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One Basic Problem of Monte Carlo

Draw random variable

often used for simulating complex systems 

It may not be easy to draw x directly!  
MCMC (Markov Chain Monte Carlo).

)(~ xx π
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A MCMC Scheme
A MCMC sampler with transition functions Ai(x,y)
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Key Theory:
If a Markov chain
• irreducible
• aperiodic
• possesses an invariant distribution π

then the chain will become stationary at π.

Principle: Design a transition function A(x, y) that leaves 
the target distribution π(x) invariant.
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Invariance and Detailed Balance
A(x, y) leaves π(x) invariant if 

)(),()( yxyxx ππ =∫ dA

π~)( xx =t yxyxy = → + )1(),(~ tA π~

Detailed balance:

It ensures invariance since
),()(),()( xyyyxx AA ππ =

)(),()(),()(),()( yxxyyxxyyxyxx ππππ === ∫∫∫ dAdAdA
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Gibbs Sampler
Purpose: Draw from a Joint Distribution

Method: Iterative Conditional Sampling

draw 
let 

)(~),,( 1 xx πxx dL=

)|'(~' ][ iii xπx −x
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),'( ][ iix −= xy
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Metropolis-Hastings Algorithm
Draw y from a proposal distribution T(x,y).

Accept y with probability

and stay at x with probability 1-r(x,y).

Note: One can check that detailed balance is satisfied.
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Beyond Invariance

Make the Markov chain explore the relevant 
space quickly and reach stationarity quickly!
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Gibbs Sampler

draw 
let 

)|'(~' ][ iii xπx −x
),( ][ iixi −=∀ xx

),'( ][ iix −= xy

)|(~ ][ iixπ −+ xγγ
),()( ][ iix −+== xxy γγ

draw
let

a transformation
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Group Moves

Try moving along an arbitrary direction…

Given any fixed direction e ),,( 1 dee L=

),,()( 11 dd exex γγγγ ++=+= Lexx

Try scaling…

),,()( 1 dxx γγγγ L== xx
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* Generalized Gibbs

Form of the transition function A(x,y):
selecting a transformation 
letting y= γ(x).

Question: What distribution should one draw           
from so that π(x) is left invariant?

γ

γ Γ∈

Γ∈
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A Theorem
Γ ={all γ} is a locally compact group 
L is its left-Haar measure
γ ~
where                      

is the Jacobian of the transformation
If x~π(x), then y=γ(x)~π.

Note: A left-Haar measure satisfies

)(|)(|))(()( γγπγ γ dLJp xxx ∝
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Translation group along an arbitrary direction…

Given any fixed direction e ),,( 1 dee L=

{ }),,()(: 11
1

dd exexRΓ γγγγγ ++=+=∈= Lexx

Draw γ ~ )()( exx γπγ +∝p

Let  exxy γγ +== )(
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Scale-transformation Group…

{ }),,()(:}0{\ 1
1

dxxRΓ γγγγ L=∈= x

Draw γ ~ )(||)( 1 xx γπγγ −∝ dp

Let  xxy γγ == )(
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More Examples of Group Moves

87654321 ,,,,,,, xxxxxxxx

11γ 12γ
13γ 14γ

21γ 22γ

31γ

In general, for any subset S of {1,…,8},
can be moved together.},{ Sii ∈x
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)()(

}pointslatticeall,{
zHez

zz
β

σ

π −∝

=

In general, for any subset S of the lattice points,
can be moved together.},{ Sz ∈σσ
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If we can’t directy draw from )(γxp

MCMC transition function Ax(γ, γ ’)
need to leave            invariant
need to be “transformation invariant”

)(γxp

)',()',( 1
0

1
0)(0

−−= γγγγγγ γ xx AA

group 
operation
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Difficulty of Choosing The Proposal Distribution

small step size in the proposal distribution
slow movement of the Markov chain

large step size in the proposal distribution
low acceptance rate

In both cases, the chain moves slowly!
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* Multipoint Metropolis Methods

Idea: make multiple proposals and select a 
good one from them.

Guiding principle: leaving the target 
distribution π(x) invariant!
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Independent Multipoint Proposals

yselect one
with prob.
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Remark 1: 

where               is a non-negative symmetric function 
that can be chosen by the user.

Remark 2: Detailed balance is satisfied.

),(),()(),( yxyxxyx λπ Tw =

),( yxλ
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Correlated Multipoint Proposals

),,,|( 11 −⋅ jjP yyx L
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Remark 1: 

where                      is a sequentially symmetric 
function that can be chosen by the user:

Remark 2: Detailed balance is satisfied.

),()|()(),(
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Population-based “Learning” Strategy

conduct parallel Monte Carlo Markov chains
interactions among the multiple chains in the 
“population”
• mutation
• crossover
• exchange
purpose: improve “fitness” of the members
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* Evolutionary Monte Carlo 
In A Tempering Framework

Target distribution:

Population: X={x1,x2,…,xm}

1=t1<t2<…<tm

Target distribution of the population: the augmented 
Boltzmann distribution

Example: binary-coded state space 

)}(exp{)( xx H−∝π

}/)(exp{)( iii tH xx −∝π

}/)(exp{)(
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Mutation

mx

x
M

1
random
selection ix 1-point mutation: randomly select j

),,1,,( ,,1, dijiii bbb LL −=y

),,,,( ,,1, dijiii bbb LL=x
X=

},,,,{ 1 mi xyxY LL=

accept with prob.


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X
Y

π
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Crossover

mx

x
M

1

X= select             withji xx ,

1-point crossover: randomly select position k
),,,,( ,,1, dikiii bbb LL=x ),,,,( ,,1, djkjjj bbb LL=x

),,,,( ,,1, dikjii bbb LL=y ),,,,( ,,1, djkijj bbb LL=y

jisjsiji tHtHP xxxxXxx ≠−+−∝ }]/)(exp{}/)([exp{)|),((

},,,,,,{ 1 mji xyyxY LLL=

accept with prob.
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Exchange

mx

x
M

1
random
selection ji xx ,X=

exchange

},,,,,,{ 1 mji xxxxX LLL=

},,,,,,{ 1 mij xxxxY LLL=

accept with prob.
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Continuous Sample Space: Mutation

Any kind of Metropolis-Hasting move 
independently for each chain!
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Continuous Sample Space: Snooker Crossover

mx

x
M

1
random
selection ix select “anchor”

}{\ ij xXx ∈ with prob.
}/)(exp{ sj tH x−∝

X=

ix
jx e |||| ij

ij

xx
xx

e
−

−
=

)(||)(~ 1 ex γπγγγ +∝ −
i

dp

let

draw
)( exy γπ += iilet

new population

},,,,{ 1 mi xyxY LL=
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An Observation

If a Markov chain had been started from the infinite 
past

−∞=t
∞−x

starting point
LL 0=t

π~0x

stationary
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The Idea of Coupling
Assume finite Markov chain: |}|,,1{ χχ L=

0=t1−=t

),(~ 10 ⋅−xx A
(1) Compute

(2) generate u0  ~Uniform(0,1)
(3) Let x0=j if  

Pr(),(),( 0
1

11
=

−− == ∑ xxx jAjG
j

k

),( 100 −= xx uφ1−x

)| 1−≤ xj

),()1,( 101 jGujG −− ≤<− xx

The chains starting from all possible states are t=-1
are coupled by the same random number u0. 
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* Perfect Sampling
If u0 makes all the chain “coupled”, that is,                

then x0=j0 ~π
00 ),( jiui ≡∀ φ

0=t
00 j≡x

stationary

π~

starting point
−∞=t 1−=t

ii =∃ −1x
LL

∞−x



383838

If the chains are not coupled in one step…

))),(,,(,(
),(

)1(100

)1()1(

LL nn

nnn

uuu

u

−−−−

−−−−−

=⇒

=

xx
xx

φφφ

φ

Equivalently,
• The sequence of uniform random variables

are given in advance
• From the infinite past, we compose

01,,,, uuu n −− LL

01,,,, xxx −− LL n
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If
then x0=j0 ~π

0)1(10 ))),(,,(,( jiuuui n =∀ −−− LL φφφ

0=t
00 j≡x

stationary

π~

starting point
nt −=

ii n =∃ −x
LL−∞=t LL

∞−x
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The Conceptual Algorithm
L<<<= 3211:schedule nnn

k=1, n=n1, 
u0~Uniform(0,1)

yes

)1,0(~,,
1)1( Uniformuu

knn −−−− L
k=k+1, n=nk, 

coupled? return the common value
for x0 and stopno

1
,,)1( −−−− kk nn uu LLL LL 1)1( ,,

2 −−− uu n L 0u
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Weighted Sample
Augment the sample space from     to             to 
include a weight variable for each state.

Suppose f(x,w) is the joint distribution of (x,w). x is 
correctly weighted by w with respect to π if

Note: we can estimate                   by

χ +× Rχ

),( wxx →

)(),( xx π∝∑w
wwf

)]([ xhEπ

nifw
w

hw
iin

i i

n

i ii ,,1,~),(where
)(

1

1 L=
∑

∑
=

= x
x
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New Design Principle

IWIW (Invariance With respect to Importance 
Weighting).

• A transition rule A(x,w; y,w’)satisfies IWIW if

)',('),( )',;,( wfwf wwA yx yx  →

correctly 
weighted wrt π

correctly 
weighted wrt π
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* Dynamic Weighting

M-type move: Given                            at iteration t.),(),( wwtt xx

Draw xt+1 from a transition function that leaves π
invariant.

Set wt+1=w.

=
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R-type move: Given                            at iteration t.),(),( wwtt xx

Propose y from T(x,y) and compute 

Choose θ=θ(x,w)>0, and draw U~Uniform(0,1). Let

=

),()(
),()(),(

yxx
xyyyx

T
Tr

π
π

=
















 +

+
≤+

=++
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x wrw
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Waiting Time Infinity       Importance Weight Infinity

High energy barrier

In the standard Metropolis process, the waiting time 
to cross over the barriers is infinite. 
The dynamic weighting process can cross the energy 
barrier, but has “importance weight infinity”.
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Combinatory Strategy

Use the weighted moves when proposing 
large changes in the system.

Use the standard Metropolis or Gibbs moves 
for local exploration.
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