National University of Singapore

PC5215 – NUMERICAL RECIPES WITH APPLICATIONS

(Semester I: AY 2011-12)

Time Allowed: 2 hours

Instructions to Candidates:

- 1. This examination paper contains FOUR questions and comprises THREE printed pages.
- This is a closed book examination.
 Questions carry equal marks.
 Answer all FOUR questions.

- 5. Non-programmable calculators are allowed.

- 1. Answer briefly the following questions:
 - a. Is there a difference in the programming language C when a fixed size array or a pointer is passed to a function, like int a[10], or int *a, in sub(a)?
 - b. Explain the meanings of catastrophic cancellation and benign cancellation, respectively, in numerical arithmetic.
 - c. What is the main idea of Gaussian quadrature? Give the one-point Gaussian quadrature formula in the interval [0,1] with weight of 1.
 - d. How accurately can one locate with a single precision number (float in C) a minimum using a typical search algorithm (e.g., bisection)?
 - a. There is no difference in C for passing array or pointer to a function.
 - b. Catastrophic cancelation means a great loss of accuracy (e.g. all significant figures are lost) in a numerical arithmetic; benign cancelation means some accuracy is still maintained (e.g., accuracy is reduced by half).
 - c. In Gaussian quadrature, both the weight and abscissa (x value) are allowed to adjust in order to achieve maximum accuracy respect to the integration of a polynomial. For a one point formula, we require that the values are exact for 1 and x, this fixes the weight and w=1, and $x_0=1/2$, i.e., $\int_0^1 f(x)dx = f(1/2)$.
 - *d.* The relative accuracy in a search algorithm is $\sqrt{\varepsilon}$. For single precision, it is about 4 significant figures.
- 2. Consider matrices of A, B, C, D of dimensions $N \times N$, $N \times M$, $M \times N$, and $M \times M$, respectively. Using these matrices, we can do a block matrix LU decomposition of the form (assuming A⁻¹ exists):

$$\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{pmatrix} = \begin{pmatrix} I_N & 0 \\ \alpha_{21} & I_M \end{pmatrix} \begin{pmatrix} \beta_{11} & \beta_{12} \\ 0 & \beta_{22} \end{pmatrix},$$

where I_N and I_M are identity matrices of size N and M, respectively, and α and β are matrices of suitable sizes.

- a. Find the matrices α and β in terms of matrices A, B, C, D. Pay attention to the order as matrices do not commute in general.
- b. Using the result in a, express the determinant of the matrix $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ of dimension

 $(N+M) \times (N+M)$ in terms of a product of determinants of two smaller matrices of sizes $N \times N$ and $M \times M$.

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} I_N & 0 \\ CA^{-1} & I_M \end{pmatrix} \begin{pmatrix} A & B \\ 0 & D - CA^{-1}B \end{pmatrix}$$
$$\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(A) \det(D - CA^{-1}B)$$

- 3. Consider the Metropolis algorithm of Markov chain Monte Carlo simulation applied to Ising spin systems.
 - a. A single spin $\sigma = \pm 1$ in a magnetic field h (>0) is made in contact with a thermal heat bath such that the equilibrium distribution is given by the Boltzmann distribution $\exp(-H/(k_{\rm B}T)]/Z$ at temperature T with a Hamiltonian $H = -h \sigma$. Since there is only one spin, in a Metropolis algorithm we always choose it and flip it according to the standard Metropolis rate. Give the 2×2 transition matrix $W_{\rm a}$.
 - b. Now repeat the above problem for a two-spin system with a new Hamiltonian (energy function) as $H = -J \sigma_1 \sigma_2$, (J>0). For this purpose, give a 4×4 matrix W_b describing the Markov chain of the Metropolis algorithm, where each spin is choosen with equal probability.
 - c. What is the stationary (equilibrium) distribution P of the transition matrix W_b in part b? Justify your answer.

a. Assuming the first is +, second -, then
$$W_a = \begin{pmatrix} 1-x & x \\ 1 & 0 \end{pmatrix}$$
, $x = e^{-2h/(k_B T)}$.

b. Assuming matrix entries in the order ++, +-, -+, and - -, then

$$W_{b} = \begin{pmatrix} 1-r & \frac{r}{2} & \frac{r}{2} & 0\\ \frac{1}{2} & 0 & 0 & \frac{1}{2}\\ \frac{1}{2} & 0 & 0 & \frac{1}{2}\\ \frac{1}{2} & 0 & 0 & \frac{1}{2}\\ 0 & \frac{r}{2} & \frac{r}{2} & 1-r \end{pmatrix}, \qquad r = e^{-2J/(k_{B}T)}$$

c. $P \propto e^{-H/(k_BT)} \propto (1, r, r, 1)$. *P* is the stationary distribution. This can be verified directly or solved by PW = P.

4. In the conjugate gradient (CG) method for determining the minimum of a quadratic function, one starts from some point moving in the steepest descent direction to a local minimum in that direction, and then move in a new direction $\mathbf{n}_{i+1} = \mathbf{g}_{i+1} + \gamma \mathbf{n}_i$, where γ is

the ratio of the magnitude squared of the gradient of present step to the previous step, $\gamma = \mathbf{g}_{i+1} \cdot \mathbf{g}_i \cdot \mathbf{g}_i \cdot \mathbf{g}_i$. Consider the following function in three variables *x*, *y*, *z*.

$$f(x, y, z) = \frac{1}{2} \left[(x-1)^2 + 2y^2 + \frac{1}{2}z^2 \right].$$

- a. How many steps at most will it take for the CG method to converge to the answer?
- b. What is the expected minimum location (*x*,*y*,*z*) without going through the CG steps?
- c. Following the CG steps exactly as in the algorithm, find the minimum of the function, starting from (0,1,1) [Use of calculator is encouraged].

a. 3 steps as the problem is in three dimensions.

- b. x=1, y=0, z=0, obtained by setting the partial derivatives to 0.
- c. The steps are, given $x_0=(0,1,1)$, compute $g_0=n_0=(-x+1,-2y,-z/2)=(1,-2,-1/2)$. Minimized $f(\lambda)=f(x_0+\lambda n_0)$, obtain $\lambda = 0.57534$, obtain new $x_1 = x_0 + \lambda n_0$, and obtain $\gamma = |g_1|^2/|g_0|^2 = 0.0758116$, and obtain new $n_1 = g_1 + \gamma n_0$, etc. We list the values in a table for the three steps:

(x,y,z)	8	n	λ	γ
(0,1,1)	(1,-2,-0.5)	(1,-2,-0.5)	0.575342	0.0758116
(0.5753, -	(0.424, 0.301,-	(0.5004,0.1497,-	1.06716	0.084399
0.1506, 0.712)	0.356)	0.394)		
(1.109, 0.0091,	(-0.109,-0.0182,-	(-0.067,-	1.62871	
0.2917)	0.145)	0.00559,-		
		0.17915)		
(1,0,0)				

- End of Paper -

[WJS]