National University of Singapore

PC5215 - NUMERICAL RECIPES WITH APPLICATIONS

(Semester I: AY 2010-11)

Time Allowed: 2 hours

Instructions to Candidates:

1. This examination paper contains SIX questions and comprises TWO printed pages.
2. This is a closed book examination.
3. Questions carry equal marks.
4. Answer all SIX questions.
5. Non-programmable calculators are allowed.
6. Consider the calculation of two equivalent expressions
a) $\sqrt{b^{2}+a}-b$
b) $\frac{a}{\sqrt{b^{2}+a}+b}$
in 4-digit decimal precision (four significant figures) for the intermediate steps as well as the final results, with $a=0.001000, b=8.000$. Perform the computation and comment on errors of floating-point number arithmetic.
$b^{2}=64.00, b^{2}+a=64.00+0.001000=64.001000 \approx 64.00$, so $\sqrt{b^{2}+a}=8.000$. For part a) we get $8.000-8.000=0.000$. For part b) we get $0.001000 /(8.000+8.000)=$ $0.00006250=6.250 \times 10^{-5}$. This should be compared with a more exact value $6.24997558613 \times 10^{-5}$.

Four significant figures mean 4 digits for the mantissa if written in scientific notation.
Method a) causes a catastrophic cancellation when we do subtraction, thus loss much accuracy in floating point calculation.
2. Consider the calculation of determinant of a matrix A of size n by n.
a) Describe two different algorithms and state their computational complexities.
b) Suppose $\operatorname{det}(A)$ is already computed, now one of the elements, say a_{11}, is changed. Can we compute the new determinant faster than a re-computation of the determinant of the new matrix? Give a procedure to do so if you can.
a) we can use (1) $L U$ decomposition. let $A=L U, \operatorname{det}(A)=$ product of the diagonal values in matrix U (known as $\beta_{j j}$); computational complexity is $O\left(N^{3}\right)$ for an $N \times N$ matrix A. (2) we can use Laplace minor expansion recursively, this take $O(N!)$, which is much slower.
b) Yes. Let assume a_{11} is change to $a_{11}+\delta$, and matrix A becomes A^{\prime}. Then $\operatorname{det}\left(A^{\prime}\right)=$ $\operatorname{det}(A)+\delta \operatorname{det}\left(A_{11}\right)$, we have used the property that determinant is a linear function with respect to one of the column vector, and A_{11} is the matrix with the first row and first column deleted. Let $A^{-1}=C$, then $C_{11}=A_{11} / \operatorname{det}(A)$ (cramer's rule). If we already have $L U$ decomposition, C_{11} can be computed in $O\left(N^{2}\right)$ by forward/backward substitution, and new determinant can be computed also in $O\left(N^{2}\right)$ steps by $\operatorname{det}\left(A^{\prime}\right)=$ $\operatorname{det}(A)\left[1+\delta C_{11}\right]$. Note that this worked for any elements not limited to the (1,1)
element. Also note when a_{11} is changed, all the other $\beta_{j j}$ also change we cannot reuse them correctly.
3. Design an efficient Monte Carlo algorithm and present a pseudo-code to compute approximately the following two-dimensional integral:

$$
\int_{0}^{1} d x \int_{0}^{x} d y \cos \left(x^{2} y\right)
$$

$s=0$;
$d o i=1, N$

$$
\begin{aligned}
& x=\operatorname{drand} 48() \\
& y=\operatorname{drand} 64() \\
& \text { if }(x>y) \\
& \qquad s+=\cos \left(x^{2} y\right) ;
\end{aligned}
$$

end do;
$S=s / N$
Metropolis algorithm will not work if we use the $\cos \left(x^{2} y\right)$ as a probability distribution as we have unknown constant to determine (which is equivalent to find the value of the integral).
4. Given the following quadratic form, $f(x, y)=x^{2}+2 y^{2}-x$, starting from the position $(x, y)=(0,1)$, and following the steps of the conjugate gradient method, find the set of values of (x, y) such that the function reaches the minimum.

Following the recipe of conjugate gradient method, we start at point $\left(x_{0}, y_{0}\right)=(0,1)$, the negative gradient is $n_{0}=g_{0}=-f^{\prime}=(-2 x+1,-4 y)=(1,-4)$. First search line is $x=t, y=1-$ 4t. This gives $f(x(t), y(t))=f(t)=33 t^{2}-17 t+2$. Minimum is reached at $t=17 / 66$, given
$\left(x_{1}, y_{1}\right)=(17 / 66,-1 / 33)=(0.257575,-0.030303)$. For the second step the new gradient is $g_{1}=(0.4848,0.1212)$. This gives $\gamma=\left.\left|g_{1}\right|^{2} \wedge g_{0}\right|^{2}=(4 / 33)^{2}=0.01469$. The new search direction is $n_{1}=g_{1}+\gamma n_{0}=(0.499541,0.0624426)$. With the new search line $x=0.257575+0.499541$ $t, y=-0.03030+0.06244 t$, we can locate $t=33 / 68=0.485294$. This gives the final minimum position at $\left(x_{2}, y_{2}\right)=(0.5,0)$.
5. Consider a least-squares fit to a parabola in the form: $y(x)=a+b x^{2}$, given the data points $\left(x_{\mathrm{i}}, y_{\mathrm{i}}\right), \mathrm{i}=1,2, \ldots n$. Assuming that the standard deviations σ in y are all equal (but unknown) derive formulas that determine the coefficient a and b.

Same as the standard straight-line-fit formula if we replace x by x^{2} and set the standard deviations $\sigma_{j} \equiv 1$. Steps skipped.
6. Consider the following second-order ordinary differential equation $y^{\prime \prime}(x)+x y^{\prime}(x)-$ $y(x)=0$. Give a discretization scheme accurate to third order in step size h. Let $q=y$, $p=y^{\prime}$, and x as time t. Can we construct a symplectic algorithm for the equation?

Using central differences for second and first derivatives:
$y^{\prime \prime}(x)=[y(x+h)-2 y(x)+y(x-h)] / h^{2}+O\left(h^{2}\right)$,
$y^{\prime}(x)=\left[(y(x-y)-y(x-h)] / h+O\left(h^{2}\right)\right.$,
Put into the differential equation, we have
$(1+x h) y(x+h)-\left(2+h^{2}\right) y(x)+(1-x h) y(x-h)+O\left(h^{4}\right)=0$.
This means the method is accurate to $3^{\text {rd }}$ order and errors are in the 4-th order.
We cannot construct a symplectic algorithm as the equation explicitly depends on time t, and the first derivative y' term represents a damping (fractional force) and the system cannot be written as a conserved Hamiltonian dynamics.
-- the end --

