GEK1536, Computation and Machine, Tutorial 9

(For week 12 starting 27 March 06)

1. Computers mostly use 32-bit two's complement to represent signed integers. For simplicity, we use 8-bit two's complement numbers in this exercise instead (it actually exists as a "char" in the programming language C). Work out the 8-bit two's complement representation of the following integers:
(a) 1 ,
(b) -2 ,
(c) 123,
(d) -27 ,
(e) 226.

What will happen to the last value (e)?
2. Consider arithmetic of the binary numbers worked out in problem 1. Calculate in binary bits the following:
(a) $1+(-2)$,
(b) $123-27$,
(c) $123+123$
(d) $(-2) \times(-27)$,
(e) $123 \div 27$ (give quotient and remainder).

What will happen to (c)? Is two's complement representation convenient for multiplication and division?
3. The floating-point numbers (numbers with decimal point) in computers are presented according to the IEEE 754 standard. In single precision, it uses 1 bit for sign (the 31-th bit), 8 bits for the biased exponent ($E=e+127$), and 23 bits for the fractional part xxxx... of the binary number $1 . x x x x \ldots . . \times 2^{e}$ (the leading 1 is assumed, but not represented explicitly in the bit pattern). What values do the following bit patterns represent? These are given in hexadecimal (base-16) notation.
(a) "00000000"
(b) " 3 F 800000 ",
(c) "41240000",
(d) "3 E AA AAAB".

Home Work (hand in the following week tutorial)

4. (Homework) What do the following 32-bit patterns represent, if they are interpreted as (a) unsigned integer, (b) signed integer, (c) IEEE floating point number? [That is, each pattern can have three possible interpretations]
(I) 00000000100000000000000000000000
(II) 11111111111111111111111111111110
(III) 00000000000000000000000000000000
5. (Homework) Give the bit patterns for the following floating point numbers in 32bit single precision IEEE format:
(a) 1.0 ,
(b) 128.0,
(c) 0.30 .
