PC5215 Numerical Recipes with Applications - Review Problems

1. Give the IEEE 754 single precision bit pattern (binary or hex format) of the following numbers:

$$
\begin{array}{llllll}
1.0 & 2.0 & 0.25 & 10.0 & 0.1 & -0.01
\end{array}
$$

Note that it has 8 bits for the exponent, 24 bits precision (mantissa) with the leading one omitted in the representation, and a sign bit. The exponent is biased by 127 .
[Read the article "What Every Computer Scientist Should Know about FloatingPoint Arithmetic".
Ans:
3F800000
40000000
3E800000
41200000
3DCCCCCD
BC23D70A
]
2. Solve the following finite difference equation

$$
a x_{n+1}+b x_{n}+c x_{n-1}=0 .
$$

The solution depends on two initial values, say, x_{0} and x_{1}. Discuss the advantage and disadvantage of using the final solution to compute x_{n} versus recursion.
[Hint: assuming $x_{n}=$ const λ^{n}.]
3. How to make a dynamic memory allocation for 2 D array in C , say a[n][m]? What is machine ε ? Run program machar () on page 892 to determine machine epsilon for your machine, what is roughly ε for single precision, double precision, or quadruple precision?
4. Do LU decomposition (without pivoting) of the following matrix by Crout's algorithm:

$$
\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & 2 & 1 \\
1 & -3 & 5
\end{array}\right] .
$$

[Ans:

$$
L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & -5 / 2 & 1
\end{array}\right], \quad U=\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & 2 & 1 \\
0 & 0 & 17 / 2
\end{array}\right]
$$

]
5. Give the computational complexity $\mathrm{O}\left(N^{\mathrm{k}}\right)$ of the following algorithms (also state what is N), LU, $\operatorname{Det}(\mathrm{A})$ (by LU), A^{-1} (by LU) $\mathrm{A} x=b$ by Gaussian elimination, Neville’s interpolation, Trapezoidal rule, FFT, conjugate gradient for linear system, quick sort, heap sort.
[Ans: $N^{3}, N^{3}, N^{3}, N^{3}, N^{2}, N, N \log N, N^{3}, N \log N, N \log N$]
6. What is the inverse of the following matrix?

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & a & 1 & 0 \\
0 & b & 0 & 1
\end{array}\right] .
$$

[Use LU decomposition or otherwise directly by $\mathrm{AA}^{-1}=\mathrm{I}$. Ans.

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -a & 1 & 0 \\
0 & -b & 0 & 1
\end{array}\right]
$$

]
7. Classify each of the following matrices as well-conditioned or ill-conditioned. Note that the condition number of a matrix is defined as $\|A\| \cdot\left\|A^{-1}\right\|$.
(a) $\left[\begin{array}{cc}10^{10} & 0 \\ 0 & 10^{-10}\end{array}\right]$
(b) $\left[\begin{array}{cc}10^{10} & 0 \\ 0 & 10^{10}\end{array}\right]$
(c) $\left[\begin{array}{cc}10^{-10} & 0 \\ 0 & 10^{-10}\end{array}\right]$
(d) $\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$
[Ans: the 2-norm condition numbers are, respectively, $10^{20}, 1,1, \infty$. Large condition number means ill-conditioning.]
8. What are the conditions required to the polynomials for cubic splines?
[Ans: function and its first derivative are continuous at the meeting points of each segment.]
9. Apply Neville's algorithm to determine the value $f(x)$ at $x=1$. The interpolation points are (0,1), (2,3), (3, 5). Determine also the polynomial (using Lagrange formula) in expanded form.
[Ans: $f(1)=5 / 3, \quad f(x)=1+x / 3+x^{2} / 3$.]
10. Prove the open formula:

$$
\begin{aligned}
& \int_{x_{0}}^{x_{1}} f(x) d x=h f_{1}+O\left(h^{2}\right) \\
& \int_{x_{0}}^{x_{1}} f(x) d x=h\left[\frac{3}{2} f_{1}-\frac{1}{2} f_{2}\right]+O\left(h^{3}\right),
\end{aligned}
$$

[Hint: use Taylor expansion.]
11. What is the basic idea of Guassian integration? Derive a 2 -point formula for the Guassian integral in the interval $[-1,1]$ with a constant weight $W(x)=1$.
[Ans: $x_{1}=-x_{2}=1 / \sqrt{3}, \quad w_{1}=w_{2}=1$.]
12. Write out the steps for quick sort and heap sort, for the following input data:

$$
[1,5,3,6,7,2,9,0,4,8] .
$$

13. What is the computational complexity of the Newton-Raphson method for the root \mathbf{x} (such that $\mathbf{F}(\mathbf{x})=\mathbf{0}$) in N dimensions? Derive the formula for the iteration. Discuss issue on stability.
[Ans: $N^{3} . \mathbf{x} \leftarrow \mathbf{x}-\mathbf{J}^{-1} \mathbf{F}, \quad \mathbf{J}=\partial \mathbf{F} / \partial \mathbf{x}$.]
14. Compute the solution of $x^{2}-2=0$ numerically using Newton's method, starting from $x=1$. Need a calculator for this.
[Ans: Iterate $x \leftarrow x / 2+1 / x$, after three iterations, one gets 1.41422.]
15. How to bracket a zero, bracket a minimum, or maximum?
16. Consider the function $f(x, y)=x+x^{2}-x y+y^{2}$. Use the conjugate gradient method to find the minimum of the above function, starting from the point $\left(x_{0}, y_{0}\right)=(1,1)$.
17. Show that the error at i-th step in the conjugate gradient method is of the form $e_{(i)}=\sum_{j=i}^{N-1} \delta_{j} d_{(j)}$, where $d_{(j)}$ is the search direction in the j-th step. [Read the article by J. R. Shewchuk, "An introduction to the conjugate gradient method without the agonizing pain."]
18. Prove that the optimal condition to stop in a linear search (in higher dimensions) is that $\mathbf{n} \cdot \mathbf{g}=0$, where \mathbf{n} is search direction, \mathbf{g} is the gradient at the new location. [Hint: derivative with respect to λ of $f(\mathbf{x}+\lambda \mathbf{n})$ is zero at min or max.]
19. (a) Solve the system of equations (in least squares sense):

$$
\begin{aligned}
& x+y=3 \\
& 2 x+3 y=5 \\
& 3 x-y=2
\end{aligned}
$$

(b) Solve the same problem by conjugate gradient method (as a minimization problem).
[Ans: $x=1.0507, y=1.0725$.]
20. Do the FFT steps for the following input:
$[1,-2,-1,1,-1,-2,2,1]$.
21. A set of data points is given as following:
$(0,0.01),(1,1.02),(2,1.98),(3,3.10),(4,4.22)$

Determine a straight line (least-squares) fit $f(x)=a+b x$, give also the error estimates of the fitting parameters a and b. Is there any relation between the current problem and Prob 19?
[Ans: $a=1.05 \pm 0.02, b=-0.034 \pm 0.050$.]
22. Consider discretized version of the equation $\mathrm{d} y / \mathrm{d} x=-y$ using forward difference and backward difference:

$$
\begin{aligned}
& y_{n+1}=y_{n}-h y_{n} \\
& y_{n}=y_{n-1}-h y_{n}
\end{aligned}
$$

Solve the difference equations exactly and compare them with exact solution of the differential equation. Which version is preferred?
[Ans: forward difference $y_{n}=(1-h)^{n} y_{0}$, backward difference $y_{n}=(1+h)^{-n} y_{0}$.
Exact solution is $y(n h)=y_{0} \exp (-n h)$. The second backward difference method is preferred, due to its stability (errors do not blow up) for any step size h.]
23. Consider the Hamiltonian

$$
H(p, q)=\frac{1}{2}\left(p^{2}+q^{2}\right)
$$

Give a second order symplectic algorithm for solving this system. Show that the resulting update viewed as a transformation in the phase space (p, q) preserves the phase space area. Show explicitly that it is symplectic ($D^{T} J D=J$ or $d p \wedge d q$ is invariant with respect to the transformation, where D is Jacobian matrix of the transformation and the matrix

$$
\left.J=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\right) .
$$

[Ans: The Hamilton's equations of motion are $d p / d t=-\partial H / \partial q=-q$,

$$
\begin{aligned}
& d q / d t=\partial H / \partial p=p, \text { so } \\
& q^{\prime}=q+h p-h^{2} q / 2 \\
& p^{\prime}=p-h\left(q+q^{\prime}\right) / 2
\end{aligned} .
$$

We can show that the Jacobian of the above transformation from (p, q) to (p^{\prime}, q^{\prime}) is 1 , so area is preserved. That is, we can verify that $\operatorname{Det}(D)=1$:

$$
\operatorname{Det}(D)=\left|\begin{array}{ll}
\frac{\partial p^{\prime}}{\partial p} & \frac{\partial p^{\prime}}{\partial q} \\
\frac{\partial q^{\prime}}{\partial p} & \frac{\partial q^{\prime}}{\partial q}
\end{array}\right|=\left|\begin{array}{cc}
1-\frac{h^{2}}{2} & -h+\frac{h^{3}}{4} \\
h & 1-\frac{h^{2}}{2}
\end{array}\right|=1
$$

And

$$
\begin{aligned}
& d p^{\prime} \wedge d q^{\prime}=d\left[\left(1-h^{2} / 2\right) p+\left(-h+h^{3} / 4\right) q\right] \wedge d\left[\left(1-h^{2} / 2\right) q+h p\right] \\
& =\left(1-h^{2} / 2\right)\left(1-h^{2} / 2\right) d p \wedge d q+\left(-h+h^{3} / 4\right) h d q \wedge d p \\
& =d p \wedge d q
\end{aligned}
$$

(Since $d p \wedge d p=0, d q \wedge d q=0, d p \wedge d q=-d q \wedge d p$. .)
24. Generate points distributed uniformly on a unit sphere $\left(x^{2}+y^{2}+z^{2}=1\right)$.
25. Given that ξ_{1} and ξ_{2} are independent, uniformly distributed random variables between 0 and 1, what are the probability distributions of the random variables ξ_{1} $+\xi_{2}$ and $\xi_{1} \times \xi_{2}$?
[Ans: for $\xi_{1}+\xi_{2}$ case, consider $\mathrm{P}\left(\xi_{1}+\xi_{2}<x\right)=F(x), p(x)=\mathrm{d} F(x) / \mathrm{d} x=x$ for $0<x<$ $1,2-x$ for $2>x>1$.]
26. Write down the transition matrix W for a one-dimensional 4-spin Ising model with periodic boundary condition using Metropolis flip rate.
27. (a) Let assume W_{i} has invariant distribution P for all i, i.e., $P=P W_{\mathrm{i}}, i=1,2, . ., N$. Show that both $W_{\mathrm{s}}=\Sigma \lambda_{\mathrm{i}} W_{\mathrm{i}}$ and $W_{\mathrm{p}}=\Pi W_{\mathrm{i}}$ has invariant distribution P, where $\Sigma \lambda_{\mathrm{i}}=1$ and $\lambda_{\mathrm{i}}>0$. How to implement W_{s} and W_{p} on computer? (b) If W_{i} satisfies detailed balance with respect to P, does W_{s} and/or W_{p} satisfy detailed balance?

