NATIONAL UNIVERSITY OF SINGAPORE

PC5215 - NUMERICAL RECIPES WITH APPLICATIONS

(Semester I: AY 2012-13)

Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper contains FIVE questions and comprises THREE printed pages.
- 2. Answer ALL the questions; questions carry equal marks.
- 3. Answers to the questions are to be written in the answer books.
- 4. This is a CLOSED BOOK examination.
- 5. Non-programmable calculators are allowed.

- 1. The IEEE 754 standard for floating point representation of the double precision number has a sign bit, followed by 11 bits for the biased exponent (with a bias of 1023) and the rest 52 bits for the fractional part.
 - a. Give the bit patterns for the 64-bit double precision representation of -1 and 1/3.
 - b. Discuss what impact reducing the biased exponent field to 8 bits has, in terms of the precision and magnitude of the floating point numbers.
 - a. -1 is (in hexadecimal notation) BFF FFFFFFFFFFFF, 1/3 is 3FD 5555555555555555.

b . *If the exponent field is reduced and fractional part increased, then the precision increases (machine epsilon is smaller) but the magnitude decreases.*

- 2. Consider numerical integration formula by Gaussian quadrature method.
 - a. State the main idea of Gaussian quadrature.
 - b. Consider a three-point Gaussian quadrature formula in the interval [0,1],

 $\int_{0}^{1} f(x)dx \approx w_{1}f(x_{1}) + w_{2}f(x_{2}) + w_{3}f(x_{3}).$ For polynomials, 1, x, x², ..., xⁿ,

the formula is exact. What is the largest integer n that this is true?

c. Determine the three-point formula, i.e., determine the abscissas x_1 , x_2 , x_3 , and the weights w_1 , w_2 , w_3 .

a . by changing both the weights and abscissas, a maximum of accuracy is obtained, i.e., the formula is exact for polynomials of order 2N-1 for N point Gaussian quadrature.

c. $P_0 = 1$, $P_1 = x \cdot 1/2$, $P_2 = x^2 \cdot x + 1/6$, $P_3 = x^3 \cdot 3/2x^2 + 3/5x \cdot 1/20$. This is obtained by the orthogonal condition $\langle P_i | P_j \rangle = 0$ (i < j). The root of $P_3(x) = 0$ gives $x_1 = 1/2$, $x_2 = (1 - \sqrt{3/5})/2$, $x_2 = (1 + \sqrt{3/5})/2$. The weights are determined by the condition that the polynomials 1, x, x^2 can be integrated exactly. Given,

$$\begin{cases} w_1 + w_2 + w_3 = 1, \\ x_1 w_1 + x_2 w_2 + x_3 w_3 = \frac{1}{2}, \\ x_1^2 w_1 + x_2^2 w_2 + x_3^2 w_3 = \frac{1}{3}. \end{cases}$$

The solution is $w_1 = 4/9$, $w_2 = w_3 = 5/18$.

3. Consider a Monte Carlo simulation to generate Boltzmann distribution using the Metropolis algorithm for the following statistical-mechanical model:

 $H(\{\sigma_1,\sigma_2,\sigma_3\}) = -J\sigma_1\sigma_2 - J\sigma_2\sigma_3 - J(\sigma_1 + \sigma_3),$

where the spins $\sigma_i = \pm 1, i = 1, 2, 3$, and J>0 is some constant.

- a. Assuming that the spins are chosen at random with equal probability, determine the transition matrix *W*.
- b. What is the equilibrium/invariant distribution *P* associated with *W*?
- c. Outline pseudo-code that computes $\langle \sigma_1 \rangle$, i.e., the equilibrium average value of the first spin, in a Metropolis Monte Carlo simulation.

a. The energy of the 8 states are

1 + + +-4J2 + + -0 3 - + +0 4 + - +0 5 - + -+4J6 + - -0 7 - - +0 8 - - -0

The transition matrix is (in the same order as the state/energy list above)

	1 - 3r	r	r	r	0	0	0	0]	
	1/3	1/3 - r	0	0	r	1/3	0	0		
	1/3	0	1/3 - r	0	r	0	1/3	0		
	1/3	0	0	0	0	1/3	1/3	0		$1 - \frac{1}{e^{-4J/(kT)}}$
	0	1/3	1/3	0	0	0	0	1/3	,	$r = \frac{1}{3}e^{-4J/(kT)}$
	0	1/3	0	1/3	0	0	0	1/3		
	0	0	1/3	1/3	0	0	0	1/3		
ļ	0	0	0	0	r	1/3	1/3	$1/3 - r_{-}$		

b. By design, P is the equilibrium (canonical) distribution, $P = exp(-H(\sigma)/kT)/Z$, ie., P = [exp(4J/kT), 1, 1, 1, exp(-4J/kT), 1, 1, 1]/Z, Z = 6 + exp(-4J/kT) + exp(4J/kT), satisfies P=PW (But we don't need to solve the eigenvalue problem to get P, as the purpose of the Metropolis algorithm is to design W such that P is the equilibrium one).

c. set $\sigma_1 = \sigma_2 = \sigma_3 = 1$. M = 0. for(i=1 to 10^6) { $j = floor(3\zeta) + 1$, Compute $H(\sigma)$, $\sigma_{j} = -\sigma_{j},$ compute again $H(\sigma')$ (where the spin j is flipped), $\Delta E = H(\sigma')-H(\sigma),$ if $(\xi_{2} > exp(-\Delta E/(kT))$ { $\sigma_{j} = -\sigma_{j}, (flip back)$ }, $M = M + \sigma_{I},$ $M = M + \sigma_{I},$

- 4. The algorithm of the conjugate-gradient method for locating minimum is as follows:
 - i. Initialize $\mathbf{n}_0 = \mathbf{g}_0 = -\nabla f(\mathbf{x}_0), i = 0$,
 - ii. Find λ that minimizes $f(\mathbf{x}_i + \lambda \mathbf{n}_i)$, let $\mathbf{x}_{i+1} = \mathbf{x}_i + \lambda \mathbf{n}_i$
 - iii. Compute new negative gradient $\mathbf{g}_{i+1} = -\nabla f(\mathbf{x}_{i+1})$
 - iv. Compute $\gamma_i = \frac{\mathbf{g}_{i+1} \cdot \mathbf{g}_{i+1}}{\mathbf{g}_i \cdot \mathbf{g}_i}$
 - v. Update new search direction as $\mathbf{n}_{i+1} = \mathbf{g}_{i+1} + \gamma_i \mathbf{n}_i$; ++i, go to ii
 - a. If f is a function of two scalar variables x and y,

$$f = \frac{1}{2}x^2 + xy + y^2 - x + y,$$

how many times do we need to iterate the steps?

- b. Starting from the point (x,y)=(0,0), determine \mathbf{n}_0 and \mathbf{n}_1 according to the algorithm above and show that $\mathbf{n}_0^T A \mathbf{n}_1=0$, where A is the coefficient matrix of the quadratic term in *f*.
- c. Work out the steps to find the minimum (x_{\min}, y_{\min}) of f.

a. in two steps since it is two dimensional.

b. $n_0 = g_0 = (-x - y + 1, -(x + 2y + 1)) = (1, -1),$ $f = (1/2)\lambda^2 - 2\lambda, \text{ min is at } \lambda = 2, (x_1, y_1) = (2, -2), g_1 = (1, 1),$ $\gamma = 1, n_1 = (1, 1) + \gamma(1, -1) = (2, 0).$ $A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}, n_0^T A n_1 = 0.$

- $c \cdot (x_2, y_2) = (3, -2)$ is the minimum location.
- 5. Consider the problem of damped nonlinear oscillator governed by the second order differential equation,

$$\frac{d^2x}{dt^2} = -\gamma \frac{dx}{dt} - x^3 + F(t),$$

where γ is a damping constant and F(t) some external driving force which depends on time explicitly.

- a. Rewrite the equation as a set of first order differential equations equivalent to the original one.
- b. Give the numerical algorithm of the midpoint method, and determine the local truncation error, i.e., the order *n* in error $O(h^n)$ where *h* is step size.
- c. Give a version of symplectic algorithm, if possible. If not possible, explain why not?

a
$$\left\{ \begin{array}{l} \frac{dx}{dt} = y, \\ \frac{dy}{dt} = -\gamma y - x^3 + F(t). \end{array} \right.$$

b. the midpoint algorithm is, in general:

$$\mathbf{K}_{1} = h\mathbf{F}(t, \mathbf{Y}_{n})$$
$$\mathbf{K}_{2} = h\mathbf{F}(t_{n} + \frac{h}{2}, \mathbf{Y}_{n} + \frac{\mathbf{K}_{1}}{2})$$
$$\mathbf{Y}_{n+1} = \mathbf{Y}_{n} + \mathbf{K}_{2} + O(h^{3})$$

where errors are of 3^{rd} order, and vectors are

$$\mathbf{Y} = \begin{bmatrix} x \\ y \end{bmatrix}, \quad \mathbf{F}(t, x, y) = \begin{bmatrix} y \\ -\gamma y - x^3 + F(t) \end{bmatrix}$$

In component form for this problem, we have

$$x_{n+1} = x_n + h \left(y_n + \frac{h}{2} (-\gamma y_n + x_n^3 + F(t_n)) \right)$$

$$y_{n+1} = y_n + h \left[-\gamma \left(y_n + \frac{h}{2} (-\gamma y_n + x_n^3 + F(t_n)) + (x_n + \frac{h}{2} y_n)^3 + F(t_n + \frac{h}{2}) \right]$$

c . *No, since the system cannot be derived from a Hamiltonian due to the damping or time-dependent forces. [It has nothing to do with linear or nonlinear].*

[JSW]

- the end -