Hölder’s inequality

∑
i

|yizi| ≤

(∑
i

|yi|1/p
)p(∑

i

|zi|1/q
)q

(4.16)

with 0 ≤ p, q ≤ 1, p+ q = 1, and setting

yi = [Pr (ai)]
α eαtk1ai (4.17)

zi = [Pr (ai)]
1−α e(1−α)tk2ai (4.18)

p = α (4.19)

q = 1− α (4.20)

α ∈ [0, 1] ,
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we can get ∑
i

Pr (ai) e
t(αk1ai+(1−α)k2ai) ≤

(∑
i

Pr (ai) e
tk1ai

)α

·

(∑
i

Pr (ai) e
tk2ai

)1−α

(4.21)

or

ln
⟨
et[αk1+(1−α)k2]At

⟩
≤ α ln

⟨
etk1At

⟩
+ (1− α) ln

⟨
etk2At

⟩
. (4.22)

Hence,

αλ (k1) + (1− α)λ (k2) ≥ λ (αk1 + (1− α) k2) . (4.23)

4.2 Model and consistent quantum framework

for the study of energy transport

We consider the lead-junction-lead model initially prepared in product state ρini =

e−βLHL

Tr(e−βLHL)
⊗ e−βCHC

Tr(e−βCHC )
⊗ e−βRHR

Tr(e−βRHR)
. We can imagine that left lead (L), center

junction (C), and right lead (R) in this model were in contact with three different

heat baths at the inverse temperatures βL = (kBTL)
−1, βC = (kBTC)

−1, and βR =

(kBTR)
−1, respectively, for time t < 0. At time t = 0, all the heat baths are

removed, and coupling of the center junction with the leads HLC = uTLV
LCuC and

HCR = uTCV
CRuR and the lead-lead coupling term HLR = uTLV

LRuR are switched

on abruptly. Now the total Hamiltonian of the lead-junction-lead system becomes

Htot =HL +HC +HR +HLC +HCR +HLR, (4.24)

where Hα = 1
2
pTαpα+

1
2
uTαK

αuα, α = L,C,R represents coupled harmonic oscil-

lators, and uα =
√
mxα and pα are column vectors of transformed coordinates
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and corresponding conjugate momenta in region α. The superscript T stands for

matrix transpose.

In order to extract information on heat transfer, we introduce a two-time observa-

tion protocol in the process of the evolution of the system; that is, at time t = 0−,

we carry out the measurement of energy of the left lead associated with the opera-

tor HL, obtaining the result to be the eigenvalue a of HL, and measure it again at

time t = tM , obtaining the eigenvalue b of HL [68]. Here the measurement is in the

sense of quantum measurement of von Neumann [69]. This quantum history [39],

that is a sequence of quantum events at successive times, is represented by the

product projector Y = P a
0− ⊙P b

tM
, where ⊙ is a variant of the tensor product sym-

bol ⊗, emphasizing that the factors in the quantum history refer to different times,

and P a
0− is the projector on the energy eigenstate of HL, with energy a measured

at time t = 0−, similarly for P b
tM
. And the corresponding chain operator K (Y )

is given by the expression K (Y ) ≡ P b
tM
U (tM , 0

−)P a
0− in the case of a quantum

history Y = P a
0− ⊙ P b

tM
involving just two times, where U (tM , 0

−) is the time evo-

lution operator of the full Hamiltonian Htot. Then according to the discussion in

the Sec. 1.3 of the Chapter 1, the joint probability distribution for the quantum

history Y is

Pr (Y ) =
⟨
K†K

⟩
≡ Tr

{
ρiniK†K

}
, (4.25)

where the superscript † stands for the transpose conjugate and from now on the

angle brackets ⟨. . .⟩ simply denotes an ensemble average with respect to ρini. Here

it is worth mentioning that this scheme for the joint probability distribution could

be readily extended to many-time measurement.
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Taking the commutator [ρini, P a
0− ] = 0 into account, we can verify that consis-

tency conditions ⟨K (Y ) , K (Y ′)⟩ρini ≡ Tr
{
ρiniK (Y )†K (Y ′)

}
= 0 for all Y ̸= Y ′

are fulfilled, which guarantees that we are working with a consistent quantum

framework. This observation, on the other hand, has explained why we prefer the

initial direct product state ρini in this thesis. The consistent quantum framework,

combining the axiom of probability, especially the additivity of the probability of

disjoint events, with the Born rule of the quantum theory, is crucial to understand

the probability aspect of the quantum theory [39]. Now we want to gain some

insight into the specific consistent quantum framework we study from the thermal

transport point of view.

As we will consider later, in order to study the probability distribution function

for the processing quantity heat transfer during the time tM , we introduce the

corresponding generating function (GF), defined as

Z (ξ) ≡
∑
a,b

eiξ(a−b) Pr
(
P a
0− ⊙ P b

tM

)
, (4.26)

where the summation for a and b extends over all the eigenvalues of HL [4]. Then

based on this definition, we simply take the derivative of Z (ξ) with respect to iξ

and then set ξ = 0 to obtain the average heat transfer out of the left lead L,

QL (tM) =
∑
a,b

(a− b) Pr
(
P a
0− ⊙ P b

tM

)
(4.27)

= Tr
[
ρiniHL

]
− Tr

[
ρiniU

(
0−, tM

)
HLU

(
tM , 0

−)] , (4.28)

where the properties
(
P a
0−

)2
= P a

0− and
∑

a P
a
0− = 1 for the projector P a

0− , and

similarly for P b
tM

are used. Also, we use the key relation [ρini, P a
0− ] = 0, which

assures that we are working with a consistent quantum framework. Thus, we
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immediately realize that

dQL (tM)

dtM
= −

⟨
dHL (tM)

dtM

⟩
, (4.29)

of which the right-hand side is just the natural definition of thermal current IL

out of the left lead at time t = tM . We must emphasize that, if the initial density

matrix does not commute with P a
0− , such as a steady-state density matrix, so that

the framework we work with is not consistent, then the thermal current deriving

from GF for the heat transfer will not be equal to the natural definition of it.

4.3 Cumulant generating function (CGF)

As was mentioned before, we proceed to study the GF for the heat transfer out of

the left lead. According to the definition of the GF in Eq. (4.26), we can obtain

Z (ξ) =
⟨
Uξ/2

(
0−, tM

)
U−ξ/2

(
tM , 0

−)⟩ , (4.30)

where U−ξ/2 (tM , 0
−) is an evolution operator associated with the modified to-

tal Hamiltonian H
−ξ/2
tot = ei(−ξ/2)HLHtote

−i(−ξ/2)HL , and similarly for Uξ/2 (0
−, tM).

Transforming to the interaction picture with respect to the free part of the modified

total Hamiltonian H0 = HL +HC +HR, the GF for the heat transfer becomes

Z (ξ) =⟨
Tτe

− i
~
´
C dτûT

L(~xτ+τ)(V LC ûC(τ)+V LRûR(τ))+ûT
C(τ)V CRûR(τ)

⟩
, (4.31)

where Tτ is a τ -ordering operator arranging operators with earliest τ on the contour

C (from 0− to tM and back to 0−) to the right, and a caret is put above operators
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to denote their τ dependence with respect to the free Hamiltonian such as ûC (τ) =

e
i
~HCτuCe

− i
~HCτ , and xτ = −ξ/2 with τ = t+ on the upper branch of the contour

C, while xτ = +ξ/2 with τ = t− on the lower branch.

The key step to evaluate GF is to rewrite the exponent in Eq. (4.31) as

− i

~

ˆ
C

dτ1dτ2
1

2
uT (τ1)V (τ1, τ2)u (τ2) , (4.32)

where

uT (τ) =

[
ûTL (~xτ + τ) , ûTC (τ) , ûTR (τ)

]
, (4.33)

V (τ1, τ2) =


0 V LC V LR

V CL 0 V CR

V RL V RC 0

 δ (τ1, τ2) , (4.34)

(
V T (τ1, τ2) = V (τ1, τ2)

)
.

Here the generalized δ-function δ (τ1, τ2) is simply counterpart of the ordinary Dirac

delta function on the contour C, see, for example, Ref. [49].

Then expanding the exponential to perform a perturbation expansion and employ-

ing Feynman diagrammatic technique, especially Wick’s theorem and the linked

cluster theorem, the CGF for the heat transfer can be obtained to be

lnZ (ξ) =
1

2

∞∑
n=1

Tr(j,τ)

[
1

n
(V gx)n

]
(4.35)

=
1

2

∞∑
n=1

Tr(j,τ)

[
1

n
(Vredg

x
red)

n

]
(4.36)

=− 1

2
Tr ln

(
I − Ṽredg̃

x
red

)
, (4.37)
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where in the first equality

gx (τ1, τ2)

=


gL (~xτ1 + τ1, ~xτ2 + τ2) 0 0

0 gC (τ1, τ2) 0

0 0 gR (τ1, τ2)

 , (4.38)

with the equilibrium contour-ordered Green functions

gαjk (τ1, τ2) =− i

~
Tr

{
e−βαHα

Tr (e−βαHα)
Tτ
[
ûαj (τ1) û

α
k (τ2)

]}
, (4.39)

α = L,C,R

and the notation Tr(j,τ) means trace both in real space index j and contour time τ

such as Tr(j,τ) [V g
x] =

´
C
dτ1
´
C
dτ2Trj [V (τ1, τ2) g

x (τ2, τ1)]; in the second equality,

considering the structure of the last expression, instead of the full matrix we only

need the finite reduced ones, which make all the contribution to lnZ (ξ), and

Vred (τ1, τ2) =δ (τ1, τ2)


0 V LC

red V LR
red

V CL
red 0 V CR

red

V RL
red V RC

red 0

 (4.40)

is the generalized δ-function δ (τ1, τ2) times the reduced total coupling matrix ob-

tained by deleting all the zero column and row vectors of the full one except for

the possible zero vectors whose row or column indexes are the center (junction)

ones, and gxred is the corresponding submatrix of gx just like Vred of V ; in the third

equality a tilde above matrix means discretized contour-time version of the cor-

responding quantity such as [g̃xred]τil,τjn = [gxred]ln (τi, τj) dτj with an evenly spaced

grid τi and τj along the contour C and I is the identity matrix.
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Introducing the Dyson equation

G (τ, τ ′)

=g (τ, τ ′) +

ˆ
C

dτ1

ˆ
C

dτ2g (τ, τ1)V (τ1, τ2)G (τ2, τ
′) (4.41)

=g (τ, τ ′) +

ˆ
C

dτ1

ˆ
C

dτ2G (τ, τ1)V (τ1, τ2) g (τ2, τ
′) , (4.42)

which actually defines

G =


GLL GLC GLR

GCL GCC GCR

GRL GRC GRR

 (4.43)

based on g (τ, τ ′) = gx≡0 (τ, τ ′), we easily realized that

G̃red =g̃red + g̃redṼredG̃red (4.44)

=g̃red + G̃redṼredg̃red (4.45)

still holds. From now on, for notational simplicity, we omit all the subscripts red

with the understanding that these matrices are of finite dimensions in the real

space domain. Thus, employing Eqs. (4.44) and (4.45) along with the equality

Tr lnA = ln detA, we obtain

lnZ (ξ) = −1

2
ln det (I − d) , (4.46)

d ≡
[
Ṽ LC Ṽ LR

]G̃CC G̃CR

G̃RC G̃RR


Ṽ CL

Ṽ RL

 g̃AL ,
where g̃AL is the discretized contour-time version of gAL (τ1, τ2) = gL (~xτ1 + τ1, ~xτ2 + τ2)−

gL (τ1, τ2).

If we introduce g̃−1
L satisfying g̃−1

L g̃L = I and employ Eqs. (4.44) and (4.45), we
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can simplify the CGF for heat transfer further to be

lnZ (ξ) =− 1

2
ln det

(
I − g̃−1

L

(
G̃LL − g̃L

)
g̃−1
L g̃AL

)
, (4.47)

which is valid in both transient and steady-state regimes.

4.4 The steady-state CGF

Now, we proceed to evaluate the long-time limit of the CGF in Eq. (4.47) called

the steady-state CGF. Transforming Eq. (4.47) from contour-time to real-time and

then using the Keldysh rotation, which is essentially an orthogonal transformation

that

Ă (t1, t2) =O
Tσz

A (t+1 , t+2 ) A
(
t+1 , t

−
2

)
A
(
t−1 , t

+
2

)
A
(
t−1 , t

−
2

)
O (4.48)

≡

Ar (t1, t2) AK (t1, t2)

AK̄ (t1, t2) Aa (t1, t2)

 (4.49)

with

O =
1√
2

 1 1

−1 1

 (4.50)

and the Pauli z matrix

σz =

1 0

0 −1

 (4.51)

appearing due to the transition from contour time to real time, see Ref. [31], we

then obtain

lnZ (ξ) =
1

2

∞∑
n=1

Tr(j,t)

[
1

n

(
ğ−1
L

(
ĞLL − ğL

)
ğ−1
L ğAL

)n]
(4.52)
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where the notation Tr(j,t) means trace both in real space j and real time t, such as

Tr(j,t)

(
ĂB̆
)
=
´ tM
0

dt1
´ tM
0

dt2Trj

[
Ă (t1, t2) B̆ (t2, t1)

]
.

Before proceeding, we must point out that all kinds of real-time versions of the

contour-time Green’s function G (τ, τ ′) defined in Eqs. (4.41) or (4.42) are not nec-

essarily time translationally invariant so that ĞLL (t, t′) may not simply depend on

the time difference t− t′. However, in the long-time limit, i.e., tM → ∞, the time

translationally invariant part obtained from the lowest order of the Wigner trans-

formation will dominate the CGF [57]. It is equivalent to saying that ĞLL (t, t′) =

ĞLL (t− t′) is time translationally invariant in the long-time limit (higher order

terms of the product of the Wigner transformation have been ignored).

Consequently, by setting tM → ∞, and Fourier transforming Eq. (4.52), we get

lnZ (ξ)

=− 1

2
tM

ˆ ∞

−∞

dω

2π
ln det

(
I −

(
ğ−1
L ĞLL − I

)
ğ−1
L ğAL

)
, (4.53)

where,

ğL =

grL gKL

0 gaL

 , ĞLL =

Gr
LL GK

LL

0 Ga
LL

 , (4.54)

ğAL =
1

2

 a− b a+ b

−a− b −a+ b

 , (4.55)

a ≡ g>L
(
e−i~ωξ − 1

)
, b ≡ g<L

(
ei~ωξ − 1

)
are all in frequency space.
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To further simplify the steady-state CGF in Eq. (4.53), we use the formula

det

A B

C D

 = det (AD −BC) (4.56)

in case of [C,D] = 0 to reduce the dimension of the matrix inside determinant by

half. Therefore, the steady-state CGF is given by

lnZ (ξ) = −tM
ˆ ∞

−∞

dω

4π
ln det

{
I − TG [ω]

×
[(
eiξ~ω − 1

)
fL (1 + fR) +

(
e−iξ~ω − 1

)
fR (1 + fL)

] }
, (4.57)

where TG [ω] ≡Gr
LRΓ̃RG

a
RLΓ̃L with

Γ̃{L,R} ≡i
[(
ga{L,R}

)−1 −
(
gr{L,R}

)−1
]

(4.58)

is the transmission matrix and f{L,R} =
{
exp

(
β{L,R}~ω

)
− 1
}−1

is the Bose-Einstein

distribution function for phonons.

In deriving it, we have used the fluctuation dissipation theorem e−βL~ωg>L [ω] =

g<L [ω] = fL (g
r
L − gaL) along with

G<
LL

=Gr
LL

(
−ifLΓ̃L

)
Ga

LL +Gr
LR

(
−ifRΓ̃R

)
Ga

RL, (4.59)

Gr
LL −Ga

LL −Gr
LL

(
ga−1
L − gr−1

L

)
Ga

LL

=Gr
LR

(
ga−1
R − gr−1

R

)
Ga

RL, (4.60)

due to (gaC)
−1 − (grC)

−1 = 0 and the Langreth theorem [57] acting on Eqs. (4.44)

and (4.45). A computationally practical closed equation for Gr
LR could be found

in Eq. (3.27). The formulas of Eq. (4.47) and Eq. (4.57) are the contributions in

the thesis [44].
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Now we recover the classical version of the CGF for the heat transfer in harmonic

networks without the lead-lead coupling, which was first derived in Ref. [29] using

the Langevin equation method. To this end we simply set the lead-lead cou-

pling V LR = 0 in Eqs. (4.44) and (4.45), then use the Langreth theorem and the

Fourier transformation to obtain Gr
LR = grLV

LCGr
CR = grLV

LCGr
CCV

CRgrR along

with Ga
RL = (Gr

LR)
†.

After setting ~ → 0 and employing Ga
RL [−ω] = (Gr

LR [ω])Tand Γ̃{L,R} [−ω] =

−Γ̃{L,R} [ω]
T , we can get

lim
tM→∞

lnZ (ξ)

tM
=−
ˆ ∞

0

dω

2π
ln det

{
I − T [ω]

× k2BTLTR (iξ) [iξ + (βR − βL)]
}
, (4.61)

with

T [ω] ≡Gr
CCΓRG

a
CCΓL, (4.62)

Γ{L,R} =i
[
Σr

{L,R} − Σa
{L,R}

]
(4.63)

Σ{r,a}
α =V Cαg{r,a}α V αC , α = L,R.

4.5 The steady-state fluctuation theorem (SSFT)

and cumulants

According to the steady-state CGF in Eq. (4.57), one could easily verify that the

GC fluctuation symmetry [70] Z (ξ) = Z (−ξ + i (βR − βL)) is still satisfied in this

general set-up with lead-lead coupling. And recall the definition of GF in Eq.
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(4.26), we know that the probability distribution for the heat transferred QL is

Pr (QL) =
1

2πδ(0)

´∞
−∞ dξZ (ξ) e−iξQL . Therefore, following the GC symmetry is the

SSFT Pr (QL) = e(βR−βL)QL Pr (−QL).

Also, the CGF can be used to evaluate cumulants. Here we only focus on steady-

state cumulants of heat transfer. As illustrated in Sec. 4.2, the steady current is

closed related to the first cumulant so that

IssL = lim
tM→∞

d

dtM

(
∂lnZ (ξ)

∂ (iξ)
|ξ=0

)
=

ˆ ∞

0

dω

2π
~ω (fL − fR) TrTG [ω] , (4.64)

where, Z (0) = 1 is used. This generalized Caroli formula with lead-lead coupling

was previously given in Eq. (3.26) based on the definition of current directly. The

second cumulant describing the fluctuation of the heat transferred is obtained by

taking the second derivative of steady-state CGF with respect to iξ and then setting

ξ = 0, which is

⟨⟨
Q2

L

⟩⟩
= lim

tM→∞
tM

ˆ ∞

−∞

dω

4π
(~ω)2

{
(fL + fR + 2fLfR) TrTG

+ (fL − fR)
2TrT 2

G

}
. (4.65)

Higher-order cumulants are also systematically given by corresponding higher-order

derivatives.

After some experiences with the first few order cumulants of heat transfer, we

want to discuss the trick suggested by Di Ventra that repartitioning the total

Hamiltonian to avoid the inevitable coupling between leads in real nanoscale or

mesoscopic systems when calculating steady current. Now whether this trick is

applicable to the evaluation of higher-order cumulant (fluctuation) of the heat
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transfer in steady state boils down to checking whether TrT n
G,old = TrT n

G,new holds

for all n less than or equal to the corresponding order of the cumulant one wants,

where TG,old (TG,new) is the transmission matrix before (after) repartitioning the

total Hamiltonian. Though giving a general verification is difficult, TrT n
G,old =

TrT n
G,new, ∀n is indeed true in a one-dimensional central ring model, in which there

is only one particle in the center junction connected with two semi-infinite spring

chain leads, and the interaction between the two nearest particles in the two leads

respectively exists (in this case, both TG,old and TG,new are just a number). One

step forward, if one thinks of CGF of heat transfer as the complete knowledge of

the steady state, we can claim that the steady state is partition-independent after

verification of TrT n
G,old = TrT n

G,new, ∀n or equivalently, lnZold (ξ) = lnZnew (ξ) in

Eq. (4.57). Then we can partly answer a question raised by Caroli et al . regarding

the (non)equivalence between the partitioned and partition-free approaches [16],

which recently was partly settled by explicitly constructing a nonequilibrium steady

state through adiabatically turning on an electrical bias between the leads [71].

4.6 Summary

We examine the statistics of heat transfer during time tM in a general lead-junction-

lead quantum system, in which coupling between leads has been taken into account.

To this end, a consistent quantum framework was introduced to derive the CGF,

valid in both transient and long-time regimes using the NEGF method. Also,

the implication of consistency of the quantum framework was discussed from a

thermal transport point of view. After that, a compact form of the steady-state
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CGF was obtained, following which the GC symmetry and the SSFT were verified.

In addition, the first few cumulants were given and a generalized Caroli formula was

recovered. Furthermore, some valuable hints with respect to the rigorous proof for

whether fluctuation of heat transfer in steady state is partition-independent have

been offered.

4.7 Appendix: CGF of energy transport under

quasi-classical approximation in harmonic net-

works

In this appendix, we consider energy transport across an arbitrary harmonic net-

works connected to two heat baths modeled by coupled harmonic oscillators at

different temperatures. We are interested in the effects of semiclassical approxi-

mation on the cumulant generating function (CGF) of energy transport, which is

my present work. It is meaningful to notice that quantum molecular dynamics

(QMD) [72] employing quasi-classical approximation can even give ‘nearly’ correct

results for second cumulant of energy transport in ballistic systems, the precise

meaning of which will be clarified later. We mainly extend the method used by

Saito etc [29].

First, we specify the total Hamiltonian, which is written as

Htot =
∑

i=L,C,R

Hi +
(
uL
)T
V LCuC +

(
uC
)T
V CRuR, (4.66)

where Hi =
1
2
(pi)

T
pi+1

2
(ui)

T
Kiui, i = L,C,R and the meaning of the notations
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we use here are the same as before. This setup consists of a central junction

HC connected to two semi-infinite harmonic lattices HL and HR which serve as

heat baths and in respective thermal equilibrium at temperature TL and TR. The

Heisenberg equations of motion for the center and the baths are of the form:

üC = −KCuC − V CRuR − V CLuL, (4.67)

üα = −Kαuα − V αCuC , α = L, R (4.68)

We solve the equation of motions for the baths in terms of center degrees of freedom,

given as

uα (t) =

ˆ ∞

0

grα (t− t′)V αCuC (t′) dt′ + uα0 (t) , α = L, R, (4.69)

where grα (t) is the retarded Green’s function of the free heat bath α and uα0 (t)

satisfies the homogenous equation of the free heat bath α:

üα0 +Kαuα0 = 0. (4.70)

The “free” here means that the relevant dynamics is simply due to Hamiltonian

Hα, α = L, R.

Now we eliminate the baths degrees of freedom uL and uR by substituting the

general solution for the baths Eq. (4.69) back into the equation of motion for the

center Eq. (4.67). We obtain

üC (t) = −KCuC (t)−
ˆ ∞

0

Σr (t− t′)uC (t′) dt′ + ξ (t) , (4.71)

where Σr = Σr
L + Σr

R, Σ
r
α = V CαgrαV

αC is the self energy of the baths, and the

noise ξ = ξL+ ξR with ξα (t) = −V Cαuα0 (t). Notice that throughout the discussion

we implicitly assume the initial time is t = 0 so that Eq. (4.71) is valid for t > 0.
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For later convenience, the Eq. (4.71) is separated to two equations with the sub-

script C being omitted:

u̇ (t) = v (t) , (4.72)

v̇ (t) = −KCu (t)−
ˆ ∞

0

Σr (t− t′)u (t′) dt′ + ξ (t) . (4.73)

The quasi-classical approximation partially take into account the quantum effect

by employing quantum heat baths, which are Gaussian noise specified by

⟨ξα (t)⟩ = 0, (4.74)

⟨ξα (t) ξβ (t′)⟩ = δαβi~
1

2
[Σ>

α (t− t′) + Σ<
α (t− t′)] ,

= δαβ

ˆ ∞

−∞

dω

2π

(
fα (ω) +

1

2

)
~Γα [ω] e

−iω(t−t′), (4.75)

α, β = L, R.

where fα (ω) = 1/
[
e~ω/(kBTα) − 1

]
is the Bose distribution function, and Γα [ω] =

i (Σr
α [ω]− Σa

α [ω]).

Notice that the two baths are independent and we have used a symmetrized noise

after considering that the quantum operators ξα (t) do not commute in general. The

other aspect of quasi-classical approximation is to replace all operators, i.e., uC , vC

and ξα, by numbers from now on. The linear equations Eq. (4.72) and Eq. (4.73)can

be solved by introducing discrete Fourier transforms and the corresponding inverses

as follows:{
ũn, ṽn, ξ̃L,n, ξ̃R,n

}
=

1

tM

ˆ tM

0

dt {u (t) , v (t) , ξL (t) , ξR (t)} eiωnt,

{u (t) , v (t) , ξL (t) , ξR (t)} =
∞∑

n=−∞

{
ũn, ṽn, ξ̃L,n, ξ̃R,n

}
e−iωnt, (4.76)

ωn =
2πn

tM
, n = (. . . ,−2,−1, 0, 1, 2, . . .) .
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Setting tM → ∞ and employing

lim
tM→∞

ˆ tM

0

dte−it(ω−ωn) = 2πδ (ω − ωn) , (4.77)

we get

ṽn = iωnG
r
n

(
ξ̃L,n + ξ̃R,n

)
− 1

tM
Gr

n

{
iωn△v +

(
KC + Σr

n

)
△u
}
, (4.78)

ũn = −Gr
n

(
ξ̃L,n + ξ̃R,n

)
+

1

tM
Gr

n {△v − iωn△u} (4.79)

with Gr
n ≡

[
ω2
n −KC − Σr

n

]−1
. Where Σr

n =
´ +∞
−∞ Σr (t) eiωntdt, △v = v (tM)−v (0)

and △u = u (tM)−u (0). Actually the second terms in both ṽn and ũn are smaller

compared with the first terms due to the factor 1
tM

. Thus from now on we drop the

second terms and simply use the leading-order solution ṽn = iωnG
r
n

(
ξ̃L,n + ξ̃R,n

)
and ũn = −Gr

n

(
ξ̃L,n + ξ̃R,n

)
.

In frequency space, the noise such as {ξL (t) : 0 < t < tM} can be equivalently

described by the infinite independent random variables {ξ̃L,0 = ξ̃∗L,0, ξ̃L,n, ξ̃
∗
L,n :

n = 1, 2, . . .} (∗ denotes complex conjugate), which are still Gaussian specified by

⟨
ξ̃L,m

⟩
=

⟨
ξ̃∗L,m

⟩
= 0, (4.80)⟨

ξ̃L,nξ̃
T
L,n′

⟩
=

⟨
ξ̃∗L,nξ̃

∗T
L,n′

⟩
= 0, (4.81)⟨

ξ̃L,mξ̃
∗T
L,m′

⟩
= δmm′

~
tM

(
fL,m +

1

2

)
ΓL,m (4.82)

with fL,m = fL (ωm) and ΓL,m = ΓL [ωm] andm = 0, 1, 2, . . . coming from Eq. (4.74)

and Eq. (4.75) and the observation ξ̃∗L,m = ξ̃L,−m. The similar is true for the other

noise {ξR (t) : 0 < t < tM}. Precisely, the probability density of the total noise is
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written as

p
[
ξ̃L, ξ̃R, ξ̃

∗
L, ξ̃

∗
R

]
=

∏
m>0

detC1,m detC2,m

π2NC

· exp

−(ξ̃TL,m, ξ̃TR,m

)C1,m 0

0 C2,m


ξ̃∗L,m
ξ̃∗R,m


 (4.83)

with

C1,m =

[
~
tM

(
fL,m +

1

2

)
ΓL,m

]−1

, (4.84)

C2,m =

[
~
tM

(
fR,m +

1

2

)
ΓR,m

]−1

, (4.85)

where NC is the total degrees of freedom in the central junction.

The interested quantity in this appendix is the total amount of energy QL, trans-

ferred out of the left heat bath into the central junction, from the initial time t = 0

to the maximum time t = tM . It can be obtained based on the following argument:

the total rate of energy transport into the central junction is

dHC (t)

dt
= Q̇L (t) + Q̇R (t) (4.86)

with

Q̇α (t) = vT (t)

[
ξα (t)−

ˆ ∞

0

Σr
α (t− t′)u (t′) dt

]
, (4.87)

α = L,R.
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Thus

QL =

ˆ tM

0

Q̇L (t) dt

= tM

∞∑
n=−∞

ṽTn

(
ξ̃L,−n − Σr

L,−nũ−n

)
(4.88)

= tM

∞∑
n=−∞

iωn

(
ξ̃TL,n, ξ̃

T
R,n

)Gr
n +Gr

nΣ
a
L,nG

a
n Gr

nΣ
a
L,nG

a
n

Gr
n +Gr

nΣ
a
L,nG

a
n Gr

nΣ
a
L,nG

a
n


ξ̃∗L,n
ξ̃∗R,n


= tM

∞∑
n=1

(
ξ̃TL,n, ξ̃

T
R,n

)
ωn

 Gr
nΓR,nG

a
n −iGa

n −Gr
nΓL,nG

a
n

iGr
n −Gr

nΓL,nG
a
n −Gr

nΓL,nG
a
n


ξ̃∗L,n
ξ̃∗R,n

 .

In the second equality, we express the total amount of energy QL in the frequency

space; in obtaining the third equality, we have employed the leading-order solution

for ṽn and ũn and the properties Gr,T
n = Gr

n , Σr
L,−n = Σa

L,n and Gr
−n = Ga

n;

In obtaining the fourth equality, the observation is that ω0 = 0 and recall that

Ga
n −Gr

n = iGr
n (ΓL,n + ΓR,n)G

a
n.

We proceed to the calculation of the characteristic function Z (ξ) ≡
⟨
eiξQL

⟩
using

the multi-dimentional Gaussian integral of complex variables, which is obtained to

be

Z (ξ) =

ˆ
d
[
ξ̃L, ξ̃R, ξ̃

∗
L, ξ̃

∗
R

]
p
[
ξ̃L, ξ̃R, ξ̃

∗
L, ξ̃

∗
R

]
eiξQL

=
∏
n>1

detC1,n detC2,n

π2NC
π2NC

1

detAn

(4.89)

with

detAn = det


C1,n 0

0 C2,n

+ (−iξtMωn)

 Gr
nΓR,nG

a
n −iGa

n −Gr
nΓL,nG

a
n

iGr
n −Gr

nΓL,nG
a
n −Gr

nΓL,nG
a
n




≡ detBn det

C1,n 0

0 C2,n

 , (4.90)
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where we can easily verified that

Bn =

 1 + a1G
r
nΓR,nG

a
nΓL,n −ia2Ga

nΓR,n − a2G
r
nΓL,nG

a
nΓR,n

ia1G
r
nΓL,n − a1G

r
nΓL,nG

a
nΓL,n 1− a2G

r
nΓL,nG

a
nΓR,n


=

 1 + a1G
r
nΓR,nG

a
nΓL,n a2 (−iGa

nΓR,n −Gr
nΓL,nG

a
nΓR,n)

a1 (iG
a
nΓL,n +Gr

nΓR,nG
a
nΓL,n) 1− a2G

r
nΓL,nG

a
nΓR,n


≡

1 + a1T1 a2T12

a1T21 1− a2T2

 (4.91)

and a1 = −iξωn~
(
fL,n +

1
2

)
and a2 = −iξωn~

(
fR,n +

1
2

)
.

The important closure relations for T1, T2, T12 and T21 can be given as follows

T12T2 = T1T12, (4.92)

T21T1 = T2T21, (4.93)

T21T12 = T2 (1− T2) , (4.94)

T12T21 = T1 (1− T1) . (4.95)

The sample proofs for the first and the third relation are given in the followings

by repeatedly using ΓL,n +ΓR,n = −i (Gr−1
n −Ga−1

n ), while the remaining relations

can be similarly verified. In the sample proof, the subscript n is omitted for

convenience.

First, we need to notice that the relation between T1 and T2:

T1 ≡ GrΓRG
aΓL = [i (Gr −Ga)−GrΓLG

a] ΓL

= iGrΓL − iGaΓL −GrΓLG
a
[
iGa−1 − iGr−1 − ΓR

]
= −iGaΓL + iGrΓLG

aGr−1 + T2.
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For the first relation (4.92)

Based on the definition of T12 and T2, we know

T12T2 = −iGaΓRT2 − T 2
2

and on the other hand

T1T12 = −iT1GaΓR − T1T2

= −iGrΓRG
aΓLG

aΓR

−
[
−iGaΓL + iGrΓLG

aGr−1 + T2
]
T2

= −i {Ga (ΓL + ΓR)G
r −GrΓLG

a}ΓLG
aΓR

−
[
−iGaΓL + iGrΓLG

aGr−1
]
T2 − T 2

2

=
{
−iGa (ΓL + ΓR) + iGrΓLG

aGr−1 + iGaΓL − iGrΓLG
aGr−1

}
T2

−T 2
2

= −iGaΓRT2 − T 2
2

= T12T2.
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For the third relation (4.94)

T21T12 = (iGaΓL + T1) (−iGaΓR − T2)

=
(
iGrΓLG

aGr−1 + T2
)
(−iGaΓR − T2)

= GrΓLG
aGr−1GaΓR − iGrΓLG

aGr−1T2

−iT2GaΓR − T 2
2

= GrΓLG
aGr−1GaΓR − iGrΓLG

a (ΓL + ΓR)G
aΓR

−T 2
2

= GrΓLG
aGr−1GaΓR − iGrΓLG

ai
(
Ga−1 −Gr−1

)
GaΓR

−T 2
2

= GrΓLG
aΓR − T 2

2

= T2 (1− T2) .

After these preparations and let tM → ∞, the CGF of energy transport can be

obtained as

lnZ (ξ) =
∑
n>1

ln

(
1

detBn

)
(4.96)

= −tM
2π

∑
n>1

dωn ln detBn (4.97)

= −tM
2π

ˆ ∞

0

dω ln detB [ω] , (4.98)

where employing the formula det

A B

C D

 = det {(D − CA−1B)A} and the clo-

sure relations for T1, T2, T12 and T21, we get

detBn = det {1− T2 (a2 − a1 + a1a2)}
det (1 + a1T1)

det (1 + a1T2)
. (4.99)
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Notice that due to the properties (Gr,a)T = Gr,a and ΓT
α = Γα, α = L,R and cyclic

property of the trace, TrT n
1 = TrT n,T

1 = TrT n
2 , for all n > 1. Thus

det (1 + a1T1) = eTr ln(1+a1T1) (4.100)

= eTr ln(1+a1T2) (4.101)

= det (1 + a1T2) . (4.102)

Finally, the CGF of energy transport can be simplified to be

lnZ (ξ) = −tM
2π

ˆ ∞

0

dωTr ln {1− T2g (ξ)} (4.103)

g (ξ) ≡ (iξ) ~ω (fL − fR) + (iξ)2 (~ω)2
(
fL +

1

2

)(
fR +

1

2

)
. (4.104)

The first two cumulants can be immediately given as

Isteady =
1

tM

∂ lnZ (ξ)

∂ (iξ)

∣∣∣∣
ξ=0

=
1

2π

ˆ ∞

0

dωTrT2~ω (fL − fR) (4.105)

and

⟨⟨
Q2

L

⟩⟩
=

tM
2π

ˆ ∞

0

dω (~ω)2
[
TrT2

(
fL + fR + 2fLfR +

1

2

)
+TrT 2

2 (fL − fR)
2

]
(4.106)

= correct quantum one +
tM
2π

ˆ ∞

0

dω
(~ω)2

2
TrT2 [ω] . (4.107)

Where the ‘correct quantum one’ term comes from the pure quantum-mechanical

result, see Eq. (4.65). Based on the first two cumulants, we realized that for ballistic

systems the QMD can give exact quantum result for steady current and ‘nearly’

correct quantum result for second cumulant with a correction term which does not

depend on the temperatures of the heat baths.
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Distribution of energy transport

across nonlinear systems

In this chapter, we consider thermal conduction across a general nonlinear phononic

junction [45]. Based on two-time consistent quantum histories and the field theo-

retical/algebraic method, the cumulants of the heat transfer in both transient and

steady-state regimes are studied on an equal footing, and a practical formula for

cumulant generating function of heat transfer is obtained. As an application, the

general formalism is used to study anharmonic effects on fluctuation of steady-

state heat transfer across a typical molecular junction with a quartic nonlinear

on-site pinning potential. In addition, an explicit nonlinear modification to cumu-

lant generating function exact up to the first order is given. Also, the first three

cumulants are numerically demonstrated using both the self-consistent approach

and the first-order perturbation approach.
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5.1 Model and the general formalism

We still consider the lead-junction-lead model initially prepared in a product state

ρini = Πα=L,C,R
e−βαHα

Tr(e−βαHα)
. It can be imagined that left lead (L), center junction

(C), and right lead (R) in this model were in contact with three different heat

baths at the inverse temperatures βL = (kBTL)
−1, βC = (kBTC)

−1 and βR =

(kBTR)
−1, respectively, for time t < t0. At time t = t0, all the heat baths are

removed, and couplings of the center junction with the leads HLC = uTLV
LCuC

and HCR = uTCV
CRuR and the interested nonlinear term Hn appearing only in the

center junction are switched on abruptly. Now the total Hamiltonian is given by

Htot =HL +HC +HR +HLC +HCR +Hn, (5.1)

where Hα = 1
2
pTαpα+

1
2
uTαK

αuα, α = L,C,R, represents coupled harmonic oscil-

lators, uα =
√
mαxα and pα are column vectors of transformed coordinates and

corresponding conjugate momenta in region α. The superscript T stands for matrix

transpose.

Recall the discussion in the Sec. 4.2, we can similarly construct a consistent frame-

work consisting of two-time quantum histories to study the heat transfer across

arbitrary nonlinear systems in a given time duration. A realization of the quan-

tum history P a
t0
⊙P b

tM
means that the result of the measurement at time t0 of energy

of the left lead associated with the operator HL is the eigenvalue a of HL, then

the measurement at time tM yields the eigenvalue b of HL. Using this consistent

quantum framework, we can define the generating function (GF) for heat transfer
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in the time duration tM − t0 to be

Z (ξ) ≡
∑
a,b

ei(a−b)ξ Pr
(
P a
t0
⊙ P b

tM

)
=
⟨
Uξ/2 (t0, tM)U−ξ/2 (tM , t0)

⟩
, (5.2)

where Pr
(
P a
t0
⊙ P b

tM

)
stands for the joint probability for the quantum history

P a
t0
⊙ P b

tM
; U−ξ/2 (tM , t0) means evolution operator associated with the counting-

field dependent total Hamiltonian H
−ξ/2
tot = ei(−ξ/2)HLHtote

−i(−ξ/2)HL , similarly for

Uξ/2 (t0, tM) and ⟨. . .⟩ denotes the ensemble average over the initial state ρini.

The first step for the study of the GF is to relate it to the Green’s function, by

which the closed equation satisfied can be found out. To this end, we generalize

the GF to be

Z (λ2 − λ1) ≡ ⟨Uλ2 (t0, tM)Uλ1 (tM , t0)⟩ (5.3)

=
⟨
ei(λ2−λ1)HLU (t0, tM) e−i(λ2−λ1)HLU (tM , t0)

⟩
(5.4)

=
⟨
Tτe

− i
~
´
C dτTλ(τ)

⟩
, (5.5)

where, Tτ is a τ -ordering operator arranging operators with earlier τ on the contour

C (from t0 to tM and back to t0) to the right. In the second equality we have used

the cyclic property od the trace and the commutator relation [HL, ρini] = 0; in the

third equality we go to the interaction picture with respect to the free Hamiltonian

h = HL+HC+HR so that Tλ (τ) = ûx,TL (τ)V LC ûC (τ)+ ûTC (τ)V CRûR (τ)+Ĥn (τ)

with caret put above operators to denote the interaction-picture τ dependence such

as ûC (τ) = e
i
~hτuCe

− i
~hτ ), where ûxL (τ) = ûL (~xτ + τ) with xτ = λ1 (λ2) with

τ = t+ (t−) on the upper (lower) branch of the contour C.
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Furthermore, we define the adiabatic potential U (t, λ2, λ1) according to [35]

Z (λ2 − λ1) = e−
i
~
´ tM
t0

dtU(t,λ2,λ1). (5.6)

Thus we could apply the nonequilibrium version of the Feynman-Hellmann theorem

[73] to get

∂

∂λ1
U (t, λ2, λ1) =

1

Z (λ2 − λ1)

⟨
Tτ
∂Tλ (t

+)

∂λ1
e−

i
~
´
C dτTλ(τ)

⟩
(5.7)

≡
⟨
Tτ
∂Tλ (t

+)

∂λ1

⟩
λ

, (5.8)

Since

∂Tλ (t
+)

∂λ1
= ~

∂ûx,TL (t+)

∂t+
V LC ûC

(
t+
)

(5.9)

and introducing contour-ordered Green’s functions G̃LC and G̃CL defined as

G̃LC (τ1, τ2) = − i

~
⟨
Tτ û

x
L (τ1) û

T
C (τ2)

⟩
λ

(5.10)

G̃CL (τ1, τ2) = − i

~

⟨
Tτ ûC (τ1) û

x,T
L (τ2)

⟩
λ
, (5.11)

we can get

∂ lnZ (λ2 − λ1)

∂λ1
=

ˆ tM

t0

dt~
∂

∂t′
Tr
[
G̃t

LC (t′, t)V CL
] ∣∣∣∣

t′=t

(5.12)

=

ˆ tM

t0

dt~
∂

∂t′
Tr
[
G̃t

CL (t, t
′)V LC

] ∣∣∣∣
t′=t

. (5.13)

Notice that the tilde on the Green’s functions emphasizes the fact that they are

counting field ξ-dependent, and real-time Green’s functions can be obtained by

specifying the variation range of the time arguments in contour-ordered Green’s

functions such as

G̃LC (τ1, τ2) →

G̃LC

(
t+1 , t

+
2

)
G̃LC

(
t+1 , t

−
2

)
G̃LC

(
t−1 , t

+
2

)
G̃LC

(
t−1 , t

−
2

)
 =

G̃t
LC (t1, t2) G̃<

LC (t1, t2)

G̃>
LC (t1, t2) G̃t̄

LC (t1, t2)

 .
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According to the basic analysis of Feynman diagrams, the contour-ordered Green’s

functions G̃LC and G̃CL are given as

G̃LC (τ1, τ2) =

ˆ
C

g̃L (τ1, τ)V
LCG̃CC (τ, τ2) dτ, (5.14)

G̃CL (τ1, τ2) =

ˆ
C

G̃CC (τ1, τ)V
CLg̃L (τ, τ2) dτ (5.15)

with the shifted bare Greens function for the left lead being

g̃L (τ1, τ2) = − i

~

⟨
Tτ û

x
L (τ1) û

x,T
L (τ2)

⟩
, (5.16)

where

G̃CC (τ1, τ2) = − i

~
⟨
Tτ ûC (τ1) û

T
C (τ2)

⟩
λ

(5.17)

is the central quantity for the study of the GF of the heat transfer, which we will

discuss later. Just now, we use the treatment of symmetrization to simplify ∂ lnZ
∂λ1

in

Eq. (5.13) further according to the time-order version of Eq. (5.14) and Eq. (5.15),

i.e.,

G̃t
LC (t′, t) =

ˆ tM

t0

g̃tL (t
′, t1)V

LCG̃t
CC (t1, t) dt1 −

ˆ tM

t0

g̃<L (t′, t1)V
LCG̃>

CC (t1, t) dt1

G̃t
CL (t, t

′) =

ˆ tM

t0

G̃t
CC (t, t1)V

CLg̃tL (t1, t
′) dt1 −

ˆ tM

t0

G̃<
CC (t, t1)V

CLg̃>L (t1, t
′) dt1,

which explicitly means that

∂ lnZ (λ2 − λ1)

∂λ1

=
~
2

ˆ tM

t0

dt
∂

∂t′
Tr
[
G̃t

CL (t, t
′)V LC + G̃t

LC (t′, t)V CL
]∣∣∣∣t′=t (5.18)

=− ~
2

ˆ tM

t0

dtdt′Tr
[
G̃>

CC (t, t′)
∂Σ̃<

L (t′, t)

∂t′

+ G̃<
CC (t, t′)

∂Σ̃>
L (t′, t)

∂t

]
(5.19)
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with the self-energy defined to be Σ̃L (τ1, τ2) = V CLg̃L (τ1, τ2)V
LC . Eq. (5.19) is

a generalized Meir-Wingreen formula. In obtaining the second equality we have

used the relation
∂Σ̃t

L(t
′,t1)

∂t′
= −∂Σ̃t

L(t
′,t1)

∂t1
since Σ̃t

L (t
′, t1) = Σ̃t

L (t
′ − t). Essentially

we employ the procedure of symmetrization to get rid of the time-ordered version

of G̃CC (τ1, τ2).

Setting λ1 = −ξ/2 and λ2 = ξ/2, and noticing that

∂Σ̃<,>
L (t′, t1)

∂t′
= −1

~
∂Σ̃<,>

L (t′, t1)

∂ξ
(5.20)

∂Σ̃t,t̄
L (t′, t1)

∂ξ
= 0, (5.21)

we can obtain a compact expression for ∂ lnZ
∂(iξ)

from the generalized Meir-Wingreen

formula Eq. (5.19):

∂ lnZ
∂ (iξ)

=
1

2

ˆ tM

t0

dt

ˆ tM

t0

dt′Tr


 G̃t

CC (t, t′) G̃<
CC (t, t′)

−G̃>
CC (t, t′) −G̃t̄

CC (t, t′)


 0

∂Σ̃<
L (t′,t)

∂(iξ)

−∂Σ̃>
L (t′,t)

∂(iξ)
0




=
1

2

ˆ
C

dτ

ˆ
C

dτ ′Tr

[
G̃CC (τ, τ ′)

∂Σ̃L (τ
′, τ)

∂ (iξ)

]
. (5.22)

If needed, the proper normalization for the CGF, i.e., lnZ (ξ), can be determined

by the constraint lnZ (0) = 0.

5.2 Interaction picture on the contour

The nonlinear effects on the GF are completely included in the G̃CC , for which we

try to obtain the closed Dyson equations now.
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Recall the discussion on the Heisenberg picture defined on the contour in Sec. (2.2.2).

We can rewrite the G̃CC from Eq. (5.17) as

G̃CC (τ1, τ2) = − i

~

⟨
US
(
t−0 , t

−
M

)
US
(
t+M , t

+
0

)
Tτu

H
C (τ1)u

H,T
C (τ2)

⟩ 1

Z
, (5.23)

where the evolution operator US on the contour is determined by the modified

total Hamiltonian Hx
tot (τ) = eixτHLHtote

−ixτHL and remember that xτ = −ξ/2

(ξ/2) with τ = t+ (t−) on the upper (lower) branch of the contour C and

US (τ2, τ1) =


U+
S (t2, t1) ,

(
τ2 = t+2

)
>
(
τ1 = t+1

)
U−
S (t2, tM)U+

S (tM , t1) , τ2 = t−2 , τ1 = t+1

U−
S (t2, t1) ,

(
τ2 = t−2

)
<
(
τ1 = t−1

) (5.24)

with the subscript + (−) denoting the upper (lower) branch; the Heisenberg-picture

operator such as uHC (τ1) is defined as

uHC (τ1) = US
(
t+0 , τ1

)
uCU

S
(
τ1, t

+
0

)
. (5.25)

Now we define the interaction picture on the contour by using the model employed

in this chapter as an example.

The modified total Hamiltonian can be split into two parts, i.e.,

Hx
tot (τ) ≡ eixτHLHtote

−ixτHL = Hx
0 (τ) +Hn (5.26)

We define the interaction-picture evolution operator as

UI (τ1, τ2) = US
0 (t

+
0 , τ1)U

S (τ1, τ2)U
S
0 (τ2, t

+
0 ), (5.27)

where US
0 is similar to US but determined by Hx

0 (τ). According to the interaction-

picture evolution operator, we can define the interaction-picture operator such as
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uIC (τ1) as

uIC (τ1) = US
0

(
t+0 , τ1

)
uCU

S
0

(
τ1, t

+
0

)
. (5.28)

The relation between the Heisenberg-picture operator and the interaction-picture

one turns out to be

uHC (τ1) = UI

(
t+0 , τ1

)
uIC (τ1)UI

(
τ1, t

+
0

)
. (5.29)

Further, the interaction-picture evolution operator can be expressed as

UI (τ1, τ2) = Tτe
− i

~
´
C[τ1,τ2]

HI
n(τ)dτ (5.30)

for τ1 succeeds τ2 and C[τ1, τ2] denotes the path along the contour C from τ2 to τ1.

Using the interaction picture on the contour, we can rewrite the G̃CC as

G̃CC (τ1, τ2) = − i

~

⟨
US
0

(
t−0 , t

+
0

)
Tτu

I
C (τ1)u

I,T
C (τ2) e

− i
~
´
C dτHI

n(τ)
⟩ 1

Z
, (5.31)

which is shown below assuming that τ1 succeeds τ2 without loss of generality:

G̃CC (τ1, τ2) = − i

~

⟨
US
(
t−0 , t

−
M

)
US
(
t+M , t

+
0

)
uHC (τ1)u

H,T
C (τ2)

⟩ 1

Z
(5.32)

= − i

~

⟨
US
0

(
t−0 , t

+
0

)
UI

(
t−0 , t

+
0

)
UI

(
t+0 , τ1

)
uIC (τ1)UI

(
τ1, t

+
0

)
UI

(
t+0 , τ2

)
uI,TC (τ2)UI

(
τ2, t

+
0

)⟩ 1

Z
(5.33)

= − i

~

⟨
US
0

(
t−0 , t

+
0

)
Tτu

I
C (τ1)u

I,T
C (τ2) e

− i
~
´
C dτHI

n(τ)
⟩ 1

Z
. (5.34)

By introducing Z0 =
⟨
Tτe

− i
~
´
C dτ(ûx,T

L V LC ûC+ûT
CV CRûR)

⟩
, which is the GF when

Hn = 0, and defining Zn = Z/Z0, G̃CC in Eq. (5.31) is written as

G̃CC (τ1, τ2) = − i

~
Tr
[
ρIiniTτu

I
C (τ1)u

I,T
C (τ2) e

− i
~
´
C dτHI

n(τ)
] 1

Zn

, (5.35)
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where ρIini = ρiniU
S
0

(
t−0 , t

+
0

)
/Z0, (Tr

(
ρIini
)
= 1). Notice that ρIini and the interaction-

picture operator on the contour, such as uIC (τ1), after second quantization satisfy

the sufficient conditions for the Wick theorem to be valid presented in the ap-

pendix 5.5 of this chapter. Physically the key point is that under the interaction

picture on the contour the nonlinear interaction is not incorporated into ρIini so

that ρIini is still non-interacting, which is inherited from specially chosen initial

product state ρini.

Observing the structure of Eq. (5.35) and realizing that the denominator Zn cancels

the disconnected diagrams, we can obtain the Dyson equation for G̃CC as G̃CC =

G̃0
CC + G̃0

CCΣ̃nG̃CC , a symbolic notation of

G̃CC (τ1, τ2) = G̃0
CC (τ1, τ2)

+

ˆ
C

dτdτ ′G̃0
CC (τ1, τ) Σ̃n (τ, τ

′) G̃CC (τ ′, τ2) (5.36)

in terms of

G̃0
CC =− i

~
Tr
[
ρIiniTτu

I
C (τ1)u

I,T
C (τ2)

]
(5.37)

and the nonlinear self energy Σ̃n constructed by the bare propagator G̃0
CC , whose

vertices are solely due to the nonlinear Hamiltonian Hn.

Going to the interaction picture with respect to the free Hamiltonian h = HL +

HC +HR, G̃
0
CC can be written as

G̃0
CC (τ1, τ2) = − i

~

⟨
Tτ ûC (τ1) û

T
C (τ2) e

− i
~
´
C dτûx,T

L (τ)V LC ûC(τ)+ûT
C(τ)V CRûR(τ)

⟩ 1

Z0

(5.38)

so that

G̃0
CC = gC + gC

(
Σ̃L + ΣR

)
G̃0

CC , (5.39)
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where ΣR (τ1, τ2) is the right-lead version of the ordinary contour-order self energy

Σν = V CνgνV
νC , ν = L,R, in which gα (τ1, τ2)jk = − i

~ ⟨Tτ ûα,j (τ1) ûα,k (τ2)⟩ for

α = L,C,R are the uncoupled contour-order Green’s functions.

Though Eq. (5.36) and Eq. (5.36) are enough for the calculation of G̃CC , for

convenience one can introduce an counting-field independent auxiliary equation

G0
CC = gC + gC (ΣL + ΣR)G

0
CC , and combine it with Eqs. (5.36) and (5.39) to

obtain a closed Dyson equation for G̃CC (τ1, τ2):

G̃CC =G0
CC +G0

CC

(
ΣA + Σ̃n

)
G̃CC , (5.40)

where the shifted self energy ΣA ≡ Σ̃L − ΣL, which first appears in Ref. [30],

accounts for the distribution of heat transfer in ballistic systems.

From now on, for notational simplicity, all the subscripts CC of the Green’s func-

tions will be suppressed and the superscript 0 in both G̃0
CC and G0

CC will be re-

expressed as a subscript.

Until now, the formalism for studying the distribution of heat transport across

general nonlinear junctions has been completely established. As before, the CGF

can be used to calculate cumulants of heat transfer. In the case of steady state,

one simply set t0 → −∞ and tM → +∞ simultaneously, and technically assume

that real-time versions of G̃ (τ1, τ2) are time-translationally invariant. Then going

to the Fourier space, Eq. (5.22) for ∂ lnZ
∂(iξ)

in steady state could be rewritten as

∂ lnZ
∂ (iξ)

= (tM − t0)

ˆ ∞

−∞
dω

~ω
2π

Tr
[
G̃<Σ>

Le
−i~ωξ

]
(5.41)

after taking into account G̃> [−ω] = G̃< [ω]T and Σ<
L [−ω] = Σ>

L [ω]T . In the
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Fourier space, due to Eq. (5.40) exact result for G̃ [ω] could be yielded as

G̃ [ω] =
(
G0 [ω]

−1 − ΣA [ω]− Σ̃n [ω]
)−1

(5.42)

when keeping in mind the convention that the contour-order Green’s function such

as G̃ (τ1, τ2) in frequency space is written as

G̃ [ω] =

 G̃t [ω] G̃< [ω]

−G̃> [ω] −G̃t̄ [ω]

 . (5.43)

5.3 Application to molecular junction

Now we apply the general formalism developed above to study a monatomic

molecule with a quartic nonlinear on-site pinning potential, that is, Hn = 1
4
λu4C,0

in Eq. (5.1). In this case, the nonlinear contour-order self energy exact up to the

first order in the nonlinear strength is

Σ̃n (τ, τ
′) = 3i~λG̃0 (τ, τ

′) δ (τ, τ ′) , (5.44)

where recall that the generalized δ-function δ (τ, τ ′) is the counterpart of the or-

dinary Dirac delta function on the contour C introduced in Eq. (2.31). Thus the

corresponding frequency-space nonlinear self energy is

Σ̃n [ω] = 3i~λ

G̃t
0 (0) 0

0 G̃t̄
0 (0)

 . (5.45)
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Consequently, exact up to first order in nonlinear strength the CGF for the molec-

ular junction could be given as

1

(tM − t0)

∂ lnZ (ξ)

∂ (iξ)
=−
ˆ ∞

−∞

dω

4π

{∂ lnD [ω]

∂ (iξ)
− 3i~λ

×
[
G̃t

0 (0)G
t
0 [ω]− G̃t̄

0 (0)G
t̄
0 [ω]

] ∂

∂ (iξ)

1

D [ω]

}
(5.46)

with

D[ω] ≡ det
[
I −G0 [ω] ΣA [ω]

]
= 1−T [ω]

[(
eiξ~ω−1

)
fL(1+fR)+

(
e−iξ~ω−1

)
fR(1+fL)

]
(5.47)

and G̃t,t̄
0 (0) =

´∞
−∞

dω
2π
Gt,t̄

0 [ω] /D [ω], where T [ω] = Tr (Gr
0ΓRG

a
0ΓL) is the trans-

mission coefficient in the ballistic system, and f{L,R} =
{
exp

(
β{L,R}~ω

)
− 1
}−1

is the Bose-Einstein distribution function for phonons. Here Gr
0 = Gt

0 − G<
0 and

Ga
0 = G<

0 − Gt̄
0 are retarded and advanced Green’s functions, respectively. Also

Γ{L,R} = i
[
Σr

{L,R} − Σa
{L,R}

]
, related to the spectral density of the baths, are ex-

pressed by retarded and advanced self energies similarly defined as Green’s func-

tions.

One could easily use this CGF in Eq. (5.46) to evaluate cumulants. The steady

current out of the left lead is closely related to the first cumulant so that

Iss =
d

dtM

(
∂lnZ (ξ)

∂ (iξ)

∣∣∣∣
ξ=0

)

=

ˆ ∞

−∞

dω

4π
~ω (1 + Λ [ω])T [ω] (fL − fR) , (5.48)

where Λ [ω] ≡ 3i~λGt
0 (0) (G

a
0 [ω] +Gr

0 [ω]) is the first-order nonlinear correction to

the transmission coefficient.
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The fluctuation for steady-state heat transfer in the molecular junction is obtained

by taking the second derivative with respect to iξ, and then setting ξ = 0:

⟨⟨Q2⟩⟩
(tM − t0)

=

ˆ ∞

−∞

dω

4π

{
(~ω)2T 2[ω](1 + 2Λ[ω]) (fL − fR)

2

+ 3~2λω
[
Gt̄

0[ω]δG̃
t̄
0−Gt

0[ω]δG̃
t
0

]
T [ω] (fL − fR)

+ (~ω)2 T [ω](1 + Λ[ω])(fL+fR+2fLfR)
}
, (5.49)

where,

δG̃t,t̄
0 ≡ ∂G̃t̄,t

0 (0)

∂ξ

∣∣∣∣
ξ=0

=−i
ˆ ∞

−∞

dω

2π
~ω T [ω] (fL − fR)G

t̄,t
0 [ω]. (5.50)

Higher-order cumulants can be also systematically given by corresponding higher-

order derivatives.

In the following Fig 5.1, we give a numerical illustration to the first three cumulants

for heat transfer in this molecular junction using a self-consistent procedure [74],

which means that the nonlinear contour-order self energy is taken as

Σ̃n (τ, τ
′) = 3i~λG̃ (τ, τ ′) δ (τ, τ ′) (5.51)

by replacing G̃0 with the dressed one G̃, and G̃ is obtained self-consistently using

Eq. (5.40). The immediate physical interpretation is that the dressed interaction is

just a screened interaction and the dressed line represents a quasi-particle process.

As shown, the effect of nonlinearity is to reduce the current as well as higher order

fluctuations, and the fact that third and higher order cumulants are small but

nonzero implies that the distribution for transferred energy is not Gaussian. In

this numerical illustration, the Rubin baths are used, that is, Kα, α = L, R in
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Figure 5.1: The first three steady-state cumulants with nonlinear strength λ for

k = 1 eV/
(
uÅ2

)
, k0 = 0.1k, KC = 1.1k, and V LC

−1,0 = V CR
0,1 = −0.25k. The solid

(dotted) line shows the self-consistent (first-order in λ ) results for the cumulants.

The temperatures of the left and right lead are 660 K and 410 K, respectively.
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Eq. (5.1) are both the semi-infinite tridiagonal spring constant matrix consisting

of 2k + k0 along the diagonal and −k along the two off-diagonals. And only the

nearest interaction V LC
−1,0 and V CR

0,1 between the molecular and the two bathes are

considered and HC = 1
2
p2C,0 +

1
2
KCu

2
C,0. As expected, for weak nonlinearity the

first-order perturbation results, presented as dotted lines, are comparative with

the corresponding self-consistent ones.

5.4 Summary

A formally rigorous formalism dealing with cumulants of heat transfer across non-

linear quantum junctions is established based on field theoretical and NEGF meth-

ods. The CGF for the heat transfer in both transient and steady-state regimes is

studied on an equal footing and useful formulas for the CGF are obtained. A new

feature of this formalism is that counting-field dependent full Green’s function

G̃CC can be expressed solely through the nonlinear term HI
n (τ) with the help of an

interaction-picture transformation defined on a contour. Although we focus on the

distribution of heat transfer in pure nonlinear phononic systems, there is no doubt

that this general formalism can be readily employed to handle any other nonlinear

system, such as electron-phonon interaction and Joule heating problems. Up to

the first order in the nonlinear strength for the single-site quartic model, the CGF

for steady-state heat transfer is obtained and explicit results for the steady current

and fluctuation of steady-state heat transfer are given. A self-consistent procedure,

which works well for strong nonlinearity, is also introduced to numerically check

our general formalism.
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5.5 Appendix: The Wick Theorem (Phonons)

In this appendix, we try to give sufficient conditions for the Wick theorem to be

valid which covers most of the situation we encounter. The discussion is limited to

the case of bosonic operators which is the main interest in this thesis. We mainly

follow Gaudin’s approach [75]. For an alternative proof, one can resort ro the

Ref. [76].

First we explain what the Wick theorem is. The Wick theorem says that the

average value of a product of creation and annihilation operators is equal to the

sum of all complete systems of pairings, mathematically which can be stated as

Tr
{
ρiniβ1β2 · · · βs

}
= Tr

{
ρiniβ1β2

}
Tr
{
ρiniβ3β4 · · · βs

}
+ Tr

{
ρiniβ1β3

}
Tr
{
ρiniβ2β4 · · · βs

}
(5.52)

+ · · ·

+ Tr
{
ρiniβ1βs

}
Tr
{
ρiniβ2β3 · · · βs−1

}
and then applying this relation recursively to all of the multiple operator averages

until only pairs of operators remain.

Now we explore the sufficient conditions for the Wick theorem to be justified, which

simply means that Eq. (5.52) is valid. Suppose the system’s degrees of freendom

is f , and we define

α =

 a

a†

 , αi = ai, αf+i = a†i , i = 1, 2, . . . f, (5.53)

where ai and a
†
i are annihilation and creation operators respectively.
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Assume

αiρ
ini =

2f∑
k=1

hikρ
iniαk, (5.54)

where hik are c-numbers. We prove the Wick theorem for Tr {ρiniαi1αi2 · · ·αis},

which is shown below:

Tr
{
ρiniαi1αi2 · · ·αis

}
= Tr

{
ρini [αi1 , αi2 ] · · ·αis

}
+ Tr

{
ρiniαi2αi1 · · ·αis

}
= Tr

{
ρini [αi1 , αi2 ] · · ·αis

}
+ Tr

{
ρiniαi2 [αi1 , αi3 ] · · ·αis

}
+Tr

{
ρiniαi2αi3αi1 · · ·αis

}
= Tr

{
ρini [αi1 , αi2 ] · · ·αis

}
+ Tr

{
ρiniαi2 [αi1 , αi3 ] · · ·αis

}
+Tr

{
ρiniαi2αi3 [αi1 , αi4 ] · · ·αis

}
+ Tr

{
ρiniαi2αi3αi4αi1 · · ·αis

}
= · · ·

=
s∑

j=2

[
αi1 , αij

]
Tr
{
ρini

◦
αi1αi2 · · ·

◦
αij · · ·αis

}
+Tr

{
αi1ρ

iniαi2αi3 · · ·αis

}
=

s∑
j=2

[
αi1 , αij

]
Tr
{
ρini

◦
αi1αi2 · · ·

◦
αij · · ·αis

}

+

2f∑
k=1

hi1kTr
{
ρiniαkαi2αi3 · · ·αis

}
(5.55)

where the circle over the operator means that this operator is omitted. Then

2f∑
k=1

(1− h)i1k Tr
{
ρiniαkαi2 · · ·αis

}
=

s∑
j=2

[
αi1 , αij

]
Tr
{
ρini

◦
αi1αi2 · · ·

◦
αij · · ·αis

}
Multiply by the inverse matrix (1− h)−1, we can get

Tr
{
ρiniαi1αi2 · · ·αis

}
=

s∑
j=2

{
2f∑
k=1

(1− h)−1
i1k

[
αk, αij

]}
Tr
{
ρini

◦
αi1αi2 · · ·

◦
αij · · ·αis

}
(5.56)

110



Chapter 5. Distribution of energy transport across nonlinear systems

After considering the special case

Tr
{
ρiniαi1αij

}
=

2f∑
k=1

(1− h)−1
i1k

[
αk, αij

]
, (5.57)

we obtain from Eq. (5.56)

Tr
{
ρiniαi1αi2 · · ·αis

}
=

s∑
j=2

Tr
{
ρiniαi1αij

}
Tr
{
ρini

◦
αi1αi2 · · ·

◦
αij · · ·αis

}
,

Assume

βj =

2f∑
i=1

gjiαi (5.58)

where gji are c-numbers. Then

Tr
{
ρiniβ1β2 · · · βs

}
=

∑
i1

∑
i2

· · ·
∑
is

g1i1g2i2 · · · gsi2Tr
{
ρiniαi1αi2 · · ·αis

}
=

∑
i1

∑
i2

· · ·
∑
is

g1i1g2i2 · · · gsi2
s∑

j=2

Tr
{
ρiniαi1αij

}
×Tr

{
ρini

◦
αi1αi2 · · ·

◦
αij · · ·αis

}
=

s∑
j=2

Tr
{
ρiniβ1βj

}
Tr

{
ρini

◦
β1β2 · · ·

◦
βj · · · βs

}
which is just the Eq. (5.52).

In summary, the sufficient conditions for the Wick theorem Eq. (5.52) to be valid

are Eq. (5.54) and Eq. (5.58) and implicitly Tr (ρini) = 1.

In the following, we try to figure out the form of initial density matrix ρini satisfying

Eq. (5.54), which turns out to be

ρini = e−αTAα (5.59)

with A to be a general square matrix. We neglect the normalization constant for

Tr (ρini) = 1 here. To this end, we split the A to be a symmetrical part and an
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anti-symmetrical part, that is

A =
1

2

(
A+ AT

)
+

1

2

(
A− AT

)
(5.60)

≡ As + Aa. (5.61)

Let us define

fi (t) ≡ etα
TAααie

−tαTAα

= et
1
2
αTAsααie

−t 1
2
αTAsα.

In obtaining the second equality, notice that αTAaα is a c-number due to
[
α, α†] =1 0

0 −1

 and Aa,T = −Aa. Thus

dfi (t)

dt
= et

1
2
αTAsα

[
1

2
αTAsα, αi

]
e−t 1

2
αTAsα

= −
∑
j

(σAs)ij fj (t) ,

where σ ≡

0 −1

1 0

. So fi (t) =
∑

j

(
e−tσAs)

ij
αj and fi (1) = eα

TAααie
−αTAα =

∑
j

(
e−σAs)

ij
αj or equivalently

αie
−αTAα =

∑
j

(
e−σAs)

ij
e−αTAααj. (5.62)

More generally, the multiplication of finite number of the form of Eq. (5.59) still

satisfies Eq. (5.54), such as

ρini = e−αTAαe−αTBα, (5.63)
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which is briefly shown below:

αiρ
ini = αie

−αTAαe−αTBα

=
∑
j

(
e−σAs)

ij
e−αTAααje

−αTBα

=
∑
j

(
e−σAs)

ij
e−αTAα

∑
k

(
e−σBs)

jk
e−αTBααk

=
∑
j

∑
k

(
e−σAs)

ij

(
e−σBs)

jk
ρiniαk

=
∑
k

(
e−σAs

e−σBs)
ik
ρiniαk.

Due to the sufficient conditions presented in this appendix, the Wick theorem

used in this thesis for the Feynman-diagrammatic analysis is justified. For exam-

ple, for the case of the interaction picture on the contour, initial density matrix

ρIini = ρiniU
S
0

(
t−0 , t

+
0

)
/Z0= Πα=L,C,R

e−βαHα

Tr(e−βαHα)
e−

i
~H

x
0 (t

−)(t0−tM )e−
i
~H

x
0 (t

+)(tM−t0)/Z0

is the multiplication of finite number of the form of Eq. (5.59) and Tr
(
ρIini
)
= 1.

In addition, interaction-picture operator on the contour such as uIC (τ1) in the

Eq. (5.28) can be expressed as the linear transformation of α defined in the

Eq. (5.53) according to the similar steps for the calculation of fi(t).
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Summary and future works

We have considered the energy transport from the consistent-history viewpoint

on quantum mechanics using the NEGF method. Using a Heisenberg equation

of motion method, the nonequilibrium steady state employed in NEGF has been

studied. It is shown that on-site potential is crucial for the dynamical reach of

steady-state thermal transport from initial product state by the sudden switch-

on of the coupling between the baths. Moreover, we have extended the traditional

Caroli formula describing the transmission of the heat in lead-junction-lead systems

to the case incorporating the lead-lead coupling. In the coupled left-right-lead

quantum systems, the distribution of energy transport has been studied and the

analytic expression for the cumulant generating function (CGF) of energy transport

in a given time duration is obtained, in terms of which fluctuation symmetry is

verified. Also, the effects of the quasi-classical approximation on the CGF of

energy transport are studied. Furthermore, by introducing interaction picture on
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the contour, the compact formalism for the distribution of energy transport across

nonlinear systems is established.

It may be noticed that there are two main lines in this thesis, which are clarified

as below. The first line involves the complexity of the quantum histories we used

to study the energy transport. Specifically, for the steady-state thermal current

we simply employed one-time quantum histories, while for the study of probability

distribution of energy transport in a given time duration we employed two-time

quantum histories. Naturally, the next step for the future work is to consider the

application of multi-time quantum histories on the study of the quantum thermal

transport [77–79]. For example, we can use continuous quantum histories to con-

struct a new definition of quantum work since work done is really a processing

quantity which depends on the whole process of the quantum history. Based on

this new definition, we can check the Jarzynski’s equality reflecting the principal

of microreversibility of the underlying dynamics and look at the interplay between

time-dependent evolution and quantum measurements. Actually the preliminary

work has been already done, see Ref. [80]. But we have to admit that it is not

so successful there since the states we used are eigenstates of position operators ,

which can not be normalized. Thus we have to improve this work such as using

the normalizable gaussian wave packet to express the states.

On the other hand, it has been noticed that Kundu et al. developed a formalism

to calculate the distribution of heat flow in a classical harmonic chain, and more

importantly obtained the lowest order correction to the CGF [34]. Therefore,

we can try to improve and obtain the correction of the quantum CGF formula we

have already got in ballistic systems, which turns out to be much more challenging.

115



Chapter 6. Summary and future works

Before that, in order to appreciate the quantum correction we may use the quasi-

classical approximation, which employs quantum heat baths, to partially consider

the quantum effects, see the Ref. [72] and the appendix 4.7.

The other line involves the complexity of the quantum systems we considered.

Specifically, we have extended the study of the probability distribution of energy

transport in a given time duration to nonlinear systems from ballistic systems. The

future work in this respect is try to use the established formalism to study the ex-

perimental setup. For example, a recent shot noise measurement on Au nanowires

has demonstrated the pronounced phonon signature in electron noise [81], which

involves the effects of electron-phonon interaction on electron transport accompa-

nying the energy transport. As a preliminary step, we can study the probability

distribution of the coupled electron-phonon transport in one-dimensional atomic

junctions in the presence of a week electron-phonon interaction [82].

The systematic study of this thesis and the proposed plans may enhance our un-

derstanding on quantum thermal transport in nanoscale systems and provide a

guideline for optimal design of transport devices in nanoscale systems. In ad-

dition, the insights into statistics aspect of the quantum thermal transport are

provided by using microphysics models to approach the fluctuation theorem.
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J. Haug, Proc. Natl. Acad. Sci. USA 106, 10116 (2009).

[3] M. L. Roukes, Physica B, 263, 1 (1999).

[4] M. Esposito, U. Harbola, and S. Mukamel, Rev. Mod. Phys., 81, 1665 (2009).

[5] M. Campisi, P. Hänggi, and P. Talkner, Rev. Mod. Phys., 83, 771 (2011).

[6] L. G. C. Rego and G. Kirczenow, Phys. Rev. Lett. 81, 232, (1998).

[7] M. P. Blencowe, Phys. Rev. B 59, 4992 (1999).

[8] D. Segal, A. Nitzan, and P. Hänggi, J. Chem. Phys. 119, 6840 (2003).

[9] A. Dhar and D. Roy, J. Stat. Phys. 125, 805 (2006).

[10] A. Dhar, Adv. in Phys., 57, 457-537 (2008).

[11] A.Ozpineci and S. Ciraci, Phys. Rev. B 63, 125415 (2001).

117



References

[12] J.-S. Wang, J. Wang, and N. Zeng, Phys. Rev. B 74, 033408 (2006).

[13] M. Galperin, A. Nitzan, and M. A. Ratner, Phys. Rev. B 75, 155312 (2007).

[14] Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992).

[15] T. Yamamoto and K. Watanabe, Phys. Rev. Lett. 96, 255503 (2006).

[16] C. Caroli, R. Combescot, P. Nozieres, and D. Saint-James, J. Phys. C: Solid

St. Phys. 4, 916 (1971).

[17] N. Mingo and L. Yang, Phys. Rev. B 68, 245406, (2003).

[18] W. Zhang, T. S. Fisher, and N. Mingo, Numer. Heat Transf. Part B, 51, 333

(2007).

[19] S. G. Das and A. Dhar arXiv:1204.5595.

[20] M. Di. Ventra, Electrical Transport in Nanoscale Systems, Cambridge Univer-

sity Press, 2008.

[21] R. J. Rubin and W. L. Greer, J. Math. Phys. 12, 1686 (1971).

[22] J.-S. Wang, B. K. Agarwalla, and H. Li, Phys. Rev. B 84, 153412, (2011).

[23] L. S. Levitov and G. B. Lesovik, JETP Lett. 58, 230 (1993).

[24] W. Belzig and Y. V. Nazarov, Phys. Rev. Lett. 87, 197006 (2001).

[25] Y. V. Nazarov and M. Kindermann, Eur. Phys. J. B 35, 413 (2003).

[26] K. Schönhammer, Phys. Rev. B 75, 205329 (2007); J. Phys.:Condens. Matter

21, 495306 (2009).

118



References

[27] K. Saito and A. Dhar, Phys. Rev. Lett. 99, 180601 (2007); Phys. Rev. Lett.

101, (2008) 049902(E).

[28] J. Ren, P. Hänggi, and B. Li, Phys. Rev. Lett. 104, 170601 (2010).

[29] K. Saito and A. Dhar, Phys. Rev. E 83, 041121 (2011).

[30] J.-S. Wang, B. K. Agarwalla, and H. Li, Phys. Rev. B 84, 153412 (2011).

[31] B. K. Agarwalla, B. Li, and J.-S. Wang, Phys. Rev. E 85, 051142 (2012).

[32] Y. Utsumi, D. S. Golubev, M. Marthaler, K. Saito, T. Fujisawa, and G. Schön,

Phys. Rev. B 81, 125331 (2010).

[33] R. Avriller and A. Levy Yeyati, Phys. Rev. B 80, 041309 (2009).

[34] A. Kundu, S. Sabhapandit, and A. Dhar J. Stat. Mech.: Theory Exp. (2011)

P03007.

[35] A. O. Gogolin and A. Komnik, Phys. Rev. B 73, 195301 (2006).

[36] R. B. Griffiths, J. Stat. Phys. 36, 219 (1984).

[37] R. Omnès, Rev. Mod. Phys. 64, 339 (1992).

[38] M. Gell-Mann and J. B. Hartle, Quantum mechanics in the light of quan-

tum cosmology, in Complexity, Entropy, and the Physics of Information, W.

Zurek, ed., (Addison Wesley, Reading, Massachusetts, 1990), p. 425; also in

K. K. Phua and Y. Yamaguchi, eds., Proceedings of the 25th International

Conference on High Energy Physics, (World Scientific, Singapore, 1990).

[39] R. B. Griffiths, Consistent Quantum Theory (Cambridge University Press,

Cambridge, 2002).

119



References

[40] C. Cohen-Tannoudji, B. Diu and F. Laloë, Quantum Mechanics (Paris: Wiley-
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