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Chapter 1

Fast Fourier Transform (FFT)

1.1 Introduction to FFT

Why use FFT?

• For periodical system, wave function is best represented by Fourier series

• The convolution of the form
∫
f(x)g(y−x)dx can be done in time of order Nlog N.

1.2 Discrete Fourier Transform (DFT)

1.2.1 General definition

The standart definition of DFT is as:

yk =

N−1∑

j=0

xje
−i 2πjk

N (1.1)

Or, in the matrix form, equation 1.1 can be written as:

y = Fnx (1.2)

where x=




x0

x1

...
xn−1


 and y = 7




y0

y1

...
yn−1


. Fn is an n⊗n matrix with (Fn)pq = ωpqn =

e−i2π
pq
n , ωn = e−i2π/n. Notice that ω2

n = ωn/2, ωnn = 1,ω
n/2
n = -1.

4
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1.2.2 Some properties of Fn

• (1) F is symmetric.
This is easily proven by the definition of F.

• (2) FHF = nI where FH = (F T )∗ is the Hermitian Complex Conjugate of F.

(FHF )pq =
∑n−1

r=0 F
H
prFqr = ω−pr+qrn =

{
0 p 6= q
n p = q

• (3) Q = F√
n

is unitary.

QHQ = FH√
n
× F√

n
= nI

n
= I

• (4) F−1 = F ∗
n
.

Use properties (1) and (2), F−1 = FH

n
= F ∗

n

Property (4) implies x= F−1y, or xj = 1
n

∑n−1
k=0 yke

i 2πjk
n .

There is no need to write two seperate functions for FFT and inverse FFT. One can
simply change the sign in the exponent. Also, the factor 1/n is done by the user. To
check your program, you can do the following:

Start from x, Fx= y, F ∗
n

y= x’, then ||x−x′||
||x|| < ε.

1.2.3 Examples of Fn

F1 = [1], F2 =

[
1 1
1 −1

]
, F4 =




1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i


.

1.2.4 FFT idea

Start from an analogue: If we compute b = an = a · a · · · a︸ ︷︷ ︸
n

by simple repeated multipli-

cations, the time of running is of order O(n). However, if we use the following procedure:

b = ai
for p = 1:log2 n
{ b=b*b; }
end

It will only take O(log n) time, assuming n is a power of 2. This is exactly the spirit of
FFT.
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1.3 Cooley-Tukey Factorization

1.3.1 Outer-product factorization

The idea is to factor Fn into products of smaller matrices.

FnPn = (I1 ⊗Bn) (I2 ⊗ Bn/2) ... (In/2 ⊗ B2)

Pn is an n×n permutation operator. Ik =




1 0
1

. . . .
0 1︸ ︷︷ ︸

k




Bk is an k×k matrix to be

specified. A⊗ B is the outer product of p×q matrix A and m×n matrix B, the product
is pm×qn matrix. The rule of the outer product is:

A⊗B =



A0,0B A0,1B ... A0,q−1B
...
Ap−1,0B Ap−1,1B ... Ap−1,q−1B




Now consider:

yk =
n−1∑

j=0

xjω
kj
n =

∑

j even

xjω
kj
n +

∑

j odd

xjω
kj
n

= x0ω
0.k
n + x2ω

2.k
n + x4ω

4.k
n + ... + x1ω

1.k
n + x3ω

3.k
n + x5ω

5.k
n + ...

= (x0ω
0.k
n/2 + x2ω

1.k
n/2 + x4ω

2.k
n/2 + ...) + ωkn(x1ω

0.k
n/2 + x3ω

1.k
n/2 + x5ω

2.k
n/2 + ...)

= kth component of the Fourier Transform{x(0 : 2 : n− 1)}
+ ωkn( kth component of the Fourier Transform{x(1 : 2 : n− 1)} ) (1.3)

Or, in the matrix form,

y =

[
Fn/2 Ωn/2Fn/2
Fn/2 −Ωn/2Fn/2

]
Pnx (1.4)

where Ωn/2 =




1 0 0 . 0
0 ωn 0 . 0
0 0 ω2

n . 0
...

0 0 0 . ω
n/2−1
n




.

Proof of the equavilence of (1.3) and (1.4). Start from (1.4):

yk =

n/2−1∑

j=0

(Fn/2)kjx2j +

n/2−1∑

j=0

(Ωn/2)kk(Fn/2)kjx2j+1

=

n/2−1∑

j=0

ωkjn/2x2j +

n/2−1∑

j=0

ωknω
kj
n/2x2j+1 = (1.3)
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1.3.2 Permutation operator Pn

The permutation operator Pn is defined as: Pn




x0

x1

x2

...


 =




x0

x2

x4

...
x1

x3

x5

...




Notation x(i:k:n) =




xi
xi + k
xi + 2k
...




We see that:

Fn =

[
In/2 Ωn/2

In/2 −Ωn/2

]
[I2 ⊗ Fn/2] Pn (1.5)

Proof of (1.5):
Start from (1.4)

y =

[
Fn/2 Ωn/2Fn/2
Fn/2 −Ωn/2Fn/2

]
Pnx

=

[
In/2 Ωn/2

In/2 −Ωn/2

] [
Fn/2 0
0 Fn/2

]

=

[
In/2 Ωn/2

In/2 −Ωn/2

]
[I2 ⊗ Fn/2]Pnx

Compare with (1.2)

Fn =

[
In/2 Ωn/2

In/2 −Ωn/2

]
[I2 ⊗ Fn/2] Pn

1.3.3 Example: n=16

F16x is a combination of F8x(0:2:15) and F8x(1:2:15). Let yA = F8x(0 : 2 : 15), yB =
F8x(1 : 2 : 15). Then equation (1.3) gives:

y(k<n/2) = kth component of the Fourier Transform{x(0 : 2 : n− 1)}
+ ωkn( kth component of the Fourier Transform{x(1 : 2 : n− 1)} )

= yAk + ωkny
B
k

y(k+n/2) = yAk + ωk+n/2
n yBk

= yAk − ωknyBk (1.6)



CHAPTER 1. FAST FOURIER TRANSFORM (FFT) 8

y0 = yA0 + yB0
y1 = yA1 + ωny

B
1

y2 = yA1 + ω2
ny

B
2

...

yn/2−1 = yAn/2−1 + ω
n/2−1
n yBn/2−1





First half of the vector

yn/2 = yAn/2 + yBn/2
yn/2+2 = yAn/2+2 + ω2

ny
B
n/2+2

...

yn−1 = yAn−1 + ω
n/2−1
n yBn−1





Second half of the vector

The decomposition is done recursively as:

[0 : 1 : 15] =⇒

[0 : 2 : 15] =⇒

[1 : 2 : 15] =⇒

[0 : 4 : 15] =⇒

[2 : 4 : 15] =⇒

[1 : 4 : 15] =⇒

[3 : 4 : 15] =⇒

[0 : 8 : 15] =⇒ {

[4 : 8 : 15] =⇒ {

[2 : 8 : 15] =⇒ {

[6 : 8 : 15] =⇒ {

[1 : 8 : 15] =⇒ {

[5 : 8 : 15] =⇒ {

[3 : 8 : 15] =⇒ {

[7 : 8 : 15] =⇒ {

0
8
4
12
2
10
6
14
1
9
5
13
3
11
7
15

1.3.4 FFT recursive radix-2 procedure

function y= fft(x,n)
if n=1

y <- x

else

m <- n/2

ω <- e−i2π/n

Ω <- diag(1, ω, ω2, ..., ωn−1)
ZA <- fft( x(0:2:n-1),m )
ZB <- Ω· fft( x(1:2:n-1),m )

y <-

[
Im Im
Im −Im

] [
ZA
ZB

]

end

end function
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Theorem 1.3.3 (Cooley-Tukey factorization)
If n = 2t, then Fn = AtAt−1...A1P

t
n, where Pn is an index reverse permutation.

Aq = Ir ⊗ BL, L = 2q, r = n/L.

BL =

[
IL∗ ΩL∗

IL∗ −ΩL∗

]
, L∗ = L/2.

ΩL∗ = diag(1, ωL, ω
2
L, ...ω

L∗−1
L ), ωL = e−i2π/L.

Cooley-Tukey algorithm
x <- P T

n x
for q=1:t

x <- Aq x
end

Bit reversal permutation
k after permutation (reversal) x
0000 0000 x0 -> x0

0001 1000 x1 -> x8

0010 0100 x2 -> x4

0011 1100 x3 -> x12

0100 0010 x4 -> x2

0101 1010 x5 -> x10

0110 0110 x6 -> x6

0111 1110 x7 -> x14

1000 0001 x8 -> x1

...
1111 1111 x15 -> x15

1.3.5 Cooley-Tukey bit reversal in-place FFT algorithm (1965)

Algorithm 1.6.1
If x∈ Cn, n = 2t, then the following algorithm overwrites x with Fnx.
x← Pnx
for q=1:t

L ← 2q; r ← n/L;L∗ ← L/2
for j=0:L∗-1

ω = e−i2πj/L

for k=0:r-1
τ = ω · x(k · L+ j + L∗)
x(k · L+ j + L∗)← x(k · L + j)− τ
x(k · L+ j)← x(k · L + j) + τ

end
end

end
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1.4 Stockham Auto-sorting algorithm

Algorithm 1.7.2
If x∈ Cn, n = 2t, then the following algorithm overwrites x with Fnx. A workspace
y∈ Cn is required.
for q=1:t

L ← 2q; r ← n/L;L∗ ← L/2; r∗ ← n/L∗

y← x
for j=0:L∗-1

ω = e−i2πj/L

for k=0:r-1
τ = ω · y(j · r∗ + k + r)
x(j · r + k)← y(j · r∗ + k) + τ
x((j + L∗) · r + k)← y(j · r∗ + k)− τ

end
end

end

1.5 3-dimensional FFT

The definition:

yî,ĵ,k̂ =
∑

l̂,m̂,n̂

xl̂,m̂,n̂e
−i 2πîl̂

n1 e
−i 2πĵm̂

n2 e
−i 2πk̂n̂

n3

We can think of 3D FFT as applying Fn1 to the first index î, Fn2 to the second index ĵ,
Fn3 to the third index k̂ separately. Here are some issues concerning the programming
efficiency.

• Uni-stride:
Memory should be accessed sequentially, rather than jumps randomly.

• Cooley-Tukey:
It uses minimum memory (in-place) by bit permutaiton, yet it is slow.

• Stockham:
It does not do permutation, but uses extra memory of the size of array x.

1.6 Lab 1

Implement a 1-dimensional and 3-dimensional FFT in C-code. It must be efficient (fast)
and correct with the necessary demonstration. Time the program for 3D FFT for size
163, 323, 643 in units of seconds.
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1.7 Tutorial 1

Hand simulate the FFT algorithms, and compare the results with the correct answer
(either by Matlab or Mathematica).

1.8 Reading Materials

• Computational frameworks for the Fast Fourier Transform
There are detailed proof of all the relevant theorem in FFT.

• Numerical recipes in C
It provides a quick working knowledge of FFT.



Chapter 2

Density Functional Calculation of
Energy

2.1 How to solve the problem of many-body system?

2.1.1 Quantum mechanics of many-electron system

The Hamiltonian of a system of N electrons, and M nuclei each of charge Zi is:

H =

N∑

i=1

−~2

2mi
∇2
i +

N∑

(i<j)=1

e2

|ri − rj|
+

N∑

i=1

M∑

k=1

Zke
2

|ri −Rk|
+

M∑

k=1

−~2

2mk
∇2
k +

M∑

(k<l)=1

ZkZle
2

|Rk −Rl|

= KE(e−) + V (e− − e−) + V (e− − n) +KE(n) + V (n− n) (2.1)

2.1.2 Born-Oppenheimer approximation

Assume nuclei is much heavier than electron, such that nuclei don’t move when we
solve for the motion of electrons. We thus treat nuclei classically, while treating elec-
trons quantum mechanically. Thus R is taken as a parameter instead of a variable, i.e.
ψ(ri,Rk)→ ψRk

(ri).

We can solve for the motion of electrons first, given the Hamiltonian H for the electrons:

H =

N∑

i=1

−~2

2mi
∇2
i +

N∑

(i<j)=1

e2

|ri − rj|
+

N∑

i=1

V (ri) (2.2)

where V (ri) is the potential due to the nuclei.

The time-independent Schrodinger equation for the electrons is:

Hψ = εψ (2.3)

12
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Then we solve for the motion of nuclei classically, using Newton’s laws or Hamiltonian
equations instead of Schrodinger equations.

2.1.3 Idea of density function

|ψ(r1, r2, ...rN)|2dr1, dr2, ...drN is the probability that electrons r are located at rr (r=1,2,...N).
Thus, the probability Pi that electron i at at r is:

Pi =

∫
|ψ(r1, ...ri−1, r, ri+1, ...rN)|2dr1, ...dri−1, dri+1, ...drN (2.4)

Since Pi is same for all permutation of ψj, total probability P of finding one electron at
r is:

P = NPi = N

∫
|ψ(r1, ...ri−1, r, ri+1, ...rN)|2dr1, ...dri−1, dri+1, ...drN (2.5)

Since electrons are fermions, we should take r as x= (r ,S ), where spin S = ± 1
2
. Wave

functions for fermions must be antisymmetric with respect to permutation of x, i.e.

Pψ(x1,x2, ...xN ) = (−1)Pψ(x1,x2, ...xN ) (2.6)

where P is the parity of the permutation. P=1 for old permutation, and P=0 for even
permutation.

2.1.4 Variational principle for ground state energy

Define

E[ψ] =
< ψ|H|ψ >
< ψ|ψ > (2.7)

E is a functional of the wave function ψ. Let E0 be the ground state energy of H, then:

E0 ≤ E[ψ] (2.8)

Above equation (2.8) is true for all normalized wave function ψ.

2.1.5 Theorem regarding solving the eigenvalue equation

Solving the eigenvalue equation is equivalent to solving the functional equation of E[ψ].

δE[ψ] = 0⇔ H|ψ >= ε|ψ > (2.9)
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2.2 Hartree-Fock approximation

Assume that each electron is independent of others and each occupies the orbit ψ(x).
Then the total wave function is ψ1(x1)ψ2(x2)...ψN (xN ). Since the wave function umst
be antisymmetric, the actual total wave function is the linear combination of all the
permutation functions for the above one, which is given by the Slater Determinant:

|ψ > =
∑

P

P |ψ1(x1)ψ2(x2)...ψN (xN) >

=
1√
N !

∣∣∣∣∣∣∣∣

ψ1(x1) ψ2(x1) ... ψN(x1)
ψ1(x2) ψ2(x2) ... ψN(x2)
...
ψ1(xN) ψ2(xN) ... ψN(xN )

∣∣∣∣∣∣∣∣
(2.10)

More about the HF and reduced HF approximations are available in the appendix. For
more reading materials, you can read the book Density-Functional theory of atoms and
molecules.

2.3 Hohenberg-Kohn theorem

2.3.1 The first Hohenberg-Kohn theorem (1964)

Given the electron system with Hamiltonian:

H = T +
N∑

(i<j)=1

e2

|ri − rj|
+

N∑

i=1

v(ri) (2.11)

the ground state electron density n0(r) is determined uniquely by H. If we fix the number
of electrons N, the only thing that can change is v(r ). So v(r ) uniquely determines
n0(r).

Proof:
Assume ground state ε0 and ε′0 for two H and H ’. According to the variational principle,
we have:

H|ψ > = ε0|ψ >

⇒ ε0 < < ψ′|H|ψ′ > = < ψ′|H′ +H−H′|ψ′ > = ε′0+ < ψ′|
N∑

i=1

(v(ri)− v(r′i))|ψ′ >

H′|ψ′ > = ε′0|ψ′ >

⇒ ε′0 < < ψ|H′|ψ > = < ψ|H +H′ −H|ψ > = ε0+ < ψ|
N∑

i=1

(v(r′i)− v(ri))|ψ >

⇒ ε0 + ε′0 < ε0 + ε′0
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The contradiction implies that v(r ) uniquely determines ε0 and uniquely determinesH up
to a constant, thus |ψ > is also uniquely determined, which in turn uniquely determines
the density function n0(r).

2.3.2 The second Hohenberg-Kohn theorem

According to first Hohenberg-Kohn theorem, we can compute:

Ev[n(r)] =< ψ|H|ψ >=< ψ|T|ψ > + < ψ|V(e−e−)|ψ > +

∫
v · n(r)d3r (2.12)

The second Hohenberg-Kohn theorem states that:

E0 ≤ Ev[n(r)] (2.13)

for fixed potential v(r ).

2.4 Kohn-Sham energy functional and Kohn-Sham

equation

Hehenberg-Kohn density functional for electrons gives total energy:

E[n(r)] = T [n(r)] + V(e−e−)[n(r)] +

∫
v(r) · n(r)dr

E[n] = T [n] + V(e−e−)[n] +

∫
v · ndr (2.14)

T[n] = < ψ|T|ψ > (2.15)

=
∑

Si

∫
dr1dr2...drN ψ∗(x1,x2, ...xN ) (

N∑

i=1

−~2

2mi

∇2
i ) ψ(x1,x2, ...xN)

V(e−e−)[n] = < ψ|V(e−e−)|ψ >

=
∑

Si

∫
dr1dr2...drN ψ∗(x1,x2, ...xN ) (

N∑

(i<j)=1

e2

|ri − rj|
ψ(x1,x2, ...xN)

=
∑

Si

∫
dr1dr2...drN |ψ(x1,x2, ...xN)|2 (

N∑

(i<j)=1

e2

|ri − rj|
(2.16)

Kohn-Sham approach consider N non-interacting electrons in an external potential vs:

Hs = Ts +

N∑

i=1

v(ri)

=
N∑

i=1

−~2

2mi

∇2
i +

N∑

i=1

vs(ri) (2.17)
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Apply Hohenberg-Kohn theorem to above:

Es[n] = Ts[n] +

∫
vs · n dr (2.18)

Since Hs is the Hamiltonian for N-independent electrons, we have:

Hs =

N∑

i=1

hs(ri) (2.19)

hs(x)φi(x) = εiφi(x) (2.20)

where φ is the wave function for single electron.

Total wave function for N-independent electrons is given by Slater determinant (2.10):

|ψs > =
∑

P

P |φ1(x1)φ2(x2)...φN(xN) >

=
1√
N !

∣∣∣∣∣∣∣∣

φ1(x1) φ2(x1) ... φN(x1)
φ1(x2) φ2(x2) ... φN(x2)
...
φ1(xN ) φ2(xN) ... φN(xN )

∣∣∣∣∣∣∣∣
(2.21)

Then, the total kinetic energy is:

Ts[n] =< ψs|
N∑

i=1

−~2

2m
∇2
i |ψs >=

N∑

i=1

< φi|
−~2

2m
∇2|φi >=

N∑

i=1

Ki (2.22)

2.4.1 Kohn-Sham energy functional

For the N interacting electrons, the exchange and correlation terms should also be taken
into account, and the Kohn-Sham energy functional is:

E[n] = Ts[n] + J [n] + Exc[n] +

∫
v · n dr (2.23)

Proof of (2.23):
Use (2.14) and (2.18),

E[n] = Es[n] + E[n]− Es[n]

= Ts[n] + [ T [n]− Ts[n] + V(e−e−)[n] +

∫
v · ndr]

V(e−e−)[n] = J [n](Coulomb potential) +K[n](exchange potential)

=
1

2

∫
n(r)n(r′)

|r− r′| drdr
′ +K[n]

Exc[n] = [ T [n]− Ts[n] ] +K[n] = δ T [n] + δ V(e−e−)[n]

⇒ E[n] = Ts[n] + J [n] + Exc[n] +

∫
v · n dr
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2.4.2 Kohn-Sham equation

Consider the free electron system which has the same energy functional as the interacting
system, the density is determined by:

δE[n] = 0

The famous Kohn-Sham equation is given as:

hsφi = εiφi (2.24)

hs = − ~
2

2m
∇2 + v(r) +

∫
n(r′)

|r− r′| dr
′ + vxc(r) (2.25)

vxc =
δExc
δn

Derivation of above Kohn-Sham equation:

Use(2.9) ,

n =

N∑

i=1

|φi|2

Ts[n] =

N∑

i=1

< φi| −
~2

2m
∇2|φi >

δE[n] = δE[φi] = 0

⇒
hsφi = εiφi

hs = − ~
2

2m
∇2 + v(r) +

∫
n(r′)

|r− r′| dr
′ + vxc(r)

= Ts + v(ion−e−) + v(e−e−) + vxc

= Ts + veff

Solving the Kohn-Sham eigen-function, the sum of Kohn-Sham equation eigenvalue is:

N∑

i=1

εi =
N∑

i=1

< φi|hs|φi >

=

N∑

i=1

< φi| −
~2

2m
∇2|φi > +

N∑

i=1

< φi|veff(r)|φi >

= Ts[n] +

∫
vs(r)n(r)dr = Es[n]

= Ts[n] +

∫
v(r)n(r)dr +

∫
n(r)n(r′)

|r− r′| +

∫
vxc(r)n(r)dr (2.26)



CHAPTER 2. DENSITY FUNCTIONAL CALCULATION OF ENERGY 18

From above (2.26), we can solve for Ts[n], together with (2.23), we get:

E = minE[n] = Ts[n] + J [n] + Exc[n] +

∫
v · n dr

= {
N∑

i=1

εi −
∫
v(r)n(r)dr−

∫
n(r)n(r′)

|r− r′| −
∫
vxc(r)n(r)dr }

+
1

2

∫
n(r)n(r′)

|r− r′| + Exc[n] +

∫
v · n dr

=
N∑

i=1

εi −
1

2

∫
n(r)n(r′)

|r− r′| + Exc[n]−
∫
vxc(r)n(r)dr } (2.27)

2.4.3 Solving the Kohn-Sham equation

• Assume an initial wave function ψi to compute n(r ).

• Use n(r ) to compute hs.

• Use hs to compute the new ψi.

Iteration is performed until the self-consistency is reached, i.e. the iteration converges.

2.4.4 Functional derivative

Let F[f] be a functional, f(x) is a function.

δF = F [f + δf ]− F [f ] =

∫
δF

δf
δf(x)dx

E.g.

J [n] =
1

2

∫
n(r)n(r′)

|r− r′| drdr
′

δJ [n] =
1

2

∫
n(r′)δn(r) + n(r)δn(r′)

|r− r′| drdr′

=

∫
n(r′)δn(r)

|r− r′| drdr′

δJ(n)

δn(r)
=

∫
n(r′)

|r− r′|dr
′

The result of functional derivative is a function.
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2.5 Planewave representation of Kohn-Sham equa-

tion

2.5.1 Periodicity and Bloch theorem

The unit cell is introduced to represent the periodicity in the solid, which is characterized

by three vectors a , b , c with volume v = |(a× b) · c| = det




ax ay az
bx by bz
cx cy cz


.

The periodicity is due to the fact that the physical quantities are the same at location r
and r +R , where R = la +mb + nc, l, m, n ∈ Z.

Bloch theorem:

• If potential v is periodic, v(r ) = v(r +R ), then the wave function if also periodic:

ψ(r) = eik·ruk(r)

uk(r) = uk(r + R) (2.28)

where k is determined by the Born-Von Karmen boundary condition.

• Another way to state the Bloch theorem is:

ψ(r + R) = eik·Rψ(r) (2.29)

Proof of the Bloch theorem:

• Schrodinger equation: H = − ~2

2m
∇2 + U(r)

Define TRf(r) = f(r + R) where TR is the translation operator.
TR(H(r)ψ(r)) = H(r + R)ψ(r + R) = H(r)(TRψ(r)) = H(r)ψ(r + R)
⇒ TRH = HTR (*1)
TRTR′ψ(r) = TR′TRψ(r) = ψ(r + R + R′)
⇒ TRTR′ = TR′TR (*2)
(*1) and (*2) ⇒ TR and H are set of commuting operators, so the eigenstates of H
are also eigenstates of TR.
⇒ Hψ = εψ, TRψ = c(R)ψ (*3)

⇒
{
TR′TRψ = c(R)TR′ψ = c(R)c(R′)ψ
TR′TRψ = TR+R′ψ = c(R + R′)ψ

⇒ c(R ) c(R ’) = c(R +R ’) (*4)

• Now, write c(ai) = e2πixi such that (*4) is satisfied, where ai(i=1,2,3) is the primitive
latice vector.
R = n1a1 + n2a2 + n3a3
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c(R) = c(n1a1 + n2a2 + n3a3) = c(a1)n1c(a2)n2c(a3)n3 = e2πix1n1e2πix2n2e2πix3n3 (*5)
i.e. c(R) = eik·R (*6), where k = x1b1 + x2b2 + x3b3, b1 = 2π a2×a3

a1·a2×a3
etc, or

equivalently biaj = 2πδij, such that k·R = (x1b1+x2b2+x3b3)·(n1a1+n2a2+n3a3) =
2π(x1n1 + x2n2 + x3n3), which agrees with (*5).

• (*3) and (*6)⇒ TRψ(r) = ψ(r + R) = c(R)ψ(r) = eik·Rψ(r) which gives the Bloch
theorem (2.29).

Since uk is periodic, we make a Fourier expansion of it to get:

uk(r) =
∑

G

CGe
iG·r 1√

v

ψ(r) =
∑

G

CGe
i(G+k)·r 1√

v

When an electron is in the state ψ(r), we say that the electron occupies the orbit ψ(r).
Due to the Pauli’s Exclusion Principle, we have at most two electrons per orbit (one spin
up, and one spin down). Actually, the wave function of N non-interacting electrons is
constructed from single electron wave function by Slater determinant.

2.5.2 Planewave method

Kohn-Sham energy functional is expressed in the terms of the planewave coefficients CG

in a supercell. Here, the supercell is a repeating unit cell which may contain a number
of primitive cell which is the smallest possible repeating unit.

Kohn-Sham energy functional (2.23) in the real space is:

E[n] = Ts[n] + J [n] + Exc[n] +

∫
v · n dr

=
N∑

i=1

< ψi| −
hbar2

2m
∇2|ψi > +

1

2

∫
n(r)n(r′)

|r− r′| drdr
′ + Exc[n(r)] +

∫
v · n(r)dr

Now, we want to rewrite the above Kohn-Sham energy functional in the Fourier space,
and that will be the aim of the rest of this chapter.
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2.5.3 Kinetic energy

Consider only one electron in the state ψ(r) =
∑

G CGe
i(G+k)·r 1√

v
.

Ts = < ψi| −
~2

2m
∇2|ψi >

=

∫
d3r ψ∗(r)(− ~

2

2m
∇2)ψ(r)

=

∫
d3r
∑

G′

C∗G′e
−i(G′+k)·r 1√

v
(− ~

2

2m
∇2)

∑

G

CGe
i(G+k)·r 1√

v

=

∫
d3r
∑

G′

C∗G′e
−i(G′+k)·r 1√

v

∑

G

CG(
~2

2m
)|G + k|2ei(G+k)·r 1√

v

=
∑

G

CG(
~2

2m
)|G + k|2

∑

G′

C∗G′

∫
d3r e−i(G

′−G)·r 1

v

=
∑

G

CG(
~2

2m
) |G + k|2 C∗G

=
∑

G

~2 |G + k|2
2m

|CG|2

The total kinetic energy of N electrons is:

Ts =

N states∑

i

∑

G

~2 |G + k|2
2m

|Ci
G|2

=
∑

b

nb
∑

G

~2

2m
|G + k|2 |Cb

G|2 (2.30)

where nb =





2 doubly occupied
1 singly occupied
0 unoccupied

.

2.5.4 Electron density

In real space, electron density,

nr =

N∑

i=1

|ψi|2 =
∑

b

nb|ψb|2 (2.31)
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In the Fourier space,

nr =
∑

G

nGe
iG·r 1√

v
(2.32)

nG =

∫

v

nre
−iG·r 1√

v
dr (2.33)

=
∑

b

nb

∫

v

ψ∗bψbe
−iG·r 1√

v
dr

=
∑

b

nb

∫

v

(
∑

G”

c̄bG”e
−iG”·r 1√

v
)e−iG·r

1√
v

(
∑

G′

cbG′e
iG′·r 1√

v
))

=
∑

b

nb
∑

G”

∑

G′

c̄bG”c
b
G′

1√
v

∫

v

ei(G
′−G−G”)·r 1

v

=
∑

b

nb
∑

G′

c̄bG′−Gc
b
G′

1√
v

(2.34)

which is the convolution of Cb
G.

2.5.5 Hartree term

As shown, the density function in the real space and in the Fourier space are given by
(2.32) and (2.33). The Coulomb term, which is normally called Hartree term, in the
Fourier space is:

VH =
e2

2

∫

v

dr′
∫

∞
dr

nrnr′

|r− r′|

=
e2

2

∫

v

dr′
∫

∞
dr(
∑

G

nGe
iG·r 1√

v
)

nr′

|r− r′|

=
e2

2

∑

G

nG

∫

v

dr′nr′e
iG·r′ 1√

v

∫

∞
dr
eiG·(r−r′)

|r− r′|

=
e2

2

∑

G

nG

∫

v

dr′nr′e
iG·r′ 1√

v

4π

G2

=
e2

2

∑

G

nG n∗G
4π

G2

=
e2

2

∑

G

4π

G2
|nG|2 (2.35)
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2.5.6 More on the electron density

To descritize the system of size (a × b × c) into (Lx × Ly × Lz) grids. xj = j∆x,
j=0,1,2...Lx-1, ∆x = a

Lx
.

V = abc

∆V = ∆x ·∆y ·∆z =
a

Lx
· b
Ly
· c
Lz

=
V

LxLyLz
r = (lx̂, mŷ, nẑ)

G = (Gx, Gy, Gz) = (
2π

a
l̂,

2π

b
m̂,

2π

c
n̂)

Gx · x =
2π

a
l̂ · l∆x =

2π

a
l̂ · l a

Lx
=

2πl

Lx
l̂

nr = n(l,m,n)

=
∑

G

nGe
iG·r 1√

V

=
∑

G

nGe
i(Gxl∆x+Gym∆y+Gzn∆z) 1√

V

=
∑

l̂,m̂,n̂

n(l̂,m̂,n̂)e
i( 2πl
Lx

l̂+ 2πm
Ly

m̂+ 2πn
Lz

n̂) 1√
V

nG = n(l̂,m̂,n̂)

=

∫

v

nre
−iG·r 1√

V
dr

=
∑

l,m,n

nl,m,ne
−iG·r 1√

V
∆V

=

√
V

LxLyLz

∑

l,m,n

nl,m,ne
−i( 2πl

Lx
l̂+ 2πm

Ly
m̂+ 2πn

Lz
n̂)

2.5.7 Ewald’s sum – Ion-ion interaction

Use Born-Oppenheimer approximation, the nuclei-nuclei interaction is treated classically:

Vii =
1

2

N∑

i,j

Z2e2

|Ri −Rj|

Assume only one type of atom located at {RI}, I=1,2,...N in a unit cell. Periodicity gives
the images of ion RI at RI + R. Thus, the electrostatic potential created by ions from
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RI and all its images is:

Vii =
1

2

N∑

I,J,R,r 6=0

Z2e2

|RI − RJ +R|

=
1

2

∑

I,J

Z2e2{
∑

R,r 6=0

erfc(η |RI −RJ +R|)
|RI − RJ +R| − 2η√

π
δIJ

+
4π

V

∑

G6=0

1

|G|2 e
−G2/4η2

cos[(RI − RJ) ·G]− π

η2V
}+∞ (2.36)

which is called Ewald’s sum.

Proof of Ewald’s sum (2.36):

• Firstly, prove the Fourier integral of e−r
2u2

is

f(G) =
1

V

π3/2

u3
e−G

2/u2

(2.37)

Proof of (2.37):

f(G) =

∫

v

dr
1

V
e−r

2u2

e−iG·r

=
1

V

∫

v

r2dr sinθdθ dφe−r
2u2

e−iG·r

=
2π

V

∫ ∞

r=0

r2dr e−r
2u2

∫ 1

−1

dcosθ e−iGrcosθ

=
2π

V

∫ ∞

r=0

r2dr e−r
2u2 1

iGr
(eiGr − e−iGr)

=
2π

iGV

∫ ∞

r=0

dr re−r
2u2

(eiGr − e−iGr)

let z = r − i
2
G
u2 , changing the variable of integral get:

f(G) = { A
2u2

e−u
2B2

+ AB

∫ 0

−B
e−u

2z2

dz +
π3/2

2V u3
e−G

2/4u2}

− { A
2u2

e−u
2B2

+ AB

∫ 0

−B
e−u

2z2

dz − π3/2

2V u3
e−G

2/4u2}

where A = 2π
iGV

e−G
2/4u2

, B = i
2
G
u2 . Simplify to get (2.37).

• Secondly, prove

1

r
=

1

(2π)3

∫
dG

4π

G2
e−G2/4η2+iG·r +

erfc(ηr)

r
(2.38)
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Proof of (2.38):

1

r
=

1

r

2√
π

∫ ∞

0

e−r
2u2

d(ru)

=
2√
π

∫ η

0

e−r
2u2

du+
2√
π

∫ ∞

η

e−r
2u2

du

Since only the 2nd term of the above equation converges fast in real space, while
the 1st term converges relatively slow in the real space, we have to perform Fourier
transform to calculate the 1st term in Fourier space. The Fourier transform of
e−r

2u2
is already proven in (2.37), do the Inverse Fourier transform to get e−r

2u2
:

e−r
2u2

=
V

(2π)3

∫ ∞

0

f(G)eiG·rdG

=
V

(2π)3

∫ ∞

0

1

V

π3/2

u3
e−G

2/u2

eiG·rdG

=
1

(2π)3

∫ ∞

0

π3/2

u3
e−G

2/u2+iG·rdG

Substitute into the expression of 1
r
:

2√
π

∫ η

0

e−r
2u2

du =
2√
π

∫ η

0

du
1

(2π)3

∫ ∞

0

dG
π3/2

u3
e−G

2/u2+iG·r

=
1

(2π)2

∫ ∞

0

dGeiG·r
∫ η

0

du
1

u3
e−G

2/u2

=
1

(2π)2

∫ ∞

0

dGeiG·r
2

G2
e−G

2/4η2

1

r
=

1

(2π)3

∫ ∞

0

dG
4π

G2
e−G

2/4η2+iG·r +
2√
π

∫ ∞

η

e−r
2u2

du

=
1

(2π)3

∫ ∞

0

dG
4π

G2
e−G

2/4η2+iG·r +
erfc(ηr)

r

• Finally, prove (2.36)

Vii =
1

2

N∑

I,J,R,r 6=0

Z2e2

|RI − RJ +R|

=
1

2

∑

I,J,R′

Z2e2 { 1

(2π)3

∫ ∞

0

dG
4π

G2
e−G

2/4η2+iG·|RI−RJ+R|

+
erfc(η|RI − RJ +R|)
|RI − RJ +R| }

=
1

2

∑

I,J,R

Z2e2 1

(2π)3

∫ ∞

0

dG
4π

G2
e−G

2/4η2+iG·|RI−RJ+R|

− 1

2

∑

I,J,r=0

Z2e2 1

(2π)3

∫ ∞

0

dG
4π

G2
e−G

2/4η2+iG·|RI−RJ+R|

+
1

2

∑

I,J,R′

Z2e2 erfc(η|RI − RJ +R|)
|RI − RJ +R|
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V1 =
1

2

∑

I,J,R

Z2e2 1

(2π)3

∫ ∞

0

dG
4π

G2
e−G

2/4η2+iG·|RI−RJ+R|

=
1

2

∑

I,J,R

Z2e2 1

(2π)3

∑

G

4π

G2
e−G

2/4η2+iG·|RI−RJ+R| (2π)3

V

= V1(G 6= 0) + V1(G→ 0)

V1(G→ 0) =
1

2

∑

I,J,R

Z2e2 4π

V

1

G2
(1− G2

4η2
)

=
1

2

∑

I,J

Z2e2 4π

V

1

G2

∣∣∣
G→0
− 1

2

∑

I,J

Z2e2 π

V η2

V2 =
1

2

∑

I,J,r=0

Z2e2 1

(2π)3

∫ ∞

0

dG
4π

G2
e−G

2/4η2+iG·|RI−RJ+R|

=
1

2

∑

I,J,I=J

Z2e2 1

(2π)3

∫ ∞

0

dG 4πG2 4π

G2
e−G

2/4η2

=
1

2

∑

I,J,I=J

Z2e2 2η√
π

=
1

2

∑

I,J

Z2e2 2η√
π
δI,J

Vii = V1 − V2 +
1

2

∑

I,J,R′

Z2e2 erfc(η|RI − RJ +R|)
|RI −RJ +R|

=
1

2

∑

I,J

Z2e2
{ ∑

r 6=0

erfc(η|RI −RJ +R|)
|RI − RJ +R|

− 2η√
π
δI,J +

4π

V

∑

G6=0

1

G2
e−G

2/4η2+iG·|RI−RJ+R| − π

V η2

}

+
1

2

∑

I,J

Z2e2 4π

V

1

G2

∣∣∣
G→0

=
1

2

∑

I,J

Z2e2
{ ∑

r 6=0

erfc(η|RI −RJ +R|)
|RI − RJ +R| − 2η√

π
δI,J

+
4π

V

∑

G6=0

1

G2
e−G

2/4η2

cos(G · |RI −RJ +R|)− π

V η2

}

+
1

2

∑

I,J

Z2e2 4π

V

1

G2

∣∣∣
G→0

2.5.8 Exchange Correlation Exc

As derived in the Khom-Sham energy functionaly (2.23),

Exc = T − Ts + Ve−e− − J
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This term is extremely difficult to compute, thus we have to use approximate method. The
simplest and most popular one is the so called LDA (Local Density Approximation). In
this approximation, the exchange-correlation energy of an electronic system is constructed
by assuming that the exchange-correlation energy per electron at apoint r in the electron
gas, εxc(r), is equal to the exchange-correlation energy per electron in a homogeneous
electron gas that has the same density as the electron gas at point r .

Exc(n(r)) =

∫

V

εxc(r) n(r) dr (2.39)

εxc(r) = ε(n(r))

Many calculation is based on a simple formula:

εxc(n(r)) = −An1/3(r)

A = 0.4582(
4π

3
)1/3

A better approximation is given by Teter:

εxc(n(r)) = − a0 + a1rs + a2r
2
s + a3r

3
s

b1rs + b2r2
s + b3r3

s + b4r4
s

(2.40)

r−1
s = (

4π

3
n(r))1/3 (2.41)

The ratio of two polynomials is known as padi approximation, if ε is know as series in rs.
Padi approximation improves the convergence of the function.

The constants in the Teter’s approximation are:

a0 = 0.4581652932831429

a1 = 2.217058676663745

a2 = 0.7405551735357053

a3 = 0.01968227878617998

b1 = 1

b2 = 4.504130959426697

b3 = 1.110667363742916

b4 = 0.02359291751427506

There is another improved approximation over LDA, which is gradient expansion:

Exc[n] =

∫

V

f(n,∇n, ...)dr

However, the more complicated approximation is not necessary.
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2.5.9 Atomic units

For elctronic structure calculation, it ismost convenient to use atomic units. In this unit,
e=~=m=1. 1 a.u. of length = a0 = ~2

me2
=0.53A. 1 a.u. of energy = e2

a0
= 27.2 eV = 1

Hartree = 2 Rydberg.

2.5.10 Pseudo-potentials

The electrons of an atom is divided into core electrons and valence electrons. For Si, total
electron number is 14, the electron shell structure orbit is [1s22s22p6]︸ ︷︷ ︸

core

3s23p2

︸ ︷︷ ︸
valence

. We treat Si

as having only 4 electrons, and group the 10 core electrons into the nuclei by an effective
potential.

Non-interacting electron-atom model

we first consider a non-interacting electron-atom model.

ψ = φ+
∑

c

acφc

where φc is the wavefunction for the core electron state,and ψ is the valence electron
wavefunction, φ is a smooth pserdo wavefunction. Require the valence wavefunction
orthogonal to the core state:

< φc|ψ >=< φc|φ > +ac = 0

ψ = φ−
∑

c

< φc|φ > φc

ψ must satisfy the Schrodinger equation, thus:

H|ψ >= ε|ψ >

H =
p2

2m
+ Vc

H|φ > −H
∑

c

< φc|φ > |φc >= ε|φ > −ε
∑

c

< φc|φ > |φc >

H|φ > +
∑

c

< φc|φ > (ε− εc)|φc >︸ ︷︷ ︸
VR

= ε|φ >

(
p2

2m
+ Vc + VR︸ ︷︷ ︸

V PS

)|ψ >= ε|φ >

So, the pseudo-potential is defined as:

V PS = Vc +
∑

c

(ε− εc)|φc >< φc| (2.42)

Some properties of the pseudo-potential:
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• The pseudo-potential is generally nonlocal.
If V(r ) is local, then V(r ) acting on φ is V(r )φ(r ).
If V(r ) is nonlocal, then V(r )|φ > =

∫
V (r, r′)φ(r′)dr′.

• The pseudo-potential Vc and VR tends to cancel for small r, and VR → 0 at large r.
For r¿rc, the pseudo-potential and wavefunction agree with the true potential and
real wavefunction.

Empirical local pseudo-potential for Si

Now consider an empirical local pseudo-potential for Si (Appelbaum and Hamann).

V PS = (V1 + V2r
2)e−αr

2 − z

r
erfc(

√
αr)

where V1, V2, α are parameters.

Some concepts of pseudo-potential:

• Soft and hard pseudo-potential.
If the pseudo-potential is flat when r→0, it is soft.
If the pseudo-potential is like 1

r
when r→0, it is hard.

• Norm-conservation.
The total charge inside the cut-off radius rc for the pseudo-wavefunction is the same
as that for the real wavefunction.

• Transferability.
The pseudo-potential generated for an atom should be readily usable in a solid state
environment.

Various pseudo-potentials

The most commonly used pseudo-potentials are of the form:

V PS = V loc(r) +
∑

V NL
l (r)Pl

Pl =
∑

m

|lm >< lm| (m = −l,−l + 1, ...l)

Among various pseudo-potentials, the one by Bachelet, Hamann and Schluter is most
popular. Another type called Ultrasoft pseudo-potential is developped by Vanderbilt. In
this course, we use the Ihm-Cohen potential (J.Ihm & M.L.Cohen, Solid State Comm.
v29, 711, 1979) defined as:

V PS(q) =
a1

q2
[cos(a2q) + a3]ea4q4

(2.43)
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V PS(q) is the Fourier transform of V PS(r).

a1 = − 4πZ

1 + a3

a2 = 0.79065

a3 = −0.35201

a4 = −0.01807

2.5.11 Ion-electron interaction energy

Assume that the ions are located at RI in a cell for I=1,2,3,...n, where n is the number
of ions in the unit cell. Let VI(r−RI) be the potential seen by an electron at r , then
the total potential of the electron is:

v(r) =
∑

cell i

∑

I

vI(r−RI)

=
∑

R

∑

I

vI(r− (RI + R)) (2.44)

Total ion-electron interaction energy (per unit cell) is:

Vi−e− =

∫

cell

v(r) n(r) dr

=

∫

V

v(r)
∑

G

nGe
iG·r 1√

V
dr

=
∑

G

v(−G)nG (2.45)

where v(G) =
∫
V
v(r)e−iG·r 1√

V
dr is the Fourier transform of v(r ).

v(G) =

∫

V

v(r)e−iG·r
1√
V
dr

=
∑

R

∑

I

∫

V

vI(r− (RI + R))e−iG·r
1√
V
dr

=
∑

R

∑

I

∫

V

vI(r
′)e−iG·(r

′+RI+R) 1√
V
dr

=
∑

I

e−iG·RI
1√
V

∫

∞
vI(r

′)e−iG·r
′
dr

= SGVI(G)

where SG =
∑

I
e−iG·RI√

V
is the structure factor, VI(G) is the Fourier transform of vI(r)

that is given by (2.43). So, finally get:

v(G) = SGV
PS(q) (2.46)
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Infinities in Vi−e−

To handle the infinities in the ion-electron interaction energy, seperate out the G =0
term of the summation in (2.45):

V PS(G)
∣∣∣
G→0

=
a1

G2
(1− 1

2
a2

2G
2 + a3)

=
(1 + a3)a1

G2
− 1

2
a1a

2
2

= −4πZ

G2
− 1

2
a1a

2
2

= −1

2
a1a

2
2 −∞

S−G

∣∣∣
G→0

=
Nion√
V

nG

∣∣∣
G→0

=
∑

b

nb
∑

G′

c̄bG′−Gc
b
G′

1√
V

=
∑

b

nb
1√
V

=
Ne−√
V

So, finally get the expression of ion-electron interaction energy:

Vi−e− =
∑

G

S−GV
PS(G)nG

=
∑

G6=0

S−G V PS
(G) nG −

1

2
a1a

2
2

NionNe−

V
(2.47)

2.5.12 Total energy Etot

Putting all the terms together, the total energy per unit cell is:

Etot = Ts + VH + Vii + Exc(n(r)) + Vi−e− (2.48)
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where the five terms are given as:

(2.30) : Ts =
∑

b

nb
∑

G

~2

2m
|G + k|2 |Cb

G|2

(2.35) : VH =
e2

2

∑

G

4π

G2
|nG|2

(2.36) : Vii =
1

2

∑

I,J

Z2e2{
∑

R,r 6=0

erfc(η |RI −RJ +R|)
|RI − RJ +R| − 2η√

π
δIJ

+
4π

V

∑

G6=0

1

|G|2 e
−G2/4η2

cos[(RI −RJ) ·G]− π

η2V
}+∞

(2.39) : Exc(n(r)) =

∫

V

εxc(r) n(r) dr

(2.40) : εxc(n(r)) = − a0 + a1rs + a2r
2
s + a3r

3
s

b1rs + b2r2
s + b3r3

s + b4r4
s

(2.47) : Vi−e− =
∑

G

v(−G)nG =
∑

G6=0

S−G V PS
(G) nG −

1

2
a1a

2
2

NionNe−

V

2.6 Lab 2

Write a program to compute the total energy given by (2.48) for the Silicon system. Here
are some guidelines.

• Use a box with length a, b, c in atomic units. Use a cut-off for G in the Reciprocal
(Fourier) space in the expressions like

∑
G nGe

iG·r 1√
V

. The exact solutions need to
sum over G from −∞ to ∞. To compute analytically, we need a cut-off of G at
large value N, such that G = -N

2
+ 1, -N

2
+ 2, ... N

2
.

• You can test the sub-function of computing Ewald’s sum (ion-ion interaction) for
the Sodium Chloride (NaCl) system.
NaCl is two fcc lattices. The lattice constant a=5.64 A. The value of Ewald’s sum
is about -1.43×10−11 erg per ion pair (per NaCl).

• There will be a lot of adjustable parameters in the program, such as the number of
bands, number of ions per unit cell, choice of cut-off G, and how the descretization is
done. All these parameters and programming details should be handed in together
with the source code.

• Si-diamond structure.
There are 8 atoms per unit cell, located at
(0, 0, 0), (1

2
, 1

2
, 0), (1

2
, 0, 1

2
), (0, 1

2
, 1

2
), (1

4
, 1

4
, 1

4
), (3

4
, 3

4
, 1

4
), (3

4
, 1

4
, 3

4
), (1

4
, 3

4
, 3

4
).

Each atom has 4 electrons, so there are totally 32 electrons per unit cell occupying
16 bands.
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2.7 Tutorial 2

Q1: Prove variation principle (2.8).

Q2: Prove theorem (2.9).

Q3: Prove the second Hoherberg-Kohn theorem (2.13).

Q4: Prove the equation (2.22) in the Kohn-Sham approach.

Q5: Prove the two statements of Bloch theorem (2.28) and (2.29) are equivalent.

Q6: Compute ∂Ts
∂c̄bG

and ∂VH
∂c̄bG

.

Q7: What is the 1 a.u. of time?

Q8: Why is εxc proportional to n1/3 for small n?

Q9: Calcellation of infinities for e−e−, ion− ion, ion− e− potential.

2.8 Reading Materials

• Density-Functional theory of atoms and molecules
R.G.Parr & W.Yang

• Reviews of Modern physics
M.C.Payne, vol 64, No. 4, 1045 (1992)



Chapter 3

Minimization of Total Energy

3.1 Kohn-Sham equation in Fourier space

In the tutorial 2, Q6, it is proven that:

∂Ts

∂C̄b
G

=
1

2
nb|G + k|2Cb

G

∂VH

∂C̄b
G

=
nb√
V

∑

G′

4π

G′2
nG′ C

b
G−G′

The ion-electron energy term:

∂Vi−e−

∂C̄b
G

=
∑

G′

v(−G′)
∂nG′

∂C̄b
G

=
nb√
V

∑

G′

v(G′) C
b
G−G′

The exchange-correlation term:

∂Exc

∂C̄b
G

=

∫

V

∂(εxc(r)n(r))

∂n(r)

∂n(r)

∂C̄b
G

dr

=

∫

V

∂(εxc(r)n(r))

∂n(r)

∑

G′

∂n(G′)

∂C̄b
G

eiG
′·r 1√

V
dr

=
∑

G′

Vxc(−G′)
∂n(G′)

∂C̄b
G

=
∑

G′

Vxc(−G′) C
b
G+G′

nb√
V

Vxc(−G) =

∫

V

∂(εxc(r)n(r))

∂n(r)
e−iG·r

1√
V
dr = Fourier Transform{∂(εxc(r)n(r))

∂n(r)
}

34
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Putting all the above terms together:

∂Etot

∂C̄b
G

=
1

2
nb|G + k|2Cb

G +
nb√
V

∑

G′

V eff
G′ Cb

G−G′ (3.1)

V eff
G =

4π

G2
nG + v(G) + Vxc(G)

Matrix eigenvalue problem

Now, let’s compute ∂Etot
∂CbG

.

The orthonormal condition gives:

∫
φ̄b(r)φb′(r)dr = δbb′

Substitute φb(r) =
∑

G Cb
G
eiG·r√
V

into the above equation:

∫
φ̄b(r)φb′(r)dr =

∑

G

C̄b
G

∫
e−iG·r√
V

∑

G′

Cb′
G′
eiG

′·r
√
V
dr

=
∑

G

∑

G′

C̄b
GC

b′
G′δG,G′

=
∑

G

C̄b
GC

b
G = δbb′

The Lagrange Multiplier method gives:

λbb′
∑

G

C̄b
GC

b
G = λbb′δbb′

δE =
∑

b,G

∂E

∂C̄b
G

δC̄b
G +

∑

b,b′,G

λb,b′C
b′
GδC̄

b
G

After diagonalizing λb,b′ , we get the standard Schrodinger equation:

∂E

∂C̄b
G

= nbεbCb
G

Use equation (3.1),

1

2
nb|G + k|2Cb

G +
nb√
V

∑

G′

V eff
G′ Cb

G−G′ = nbεbCb
G

∑

G”

1

2
nb|G + k|2Cb

G”δG,G” +
nb√
V

∑

G”

V eff
G−G” C

b
G” = nbεbCb

G

where G−G′ = G”.
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So, finally get:

∑

G′

[ 1

2
|G + k|2δG,G′ +

1√
V
V eff

G−G′

]
Cb

G′ = εbCb
G (3.2)

This is equivalent to the matrix eigenvalue problem Hc = εc, where Hermitian matrix

HGG′ =
1

2
|G + k|2δG,G′ +

1√
V
V eff

G−G′ (3.3)

c =




c1

c2

.
cG




3.2 Direct minimization methods

The matrix eigenvalue method of the last section is efficient for small systems but im-
practical for large system. Thus the most important and practical method is direct
minimization or the conjugate-gradient method.

Let’s review the methods of minimization for simple one dimensional functions before
going into the detail of conjugate-gradient method.

3.2.1 Golden section search

Suppose we know the function values at three points f(a), f(b), f(c), and if f(b)<f(a) and
f(b)<f(c), then there must be a minimum between a and c. Choose the lengths such that
|ab|
|bc| = |bc|

|ac| =
√

5−1
2

= 0.61803 = γ. Then choose a point x at the longer segment (suppose

it’s bc) such that |xb||cx| = γ. If f(x)<f(b) and f(x)<f(c), then update (a,b,c) by (b,x,c); else,

update (a,b,c) by (a,b,x). Repeat the whole procedure again for new point x’. The value
of γ is called golden ratio.

Think over the advantages and disadvantages of Golden section search method.

3.2.2 Parabolic interpolation

If the function f(x) is sufficiently smooth, the parabola would give a good fit for the curve
f(x). Successive applications would give a good approximation to the minimum.

3.2.3 Brent’s method

It is a sutble combination of the above two methods.
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3.2.4 Newton’s iteration method

To find the minimum of f(x) is same as solving ∂f
∂x

= 0. The Newton’s method gives:

xk+1 = xk −
f ′(xk)

f”(xk)

However, this is not suitable for the present case because it may not converge and it is
difficult to compute ∂2E

(∂C̄bG)2
.

3.2.5 Steepest descents

Let F(x) be a function over an n-dimensional vector x. The steepest descent direction is:

g1 = −∂F
∂x

∣∣∣
x=x1

g1 = −Gx1

Consider x = x1 + b1g1. Fix x1 and g1, f(b1) = F (x1 + b1g1). Find b1 such that
F (x1 + b1g1) is minimum. This is a one-dimensional problem. The minimum is obtained

at ∂f
∂b1

= 0 or ∂x
∂b1

∂F
∂x

∣∣∣
x1+b1g1

= g1G(x1 + b1g1) = 0. Thus we can find the value of b1 at

which F (x1 + b1g1) is minimized, then find the value of x1 + b1g1, which is the new value
x2. Repeat the procedure to get g2 = −Gx2 and x3 = x2 + b2g2. The iteration is stopped
when |xn+1 − xn| < ε for some tolerance ε.

Example:

Consider a simple function F (x, y) = 1
2
(x2 + y2). The gradient at point x = (x, y) is

Gx = (∂F
∂x
, ∂F
∂y

) = (x, y). The starting point is now chosen at x1 = (1, 1), then

g1 = −Gx1 = (−1,−1)

x2 = x1 + b1g1 = (1− b1, 1− b1)

f(b1) = F (x2) =
1

2
((1− b1)2 + (1− b1)2) = (1− b1)2

∂f

∂b1
= 2(b1 − 1) = 0

b1 = 1

x2 = (0, 0)

g2 = −Gx2 = (0, 0)

x3 = x2 + b2g2 = x2

The minimum is x2 = (0, 0) which is found in one step. In general, we might need infinite
number of iterations to converge to the minimum when Gxmin = 0.
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3.2.6 Conjugate gradient method

The conjugate gradient method is one of the best method in multi-dimensional minimiza-
tion. It converges much faster than steepest decent method. The basic idea is that the
current search direction should be ”orthogonal” to the previous search direction. More
precisely, the two directions should be conjugate to each other.

Consider a function F (x) = 1
2
x ·Gx, which is a matrix multiplication. g = −Gx. F(x)

is minimized along direction d1 from x1. f(b1) = F (x1 + b1d1). ∂f
∂b1

= 0 implies

∂x

∂b1

∂F

∂x

∣∣∣
x1+b1g1

= d1G(x1 + b1d1) = 0 (3.4)

At x2 = x1 + b1d1, F(x) is minimized along d2 and gives x3 = x2 + b2d2. The condition
for minimization is

d2G(x2 + b2d2) = 0 (3.5)

However, the best choice of b1 and b2 is that f(b1, b2) = F (x3 = x1 + b1d1 + b2d2) is
minimized with respect to b1 and b2 separately, i.e.

∂f

∂b1
= d1∂F

∂x

∣∣∣
x3

= d1G(x1 + b1d1 + b2d2) = 0 (3.6)

∂f

∂b2
= d2∂F

∂x

∣∣∣
x3

= d2G(x1 + b1d1 + b2d2) = 0 (3.7)

In order for (3.4) and (3.5) consistent with (3.6) and (3.7), it is required

d1Gd2 = 0

d2Gd1 = 0 (3.8)

This is the conjugate condition.

The search direction algorithm is

{
dm = gm + γmdm−1

γm = gmgm

gm−1gm−1

(3.9)

where m ≥ 1, γ1 = 0.
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3.3 Minimization of E[Cb
G]

This is a multi-dimensional minimization problem. Since there are many variables C b
G

for various b and G value, the standard way is to update one band each time.

gbG = − ∂E

∂Cb
G

(3.1)gives

∂E

∂Cb
G

=
1

2
nb|G + k|2Cb

G +
nb√
V

∑

G′

V eff
G′ Cb

G−G′

= nb
∑

G′

HGG′C
b
G′

define a new direction

g′bG = − 1

nb

∂E

∂Cb
G

= −
∑

G′

HGG′C
b
G′

where HGG′ is given by (3.3)

gb = −Hψb (3.10)

The wave function is updated by φb = ψb + cgb.

3.3.1 Constraint of normalization

The new wave function is required to be normalized, which gives

ζb = −(H− λb)ψb

λb =< ψb|H|ψb >=
∑

G,G′

C̄b
GHGG′C

b
G′

φb = ψb + ∆ζb (3.11)

Proof that φ given by (3.11) is normalized:

< φb|φb > =
∑

G

(< ψb|+ ∆ < ζb|)(|ψb > +∆|ζb >)

= < ψb|ψb > +∆(< ψb|ζb > + < ζb|ψb >) +O(∆2)

< ψb|ζb > = − < ψb|H|ψb > + < ψb|λb|ψb >= 0

< φb|φb > = 1 +O(∆2)

So, |φb > is approximately normalized, provided that ∆ is small. A nice feature is that if
|ψb > satisfies the Schrodinger equation, then |ζ b >, i.e. the minimum is already reached.

Now the tricky problem is that the wave function must be orthogonal as well.
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3.3.2 Constraint of orthogonal

To satisfy the constraint of orthogonality < φb|φb′ >= δbb′ , where φb = ψb + ∆ · ζ̄b, the
new wave function is computed by:

ζ̄b = ζb −
∑

b′ 6=b
< ψb

′ |ζb > ψb
′

ζb = −(H− λb)ψb
λb =< ψb|H|ψb >
φb = ψb + ∆ · ζ̄b (3.12)

Proof that φ given by (3.12) is orthogonal:

< ψb|ζ̄b′ > = < ψb|ζb′ > −
∑

b”6=b′
< ψb”|ζb′ >< ψb|ψb” >

= < ψb|ζb′ > − < ψb|ζb′ >= 0

< ψb|ψb′ > = δbb′

< φb|φb′ > = < ψb + ∆ · ζ̄b|ψb′ + ∆ · ζ̄b′ >
= δbb′ +O(∆2)

Changing wave function ψb imp[lies changing the electron density n(r ), thus we need to
compute n(r ) after each iteration. V eff

r needs to be updated as well. However, only one
band under consideration is updated every iteration.

3.3.3 Constraint of ortho-normalization

The new wave function φ that is both normalized and orthogonal to each other is given
by:

φb = ψb cos θ + η sin θ

η = ηb =
ζ̄b√

< ζ̄b|ζ̄b >
(3.13)

Proof that φ given by (3.13) is ortho-normal:

< ζb|ζb′ 6=b > = 0 ⇒ < η|ηb′ 6=b >= 0

< ηb|ηb > = 1 ⇒ < ηb|ηb′ >= δbb′

< ψb|ζ̄b′ > = 0 ⇒ < ψb|ηb′ >= 0

< φb|φb′ > = < ψb cos θ + η sin θ|ψb′ cos θ + ηb′ sin θ >

= < ψb|ψb′ > cos2 θ+ < ηb|ηb′ > sin2 θ

= δbb′ cos2 θ + δbb′ sin
2 θ

= δbb′
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3.3.4 Search for minimum Etot

In each iteration, the steepest descent vector is given by η as in (3.13), and the wave
function ψ is also updated according to (3.13). In each iteration, the only parameter that
is varied is θ, thus Etot is a function of ψ.

E(θ) = Eavg +
∞∑

n=1

[An cos(2nθ) +Bn sin(2nθ)]

The reason we can make a Fourier series expansion of E(θ) is that E(θ) is periodic.

It turns out that the whole expansion is dominated by the first term n=1.

E(θ) = Eavg + A1 cos(2θ) +B1 sin(2θ) (3.14)

Solve Eavg, A1 and B1

To fix Eavg , A1 and B1, we can compute three terms ∂E
∂θ

∣∣∣
θ→0

, E(θ=0) and E(θ=π
2

). Express

every terms in Cb
G, then (3.10 gives ∂E

∂φb
= Hφb.

∂E

∂θ

∣∣∣
θ→0

=
∂φb

∂θ

∂E

∂φb
+
∂φ̄b

∂θ

∂E

∂φ̄b

∂φb

∂θ

∣∣∣
θ→0

= −ψb sin θ + η cos θ
∣∣∣
θ→0

= η

∂E

∂θ

∣∣∣
θ→0

= < η|H|φb > +complex conjugate term

= 2Re. < η|H|φb > (3.15)

E(θ=0) = E(ψb) (3.16)

E(θ=π
2

) = E(η) (3.17)

We may also compute E(θ=0), E(θ=π
4

) and E(θ=π
2

) to solve for Eavg, A1 and B1. The results
by the above two ways are slightly different. Think over the reason of it if you are
interested.

After solving the value of parameters Eavg, A1 and B1, we can find θmin at which E(θ) is

minimized by computing ∂E(θ)
∂θ

= 0.

3.4 Car-Parrinello method

The Car-Parrinello method is so famous that we can not finish the course without men-
tioning it. This method was discussed before the use of direct minimization.
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Car and Parrinello consider the minimization by introducing an artificial molecular dy-
namics. The Lagrangian is defined as:

L =
∑

b,G

µ|Ċb
G|2 − E[Cb

G]

However, because of the ortho-normalization constraint in C b
G, we must add a Lagrangian

multiplier Λij. So the Lagrangian with constraint is:

L =
∑

b,G

µ|Ċb
G|2 − E[Cb

G] +
∑

b,b′

Λbb′[
∑

G

C̄b
GC

b′
G − δbb′ ]

The equation of motion is given by Hamiltonian mechanics

d

dt

∂L

∂
˙̄
Cb

G

− ∂L

∂Cb
G

= 0

or explicitly

µC̈b
G = −

∑

G′

HGG′C
b
G′ +

∑

b′

Λbb′C
b′
G

µψ̈b = −Hψb +
∑

b′

Λbb′ψ
b′

Since Λbb′ is unknown, we use a simplification Λbb′ = λbδbb′ , λb =< ψb|H|ψb >.

µψ̈b = −[H− λb]ψb (3.18)

Integrate the equation of motion (3.18) using the Verlet algorithm

ψb(t+ ∆t) = 2ψb(t)− ψb(t−∆t) + (∆t)2ψ̈b(t)

This is just a central difference approximation of the second derivative.

Damping

Since our aim is to find Cb
G such that Etot is minimized, but the Lagrangian dynamics

(the above molecular dynamics) conserve energy, a damping scheme is essential here. The
damping can be incorperated by adding a term −γψ̇b in the equation (3.18).

Another approach is renormalization of Ċb
G. Set the velocity Ċb

G to zero every iteration
after updating the wave funcitions.

3.5 Lab 3

Based on the program of computing Etot as a function of lattice constant a for the Si
crystal which is already done in the lab 2, work out a complete program or several
programs to find the lattice constant a at which E(θmin) given by (3.14) is minimized.
Here are some guidelines.
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• Initialization
There are 8 atoms per unit cell, with coordinates given in lab 2. There are allto-
gether 16 wave functions or 16 bands b for 32 electrons. Initialize C b

G (b=1,2...16)
with random number generator rand48(). (Notice that you may also try other ran-
dom number generators like random(), yet the period of random numbers generated
by rand48() is largest as you may have learned in the previous course Computational
Techniques in Theoretical Physics.)

The wave functions should be orthogonal, so the random numbers generated must
be orthogonalized using the Gram-Schmidt scheme, which you may have learned in
the previous course Matrix Computation, or see page 1068 of Payne. The Gram-
Schmidt scheme is:

φb = ψb −
∑

b′<b

< φb
′|ψb > ψb

′

φb =
φb

|φb|

• Run over each band b
Compute Etot and ∂E

∂C̄bG
and compute the steepest descent η (given by (3.11) to

(3.13)) and E(θmin) (given by (3.14) for each band b. Repeat the computation for
the total 16 bands.

• The loop structure
Initializations;
for each value of lattice constant a, do
while (|En−1 − En| > toleranceε), do
for (b=1 to 16), do

– compute nG from Cb
G

– compute Etot

– compute H|ψb >
– compute steepest descent vector η

– compute θmin such that E(θ) is a minimum

– update the wave functions ψb

end for-loop
end while-loop
end for-loop

3.6 Tutorial 3

Q1: How small should be the tolerance ε, s.t. |xk − xk+1| < ε considered to converge?
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Q2: Prove that algorithm (3.9) satisfies the conjugate condition dnGdm = 0 for n 6= m.

Q3: What do the foumulae for ζ b and ζ̄b given by (3.11) and (3.12) mean in terms of
Cb

G?


