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1. Consider a two-point Gaussian quadrature formula in the domain [0,+∞) with an exponential 

decaying weight: 

 ∫ 𝑓(𝑥)𝑒−𝑥+∞

0
𝑑𝑥 ≈ 𝑤1𝑓(𝑥1) + 𝑤2𝑓(𝑥2). 

a. Determine the first three orthogonal polynomials 𝑃0(𝑥), 𝑃1(𝑥), 𝑃2(𝑥), necessary to fix 

the abscissas 𝑥1 and 𝑥2.  

b. Determine the abscissas 𝑥1 and 𝑥2 and the weights 𝑤1 and 𝑤2. 

c. Quantify the error of this Gaussian quadrature formula. 

 

a. For simplicity, we can take the coefficient of the highest power to be 1, so P0 = 1, P1  = x + c.  

We determine c by the orthogonality requirement, <P0|P1> = 0, or ∫ (𝑥 + 𝑐)𝑒−𝑥𝑑𝑥 = 0
+∞

0
.  

We can perform the integral using a general formula: ∫ 𝑥𝑛𝑒−𝑥𝑑𝑥 = 𝑛!
∞

0
  This gives 1 + c = 0, 

or  c = -1. P1=x-1.  For the quadratic polynomial, we assume P2 = x2 + bx + d.   P2 must be 

orthogonal to P0 and P1.  This determine the two coefficients b and d to be -4 and 2.  So P2 = 

x2-4x+2. 

b. x1 and x2 are the roots of P2, x2-4x+2 = 0, given x1 = 2-sqrt(2), x2=2+sqrt(2).    Take the general 

f(x) to be 1 and x, we got two equations that can determine w1 and w2.  They are w1+w2 = 1, 

w1(2-sqrt(2)) + w2(2+sqrt(2)) = 1.  This gives w1 = (2+sqrt(2))/4, w2=(2-sqrt(2))/4. 

c. The two-point Gaussian quadrature formula is exact for all polynomials of degree 3 or less.  

Error occurs at x4. 

 

 

 

2. Consider Monte Carlo sampling of a one-dimensional Ising model with energy function 

 𝐻(𝜎) = −𝐽 ∑ 𝜎𝑖𝜎𝑖+1
𝑁
𝑖=1   

in the canonical ensemble.  We assume periodic boundary condition, that is, 𝜎𝑁+𝑖 = 𝜎𝑖.  𝑁 is 

some arbitrary natural number larger than 1, and the coupling parameter 𝐽 > 0,  𝜎𝑖 = ±1.  The 

Gibbs sampling is slightly different from the Metropolis algorithm, as follows:  first, pick a site 

1 ≤  𝑖 ≤ 𝑁 at random.  Compute =  
𝑥

𝑥+𝑥−1 , here 𝑥 = 𝑒𝛽𝐽(𝜎𝑖−1+𝜎𝑖+1), 𝛽 = 1/(𝑘𝐵𝑇).   Then set 𝜎𝑖 

as +1 with probability 𝑝, or −1 with probability 1 − 𝑝. 

a. Write down the associated transition matrix 𝑊(𝜎 → 𝜎′). 

b. Show that the detailed balance condition is satisfied, that is, 

 𝑃(𝜎)𝑊(𝜎 → 𝜎′) = 𝑃(𝜎′)𝑊(𝜎′ → 𝜎). 

Here 𝑃(𝜎) =
𝑒−𝛽𝐻(𝜎)

𝑍
, and 𝑍 is the partition function. 

c. Give a complete Python code to realize this algorithm. 

 

For N sites, the transition matrix W is 2N by 2N.  We can write W as 𝑇(𝜎 → 𝜎′)𝑃(𝜎′|𝜎).  Here T is 

1/N if the new state 𝜎′ differs from the old state 𝜎 by 1 spin (say at site i), and 0 otherwise.  The 

last factor is the conditional probability where i-th site involved.  I.e., 𝑃(𝜎′|𝜎) =

𝑃(… 𝜎𝑖
′ … )/[𝑃(… , 𝜎𝑖 = +1, … ) + 𝑃(… , 𝜎𝑖 = −1, … )] .   Take the ratio, we can see detailed 

balance is satisfied.   Python code omitted. 
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3. To minimize a function 𝐹(𝒙) in high dimensions in the contexts of neural networks, the simplest 

method is the “stochastic” gradient descent, according to 𝒙 → 𝒙 − 𝜂∇𝐹(𝒙).  Here 𝒙 is a vector 

and ∇ denotes gradient with respect to 𝒙.   

a. Explain the meaning of the term “stochastic” as used in learning algorithms of neutral 

networks. 

b. Consider a simple function 𝐹(𝒙) =
1

2
𝑥1

2 + 𝑥2
2 + 𝑥1𝑥2, defined in two-dimensional space 

𝒙 = (𝑥1, 𝑥2).   If we start from the position 𝒙0 = (1,1) with 𝜂 = 0.1, determine the new 

position after two steps of the descent algorithm. 

c. The conjugate gradient (CG) method is a much faster algorithm.  Do the same as in part 

b, starting again from 𝒙𝟎 = (1,1), apply CG method in two steps.   

 

a. Stochastic (gradient descent) in the context of learning algorithms means we do not use the 

complete data set to evaluate F.  Instead, we choose a smaller set, “at random”, so that F 

can be computed faster. 

b. The gradient vector is 𝛻𝐹 = (𝜕𝐹 𝜕𝑥1, 𝜕𝐹 𝜕𝑥2) =⁄⁄ (𝑥1 + 𝑥2, 𝑥1 + 2𝑥2).   So at step 0, 

gradient is (2,3).  This gives x1 =(1,1)-0.1(2,3) = (0.8, 0.7).  At x1 the gradient becomes (1.5, 

2.2).  So x2 = (0.8,0.7) – 0.1(1.5,2.2) = (0.65, 0.48).  This is still far away from the exact 

answer, which is (0,0). 

c. The first step in CG is the same as in b except we minimize F with respect to  𝜂.  The gradient 

is same as in b, so we have 𝑥1 = 1 − 2𝜂, 𝑥2 = 1 − 3𝜂.  𝜕𝐹 𝜕𝜂 = 0⁄  gives 𝜂 = 13/34 ≈

0.382.  So at this point, x1 = (0.235, -0.147).   For the second step, we compute 𝛾 = |new 

gradient / old gradient|2 = 0.000865.  Now the new search direction is 𝑛 = −𝛻𝐹 +

𝛾𝑛(𝑜𝑙𝑑)=(-0.08996,0.05622).  Perform again a 1D line search starting from x1 and direction 

n, that is x2 = x1 + λn, we find optimal value 𝜆 = 2.61538.  This gives final answer x2=(0,0), 

which is the location of minimum of F , i.e., CG method terminates in two steps.  No more 

search is needed. 

 

 

4. The harmonic oscillator has the classical Hamiltonian 

 𝐻(𝑥, 𝑝) =
𝑝2

2𝑚
+

1

2
𝐾𝑥2. 

Here 𝑝 is momentum, 𝑥 is position, 𝑚 is mass, and 𝐾 is force constant.  The system is described 

by the Hamilton equations of motion. 

a. Give the Euler algorithm with time step ℎ for a numerical solution (𝑥𝑛 , 𝑝𝑛), 𝑛 =

0,1,2, …, of the Hamilton equations of the oscillator.  Also indicate the local truncation 

error. 

b. The total energy of the oscillator at the 𝑛-th step is 𝐸𝑛 =
𝑝𝑛

2

2𝑚
+

1

2
𝐾𝑥𝑛

2.  Discuss what 

happens to the total energy in the limit 𝑛 → ∞.  (Hint: analyze the eigenvalues of the 2 

by 2 matrix that transforms from the old state to the new state). 
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c. Revise your algorithm in part a to a symplectic algorithm.  And discuss again the 

behavior of the total energy as the number of steps 𝑛 goes to infinity.  In answering 

question b and c, we disregard the round-off error due to finite machine precision. 

 

 

a. Using the Euler method, we can compute the momentum and position at n+1 step from n 

step according to the matrix equation (
𝑝𝑛+1

𝑥𝑛+1
) = (

1 −𝐾ℎ
ℎ

𝑚
1

) (
𝑝𝑛

𝑥𝑛
).   The local truncation 

error is O(h2). 

b. The eigenvalue of the matrix is determined from 𝑑𝑒𝑡 (
𝜆 − 1 𝐾ℎ

−
ℎ

𝑚
𝜆 − 1

) = 0.  The eigenvalues 

are 𝜆 = 1 ± 𝑖ℎ√𝐾/𝑚.   Then |𝜆| = 1 +
𝐾ℎ2

𝑚
> 1.   Since the eigenvalues of the matrix is 

larger than 1, after repeated multiplications, the magnitude of p and x will increase, and the 

energy diverges to infinite as n goes to infinity.   Note after n-th iterations, the result is the 

matrix to the n-th power, which we diagonalize and result in the eigenvalues to the n-th 

power. 

c. For a symplectic algorithm, we can make a move in p and then followed by x using the new 

value of p, the matrix can be written as  (
𝑝𝑛+1

𝑥𝑛+1
) = (

1 −𝐾ℎ
ℎ

𝑚
1 − 𝐾ℎ2/𝑚) (

𝑝𝑛

𝑥𝑛
).    The 

eigenvalues can now be determined in the same way to be 𝜆 = 1 −
𝑢2

2
± 𝑖𝑢√1 −

𝑢2

4
, here 

𝑢 = ℎ√
𝐾

𝑚
.   We can check that the magnitude of the eigenvalues is exactly 1, |𝜆| = 1.  As a 

result, the iteration does not divergence and the energy is approximately conserved.  This 

shows the advantage of symplectic method over the Euler method. 

 

 

--- the end ---                                                                            [WJS] 


