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INSTRUCTIONS TO CANDIDATES 

 

1. Please write your student number only.  

2. This examination paper contains FIVE questions and comprises THREE printed pages. 

3. Answer ALL the questions; questions carry equal marks. 

4. Answers to the questions are to be written in the answer books. 

5. Please start each question on a new page. 

6. This is a CLOSED BOOK assessment.  

7. Non-programmable calculators are allowed. 
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1. Answer briefly the following questions and concepts. 

a. What is the time computational complexity and space (memory) computational 

complexity of the LU decomposition algorithm of Crout? 

b. Give the mathematical definition of the norm || x || of a vector in a linear space. 

c. What is a heap as used in data sorting? 

d. Explain the main concept of conjugate gradient method and answer why the 

minimum can be located in a finite number of N steps.  What is the meaning of N? 

 

a. The time computational complexity of an LU decomposition of a square matrix is 

O(N3), while space (memory) complexity is O(N2), where N is the dimension of the 

square matrix.  Some students forget to say what is N. 

b. The norm ||x|| of a vector x in a linear space is a real number that must satisfy: 

positivity ||x|| ≥ 0, equal sign occurs only for zero vector x=0; scaling ||αx|| = |α| 

||x||, and triangle inequality ||x+y||   ||x|| + ||y||.  Many students only give specific 

examples, (e.g., Euclidean 2-norm), but we need a general definition. 

c. Heap is a binary tree arranged such that a parent node is not less than the two 

children. This forms a partial order. 

d. The key idea in the conjugate gradient method is to take the search direction ui such 

that  uT
i A uj = 0 if i  j, called A-orthogonal.  In this way the search stops in N steps 

where N is the dimensionality of the matrix A, and the function to minimize is of the 

quadratic form f=(1/2) xT A x – bT x +c.  Many students give the algorithm without 

mentioning the important point of A-orthogonality. 

 

  

2. Consider an IEEE-like floating point representation with a 16-bit word size.  The highest 

bit denotes the sign (0 bit for positive number and 1 bit for negative number).  The next 5 

bits are used for a biased exponent e.  All values e = 0, 1, 2, …, 31 will be used to 

represent a floating point number, without special types (such as NaN, or ).  The rest of 

10 bits will be used for the fractional part. 

a. What bias one should use so that both large and small number in magnitude as 

compared to 1 can be represented similar to the standard IEEE 754? 

b. What is the machine epsilon of this representation? 

c. What are the largest and smallest values in absolute magnitude in this 

representation? 

d. What is the number of significant figures in decimal for a typical 16-bit floating-

point number? 

 

a. Since the 5 bits for the exponent takes values from 0 to 31, we take bias = 15, half 

way from 0 to 31. 

b. Machine epsilon  = 2-10 = 1/1024  0.001. 



3 
 

c. Largest value 1.11…1  216 =(2-2-10)216 = 131008, smallest value 2-15  3.0510-5. 

d. Based on   0.001, the number of significant figures are 3 in decimal. 

 

If bias is choosing to be 16, the values change slightly accordingly. 

 

3. In a closed Newton-Cotes integration formula of 𝑁 points, polynomials of degrees 𝑁 − 1 

is integrated exactly without error. 

a. Determine the coefficients αi in a three-point integration formula 

∫ 𝑓(𝑥)𝑑𝑥 = 𝛼0𝑓0 + 𝛼1𝑓1 + 𝛼2𝑓2 + 𝑂(ℎ?)
2ℎ

0
,  where 𝑓𝑖 = 𝑓(𝑖ℎ). 

b. By coincidence or otherwise, show that polynomials of degree 3 also integrate 

exactly by the above formula.  

c. Based on the derivation in part a and b, deduce the order of error of the 

integration formula. 

 

a. We set the function f(x) to be 1, x, and x2, evaluating the left and right side of the 

equation, obtain, 2h = α0 + α1 + α2; (2h)2/2 = α0 0 + α1h + α22h; and (2h)3/3 = α0 0 

+ α1h
2 + α2(2h)2. Solving the linear equations, one finds the Simpson’s rule, α0 = h/3, 

α1 = 4h/3, and α2 = h/3. 

b. Set f(x) = x3, we find left-hand side (4h4) equals right-hand side.  Since the formula is 

linear, this is sufficient to illustrate that it holds for general polynomials of degree 3. 

c. Since it is accurate to O(h4) by part b, the error has to be of order h5. 

Some students try to do Gaussian quadrature and determine the orthogonal 

polynomials, which is irrelevant here for this problem.  Others try to do Taylor 

expansions. 

 

4. Consider a three-spin system with the energy 𝐻 = −𝐽(𝜎1𝜎2 + 𝜎2𝜎3 + 𝜎3𝜎1 + 𝜎1𝜎2𝜎3), 

where 𝐽 > 0, 𝜎𝑖 = ±1, 𝑖 = 1,2,3.  Assume a single-spin flip dynamics, i.e., a site 𝑖 is 

chosen at random with equal probability. 

a. Determine the transition matrix 𝑊 at temperature 𝑇. 

b. What is the left eigenvector 𝑝 with eigenvalue 𝜆 = 1, i.e., 𝑝 = 𝑝𝑊? 

c. Outline the pseudo-code to perform Metropolis Monte Carlo calculation of the 

total heat capacity C, using the Markov chain specified exactly as in part a by 𝑊. 

 

a. The energies of each of the states are 

label Spin configuration Energy E(i) 

1 +++ 4J 

2 ++ 2J 

3 ++ 2J 

4 ++ 2J 

5 + 0 
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6 + 0 

7 + 0 

8  2J 

 

Using the order given above, the transition matrix W is 

1 0 0 0 0
3 3 3

1 1 1
0 0 0 0 0

3 3 3

1 1 1
0 0 0 0 0

3 3 3

1 1 1
0 0 0 0 0

3 3 3

2 2 1
0 0 0 0

3 3 3 3

2 2 1
0 0 0 0

3 3 3 3

2 2 1
0 0 0 0

3 3 3 3

0 0 0 0 1
3 3 3

z z z
z

y y y

y y y

y y y

y y y
y

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
  

 

Where z = y3, y = exp(-2J/(kBT)). 

b. By construction, the equilibrium distribution is canonical, P(i)  exp(-E(i)/(kBT)), so 

P =(1/Z) (exp(4J), exp(-2J), exp(-2J), exp(-2J), 1, 1, 1, exp(2J)), partition 

function Z = exp(4J) + 3 exp(-2J) + 3 + exp(2J).  = 1/(kBT).  There is no need to 

solve the linear equation, P = PW, explicitly. 

c. E=0, C=0; 

Do m = 1 to 106 {  

   i = floor( 1 + 31); 

   compute E = E(new) – E(old); 

   if( 2 < exp(-E)) { 

      i = -  i; 

      } 

    E = E + E(i); 

    C = C + E(i)2; 

}; 

C = (1/106) { C – (E/106)2 }/(kB T2) 

 

Where E(new) means the energy with spin i flipped.  E(i) is the energy recomputed 

after the Monte Carlo move. Some students forgot the formula for heat capacity, 

which is in our lab 3. 
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5. We prove the Trotter-Suzuki formula and use it to derive a symplectic integration scheme 

for a Hamiltonian system. 

a. The standard Trotter-Suzuki formula takes the form 𝑒𝜀(𝐴̂+𝐵̂) = 𝑒𝜀𝐴̂𝑒𝜀𝐵̂ + 𝑂(𝜀2) 

where 𝐴̂ and 𝐵̂ are non-commuting operators in some linear space, and 𝜀 is small. 

Prove this formula and show explicitly that the error is second order in the small 

quantity 𝜀. 

b. Consider a mechanical system with the Hamiltonian 𝐻(𝑝, 𝑞) of a one degree of 

freedom with the coordinate 𝑞 and conjugate momentum 𝑝. Then the equation of 

motion is  𝐹̇ = −{𝐻, 𝐹} = −𝐿̂̂𝐻𝐹 , where the curly bracket is the Poisson bracket, 

{𝐻, 𝐹} =
𝜕𝐻

𝜕𝑞

𝜕𝐹

𝜕𝑝
−

𝜕𝐹

𝜕𝑞

𝜕𝐻

𝜕𝑝
 , 𝐿̂̂𝐻 is the Liouvillian operator defined above by the 

Poisson bracket.  Show that we can write the time-dependent solution of an 

arbitrary function of 𝑞 and 𝑝 formally in the form  𝐹(𝑡) = 𝑒−𝑡𝐿̂̂𝐻𝐹(0). 

c. Derive a symplectic algorithm for 𝐻 =
𝑝2

2𝑚
+ 𝑉(𝑞), using the Trotter-Suzuki 

formula derived in part a, identifying the operator 𝐴̂ and 𝐵̂ with the kinetic energy 

term, 
𝑝2

2𝑚
,  and potential energy term 𝑉(𝑞), respectively, in the Liouvillian. 

 

  

a. Taylor expand both sides, multiply through (taken care of noncommuting nature 

of the operator), we find  𝑒𝜀(𝐴̂+𝐵̂) − 𝑒𝜀𝐴̂𝑒𝜀𝐵̂ =
𝜀2

2
(𝐵̂𝐴̂ − 𝐴̂𝐵̂) + ⋯. 

b. Take time derivative to the solution, 𝐹(𝑡) = 𝑒−𝑡𝐿̂̂𝐻𝐹(0), we find 𝑑
𝐹(𝑡)

𝑑𝑡
=

−𝐿̂̂𝐻𝑒−𝑡𝐿̂̂𝐻𝐹(0) = −𝐿̂̂𝐻𝐹(𝑡) .  Some students try to solve the differential equation 

as if 𝐿̂̂𝐻 is a number, which is wrong. 𝐿̂̂𝐻 is operator acting on functions. 

c. Using the formal solution and Trotter-Suzuki formula, we have 𝐹(𝑡) =

𝑒−𝑡𝐿̂̂𝐻𝐹(0)  ≈ 𝑒−𝑡𝐿̂̂𝑇𝑒−𝑡𝐿̂̂𝑉  𝐹(0) . Take F to be the vector (p,q), we obtain, 

ˆˆ ˆˆ 1/ 2 1/ 2 01

1/ 2 1/ 2 01

, VT tLtL
p p pp

e e
q q qq

       
       

       
 

The explicit form can be found by Taylor expanding the exponentials, and use the 

definition of double hats and Poisson brackets, we find  

1/ 2 0 1/ 2 0 0

1 1/ 2 1/ 2 1 1/ 2

,

/ ,

q q p p t f

q q t p m p p

  

  
 

 

--- the end ---                                                              [WJS] 


