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One Basic Problem of Monte Carlo

= Draw random variable
X ~m(X)
often used for simulating complex systems

= |t may not be easy to draw x directly!
==> MCMC (Markov Chain Monte Carlo).



A MCMC Scheme

= A MCMC sampler with transition functions Ai(x,y)

%@ XD (x@x®) @ xB(xPxF) ()

= Key Theory:

If a Markov chain

< Irreducible

= aperiodic

= possesses an invariant distribution
then the chain will become stationary at 7.

m Principle: Design a transition function A(X, y) that leaves
the target distribution z(x) invariant.



Invariance and Detailed Balance

m A(X, y) leaves z(x) invariant if
[ 70 A(x, y)dx = (y)

X(r) — X ~ T y~A4(X,y) )X(t+1) =VY~1

m Detailed balance:
m(X)A(X,y) =7z(y)A(Y, X)
It ensures Invariance since

[ 70 A(x, Y)dx = [ 2(y) A(y, X)dx = 2(Y) | Ay, X)dx = (y)
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Gibbs Sampler

m Purpose: Draw from a Joint Distribution

X =(xy, -+, x,) ~ 7(X)

® Method: Iterative Conditional Sampling
Vi X=(x,%_3)
draw x,'~7m(x;"| X;_;)
let Y=(x;",%_;)



Metropolis-Hastings Algorithm

® Draw y from a proposal distribution T(X,y).

= Accept y with probability
2T, X)}
r(X,y) = mln{],
(X)T(X,Y)
and stay at x with probability 1-r(x,y).

Note: One can check that detailed balance is satisfied.
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Beyond Invariance

Make the Markov chain explore the relevant
space quickly and reach stationarity quickly!



m Design Principle of a MCMC Scheme

Outline

m Generalized Gibbs

Multipoint Metropolis Methods
Evolutionary Monte Carlo
Perfect Sampling

Dynamic Weighting

9



Gibbs Sampler

Vi X=(x, [l])
draw x;'~z(x'] X;_3)
let y=(x;",%_;)

” draw 7/~77:(xi+7/|x[—i])
let y:/y(x):(xi'l'%x[—i])

atransformation
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Group Moves

Try moving along an arbitrary direction...

Given any fixed direction e= (e, -,e,)

y(X)=X+re=(x,+ye, -, x,+re,)

Try scaling...

y(X) == (0 x,)
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* Generalized Gibbs

Form of the transition function A(X,y):
m selecting a transformation y e I”

= letting y= A(X).

Question: What distribution should one draw y eI’
from so that #(x) is left invariant?
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A Theorem

m /={all v} is a locally compact group
m L isits left-Haar measure

w7~ pe(y) e z(y(X) | J,(X) | L(dy)
where 5 (X):det{ﬁy/(x)}
: OX

1S the Jacobian of the transformation

If X~7(x), then y=«{X)~.

Note: A left-Haar measure satisfies

Vy,el,YBc I, L(B)=L(y,B)

=
w



Translation group along an arbitrary direction...

Given any fixed direction e= (e, -,e,)

F:{yeRliy(X)z x+ye=(x1+7/el,-",xd+7€d)}

Draw y~ py(¥) < 7(X+ )

Let y=y(X)=x+e
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Scale-transformation Group...

F:{yeRl\{O} :V(X):(Wli""?“d)}

Draw y~ p,(7) oy I'™ 7(x)

Let y=y(X)=m



More Examples of Group Moves

X1y Xpy Xgy X4y Xoy Xgy X7, Xg
V2R VAR VAR V4
7U12 7/13\/7/14

V1 V22

\/

V31

In general, for any subset S of {1,...,8},
{x.,ieS} canbemoved together.
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z ={z_, al lattice points}
~H (2)

7(z) oce

In general, for any subset S of the lattice points,
{z_,o eS8} canbemoved together.
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If we can’t directy draw from p,(7)

= MCMC transition function Ax(y, ’)
— need to leave p, () invariant
—— need to be “transformation invariant”

A7) =4, 7o 7' 75"
X—

group
operation

=
co
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Difficulty of Choosing The Proposal Distribution

= small step size in the proposal distribution
==> slow movement of the Markov chain

m large step size in the proposal distribution
==> |ow acceptance rate

In both cases, the chain moves slowly!
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* Multipoint Metropolis Methods

= ldea: make multiple proposals and select a
good one from them.

= Guiding principle: leaving the target
distribution z(x) invariant!
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Independent Multipoint Proposals

select one
with prob.

oc w(Y,, X)

accept with prob. r, = min{], WYy, X) + -+ wly,, X)}

w(X,, Y)+-+w(X,,Y)

reject with prob.  1-7,
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= Remark 1:
w(X,y) =7z(X)T(X, Y)A(X,Y)

where A(x,y) IS a non-negative symmetric function
that can be chosen by the user.

m Remark 2: Detailed balance is satisfied.

N
w



Correlated Multipoint Proposals

select one with prob.
x W( y[l:l] ! X)

accept with prob. » = min{], WY, X) -5 WYy X)}

W(XI’ y)+--+ W(X[*k:l]’ y)
rgject with prob. 1_,
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= Remark 1:
Pj(yU:1] | X) = Pl(y1 | X)"'Pj(yj | X, y[l'j—l])
Wj(y[j:l] ,X) = ﬂ-(X)Pj(y[j:l] | X)/lj(xi y[l'j])
where 4,(X,Y;;) Isasequentially symmetric
function that can be chosen by the user:
A.(a,b,-+,z)=A,(z,--+,b,a)

m Remark 2: Detailed balance is satisfied.
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Population-based “Learning” Strategy

= conduct parallel Monte Carlo Markov chains
® Interactions among the multiple chains in the
“population”
e mutation
® Crossover
= exchange

purpose: improve “fitness” of the members
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* Evolutionary Monte Carlo
In A Tempering Framework

Target distribution:
7 (X) oc exp{—H (X)}
Population: X={x1,Xz,...,Xm}
(X)) ocexp{—-H(x,)/t}
1=ti<t:<...<tm

Target distribution of the population: the augmented
Boltzmann distribution

7(X) o exp{-3 H(x,)/1}

Example: binary-coded state space

X, = (b1, b )y i=Lee,m

N
(e8]



Mutation

random . .
: X, — 1- - ‘
ection” < 1-point mutation: randomly select ;
Xl_ ju— (bl"l’... y bl"j ’ooo ,bl"d)

!

Y| = (bz‘,l’.”’1_bi,j’“"bi,d)

Y :{Xl’...’yi’...’xm}

|

accept with prob.
min{L ”((;)) =exp{—(H (Y,) —H(Xk))/tk}

T
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Crossover

X= — select x;,x; with

P((X;, X;) | X)oc[exp{—H (X;)/t,} +exp{—H(X,;) [t }] X, # X,
— 1-point crossover: randomly select position &

X _(bzl’ o zk’ o zd) X, _(bjl’ o ]k’ o bj,d)

yi:(bi,l’ .o ]k’ .o ld) yj:(bj,l’ .o lk’ .o ]d)
Y:{Xl’...’yi’...’yj,...,xm}

l

accept with prob.
. {l FOVT(Y, X) :exp{-Hwi)—H(xi) _H(yJ-)—H(x,-)}T(v,m}

2(X)T(X,Y) L ‘ T(X,Y)

J
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Exchange

random

» X., X.

selection

—> exchange

mi n{l

X :{Xl”xl’\)x]”xm}
Y ={X1""’Xj""’xp'"’Xm}
accept with prob.

7(Y) :eXp{— (H(x;)-H(x,))1/¢, _1”1')}}
7 (X) J ]
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Continuous Sample Space: Mutation

Any kind of Metropolis-Hasting move
Independently for each chain!
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Continuous Sample Space: Snooker Crossover

random

» Xx. — Select “anchor”

selection X, eX \{x;} with prob.
oC eXp{_H(Xj)/ts}
A
X %
o Vi — |et €=
Xj.//e 1%, = ||
> draw 7 ~ p(y) <ly |7 7 (x; + 7€)
|et yi:7z(Xl.+7/e)

new population

Y :{Xl"“’yi"“’xm}
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An Observation

m |If a Markov chain had been started from the infinite
past

starting point = BNEIETY
[=—00 ... = O /

X Xo~ 7

—0Q0




The Idea of Coupling

m Assume finite Markov chain: y={1---,| 7 [}

t=-1 t=0
X4 Xo ~ A(X_yr) Xo = @(ug, X1)
(1) Compute
G(X—l’j) = ZA(X—l’j) = PI’(XO <Jl X—1)

(2) generateuo |~ Uniform(0,1)
(3) et Xo=] If

G(Xy,j =D <uy <G(X,))

= The chains starting from all possible states are t=-1
are coupled by the same random number ..
36



* Perfect Sampling

= If uo makes all the chain “coupled”, that is,

then Xo:jo“‘ﬂ'

starting point

- P(ugii) = Jo
t=-1
di X =1

stationary

(=0~
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If the chains are not coupled in one step...

X_(ny = P_( gy, X_,)

= Xo = Pt Gy, Pl gy, X))

= Equivalently,

= The sequence of uniform random variables

...,u ..!u_lluo

are given in advance
= From the infinite past, we compose

.”’X—n’.”’x—l’XO



mf Vi ¢(u0,¢(u_l,---,¢(u_(n_1),i)“°))=jo

then X0:jo~72'

starting point
t =—0

X

—00

stationary

(=0~
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The Conceptual Algorithm

schedule: 1=nl <n,<ng<--

k:I, n—nmi,
uo~Uniform(0,1)

es
. Y] return the common value

for x, and stop
no

k=k+1, n=nx,
, ~ Uniform(0,1)

u—(n—l)’. - U

40
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Weighted Sample

= Augment the sample space from Zto yxR" to
Include a weight variable for each state.

X = (X,w)

m Suppose f(x,w) is the joint distribution of (x,w). X IS
correctly weighted by w with respect to 7 if

> () o 7(X)

Note: we can estimate E,.[#(X)] by
Zz 1W1h( )
Zz =1 ’

where (x,,w,) ~ f,i=1---,n

42



New Design Principle

= IWIW (Invariance With respect to Importance
Weighting).

= A transition rule A(x,w; y,w’)satisfies IWIW if

f (X, w) —) s 1 (y,w')
__— Ny

correctly correctly
weighted wrt 7 weighted wrt 7




* Dynamic Weighting

M-type move: Given (X,,w,) =(X,w) at iteration t.

m Draw X1 from a transition function that leaves =
Invariant.

m Set W1=Ww.
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R-type move: Given (X,,w,) =(X,w) at iteration t.

® Propose y from T(X,y) and compute

z(Y)T (Y, X)

r(X,y) =

7(X)T(X,y)

® Choose 6=4x,w)>0, and draw U~Uniform(0,1). Let

(Xt+1’ Wt+1) =9

(y,wr(X,y)+0)

(

X. w(wr(X,Y)+80)

0

J

If U <

wr(X,Y)

wr(X,y)+6

otherwise
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Waiting Time Infinity == I[mportance Weight Infinity

._-' = .II .l.‘- i
I | ]n
lll I'. |I I.

' I|I -

: o
. Highenergy barrier |

II.
|

II". lII III|
I'||II |

-'l,'__

= In the standard Metropolis process, the waiting time
to cross over the barriers is infinite.

= The dynamic weighting process can cross the energy
barrier, but has “importance weight infinity”.
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Combinatory Strategy

= Use the weighted moves when proposing
large changes in the system.

m Use the standard Metropolis or Gibbs moves
for local exploration.
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