Markov Chain Monte Carlo in Statistics - Recent Advances

Junni Zhang Assistant Professor Guanghua School of Management Peking University Nov. 3, 2003

1

Outline

- Design Principle of a MCMC Scheme
- Generalized Gibbs
- Multipoint Metropolis Methods
- Evolutionary Monte Carlo
- Perfect Sampling
- Dynamic Weighting

One Basic Problem of Monte Carlo

- Draw random variable
 x ~ π(x)
 often used for simulating complex systems
- It may not be easy to draw *x* directly!
 MCMC (Markov Chain Monte Carlo).

A MCMC Scheme

• A MCMC sampler with transition functions $A_i(x, y)$

 $\boldsymbol{x}^{(0)} \xrightarrow{\boldsymbol{x}^{(1)} \sim A_1(\boldsymbol{x}^{(0)}, \boldsymbol{x}^{(1)})} \rightarrow \boldsymbol{x}^{(1)} \xrightarrow{\boldsymbol{x}^{(2)} \sim A_2(\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)})} \rightarrow \boldsymbol{x}^{(2)} \cdots$

• Key Theory:

If a Markov chain

- irreducible
- aperiodic
- possesses an invariant distribution π
- then the chain will become stationary at π .
- Principle: Design a transition function A(x, y) that leaves the target distribution $\pi(x)$ invariant.

Invariance and Detailed Balance • A(x, y) leaves $\pi(x)$ invariant if $\int \pi(x)A(x, y)dx = \pi(y)$ $x^{(t)} = x \sim \pi \xrightarrow{y \sim A(x, y)} x^{(t+1)} = y \sim \pi$

Detailed balance:

$$\pi(\boldsymbol{x})A(\boldsymbol{x},\boldsymbol{y}) = \pi(\boldsymbol{y})A(\boldsymbol{y},\boldsymbol{x})$$

It ensures invariance since

$$\int \pi(\mathbf{x}) A(\mathbf{x}, \mathbf{y}) d\mathbf{x} = \int \pi(\mathbf{y}) A(\mathbf{y}, \mathbf{x}) d\mathbf{x} = \pi(\mathbf{y}) \int A(\mathbf{y}, \mathbf{x}) d\mathbf{x} = \pi(\mathbf{y})$$

Gibbs Sampler

Purpose: Draw from a Joint Distribution

$$\boldsymbol{x} = (x_1, \cdots, x_d) \sim \pi(\boldsymbol{x})$$

Method: Iterative Conditional Sampling $\forall i \quad \mathbf{x} = (x_i, \mathbf{x}_{[-i]})$ draw $x_i' \sim \pi(x_i' | \mathbf{x}_{[-i]})$ let $\mathbf{y} = (x_i', \mathbf{x}_{[-i]})$

Metropolis-Hastings Algorithm

Draw *y* from a proposal distribution *T*(*x*, *y*).

• Accept y with probability $r(x, y) = \min\left\{1, \frac{\pi(y)T(y, x)}{\pi(x)T(x, y)}\right\}$

and stay at **x** with probability 1-r(**x**, **y**).

Note: One can check that detailed balance is satisfied.

Beyond Invariance

Make the Markov chain explore the relevant space quickly and reach stationarity quickly!

Outline

- Design Principle of a MCMC Scheme
- Generalized Gibbs
- Multipoint Metropolis Methods
- Evolutionary Monte Carlo
- Perfect Sampling
- Dynamic Weighting

Gibbs Sampler

Group Moves

Try moving along an arbitrary direction...

Given any fixed direction $\boldsymbol{e} = (e_1, \dots, e_d)$

$$\gamma(\boldsymbol{x}) = \boldsymbol{x} + \gamma \boldsymbol{e} = (x_1 + \gamma \boldsymbol{e}_1, \cdots, x_d + \gamma \boldsymbol{e}_d)$$

Try scaling...

$$\gamma(\boldsymbol{x}) = \gamma \boldsymbol{x} = (\gamma x_1, \cdots, \gamma x_d)$$

* Generalized Gibbs

Form of the transition function *A*(**x**, **y**):

selecting a transformation $\gamma \in \Gamma$

• letting
$$y = \gamma(x)$$
.

Question: What distribution should one draw $\gamma \in \Gamma$ from so that $\pi(\mathbf{x})$ is left invariant?

A Theorem

- $\Gamma = \{all \ \gamma\}$ is a locally compact group
- L is its left-Haar measure

$$\gamma \sim p_{\mathbf{x}}(\gamma) \propto \pi(\gamma(\mathbf{x})) | J_{\gamma}(\mathbf{x}) | L(d\gamma)$$

$$J_{\gamma}(\boldsymbol{x}) = \det\left\{\frac{\partial \gamma(\boldsymbol{x})}{\partial \boldsymbol{x}}\right\}$$

is the Jacobian of the transformation If $\mathbf{x} \sim \pi(\mathbf{x})$, then $\mathbf{y} = \gamma(\mathbf{x}) \sim \pi$.

Note: A left-Haar measure satisfies

$$\forall \gamma_0 \in \Gamma, \forall B \subset \Gamma, L(B) = L(\gamma_0 B)$$

Translation group along an arbitrary direction...

Given any fixed direction $\boldsymbol{e} = (e_1, \dots, e_d)$

$$\Gamma = \left\{ \gamma \in \mathbb{R}^1 : \gamma(\mathbf{x}) = \mathbf{x} + \gamma \mathbf{e} = (x_1 + \gamma \mathbf{e}_1, \cdots, x_d + \gamma \mathbf{e}_d) \right\}$$

Draw $\gamma \sim p_x(\gamma) \propto \pi(x + \gamma e)$

Let
$$y = \gamma(x) = x + \gamma e$$

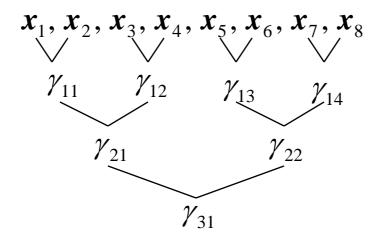
Scale-transformation Group...

$$\Gamma = \left\{ \gamma \in \mathbb{R}^1 \setminus \{0\} : \gamma(\mathbf{x}) = (\gamma x_1, \cdots, \gamma x_d) \right\}$$

Draw
$$\gamma \sim p_{\mathbf{x}}(\gamma) \propto |\gamma|^{d-1} \pi(\gamma \mathbf{x})$$

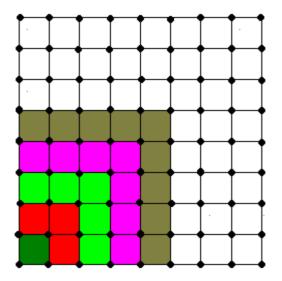
Let
$$y = \gamma(x) = \gamma x$$

More Examples of Group Moves



In general, for any subset *S* of $\{1,...,8\}$, $\{x_i, i \in S\}$ can be moved together.

$z = \{z_{\sigma}, \text{ all lattice points}\}\$ $\pi(z) \propto e^{-\beta H(z)}$



In general, for any subset *S* of the lattice points, $\{z_{\sigma}, \sigma \in S\}$ can be moved together.

If we can't directy draw from $p_x(\gamma)$

MCMC transition function $A_x(\gamma, \gamma')$ — need to leave $p_x(\gamma)$ invariant — need to be "transformation invariant" $A_x(\gamma, \gamma') = A_{\gamma_0(x)}(\gamma \gamma_0^{-1}, \gamma' \gamma_0^{-1})$ group

Outline

- Design Principle of a MCMC Scheme
- Generalized Gibbs
- Multipoint Metropolis Methods
- Evolutionary Monte Carlo
- Perfect Sampling
- Dynamic Weighting

Difficulty of Choosing The Proposal Distribution

small step size in the proposal distribution
 slow movement of the Markov chain

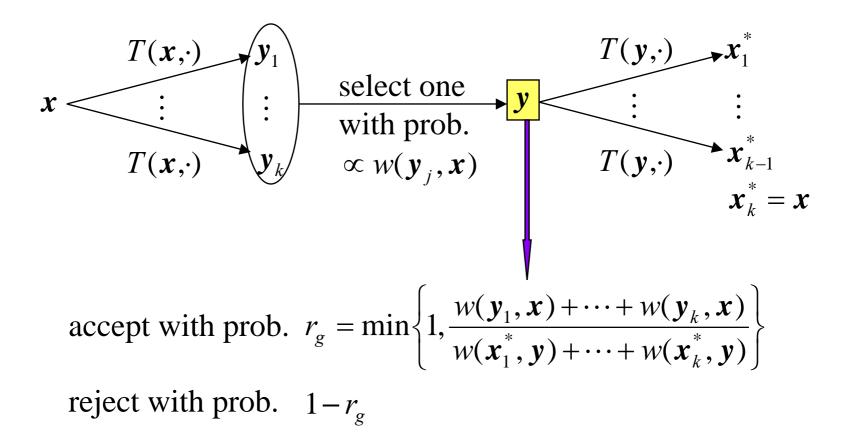
large step size in the proposal distribution
 low acceptance rate

In both cases, the chain moves slowly!

* Multipoint Metropolis Methods

- Idea: make multiple proposals and select a good one from them.
- Guiding principle: leaving the target distribution π(x) invariant!

Independent Multipoint Proposals



• Remark 1:

$$w(\boldsymbol{x}, \boldsymbol{y}) = \pi(\boldsymbol{x})T(\boldsymbol{x}, \boldsymbol{y})\lambda(\boldsymbol{x}, \boldsymbol{y})$$

where $\lambda(x, y)$ is a non-negative symmetric function that can be chosen by the user.

Remark 2: Detailed balance is satisfied.

Correlated Multipoint Proposals

select one with prob.

$$x w(y_{[l:1]}, x)$$
suppose $y = y_j$
 y_{j-1}
 $x \to (y_1) \to \cdots \to (y_{j-1})$
 $x \to (y_1) \to \cdots \to (y_k)$
 $x_k^* \leftarrow \cdots \leftarrow x_m^* \leftarrow \cdots \leftarrow x_{j+1}^* \leftarrow x_j^* \leftarrow x_{j-1}^* \leftarrow \cdots \leftarrow x_1^* \leftarrow y$
 $P_m(\cdot | y, x_1^*, \cdots, x_{m-1}^*)$
accept with prob. $r = \min \left\{ 1, \frac{w(y_1, x) + \cdots + w(y_{[k:1]}, x)}{w(x_1^*, y) + \cdots + w(x_{[k:1]}^*, y)} \right\}$
reject with prob. $1 - r$

• Remark 1:

$$P_{j}(\mathbf{y}_{[j:1]} | \mathbf{x}) = P_{1}(\mathbf{y}_{1} | \mathbf{x}) \cdots P_{j}(\mathbf{y}_{j} | \mathbf{x}, \mathbf{y}_{[1:j-1]})$$
$$w_{j}(\mathbf{y}_{[j:1]}, \mathbf{x}) = \pi(\mathbf{x})P_{j}(\mathbf{y}_{[j:1]} | \mathbf{x})\lambda_{j}(\mathbf{x}, \mathbf{y}_{[1:j]})$$
where $\lambda_{j}(\mathbf{x}, \mathbf{y}_{[1:j]})$ is a sequentially symmetric function that can be chosen by the user:
$$\lambda_{j}(a, b, \cdots, z) = \lambda_{j}(z, \cdots, b, a)$$

Remark 2: Detailed balance is satisfied.

Outline

- Design Principle of a MCMC Scheme
- Generalized Gibbs
- Multipoint Metropolis Methods
- Evolutionary Monte Carlo
- Perfect Sampling
- Dynamic Weighting

Population-based "Learning" Strategy

- conduct parallel Monte Carlo Markov chains
- interactions among the multiple chains in the "population"
 - mutation
 - crossover
 - exchange

purpose: improve "fitness" of the members

* Evolutionary Monte Carlo In A Tempering Framework

Target distribution:

 $\pi(\boldsymbol{x}) \propto \exp\{-H(\boldsymbol{x})\}$

• Population: $X = \{x_1, x_2, \dots, x_m\}$ $\pi(x_i) \propto \exp\{-H(x_i)/t_i\}$

 $1 = t_1 < t_2 < \ldots < t_m$

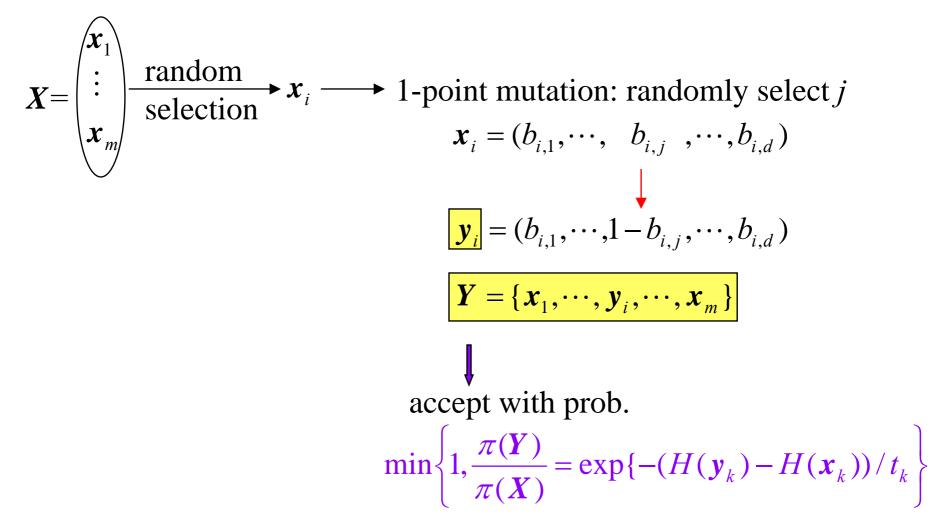
 Target distribution of the population: the augmented Boltzmann distribution

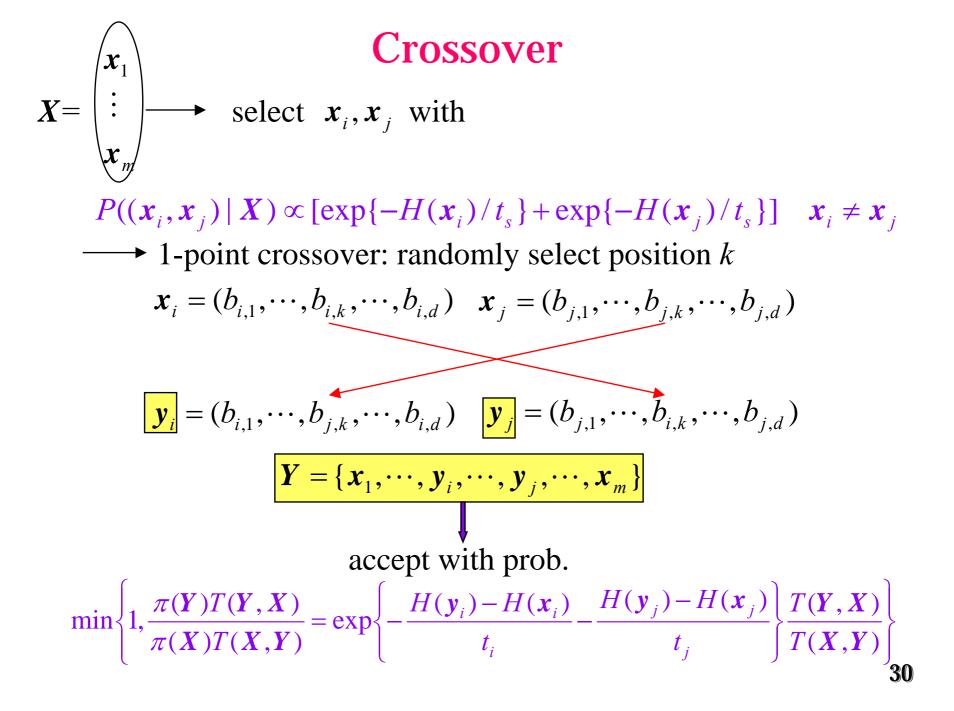
$$\pi(\boldsymbol{X}) \propto \exp\{-\sum_{i=1}^{m} H(\boldsymbol{x}_{i})/t_{i}\}$$

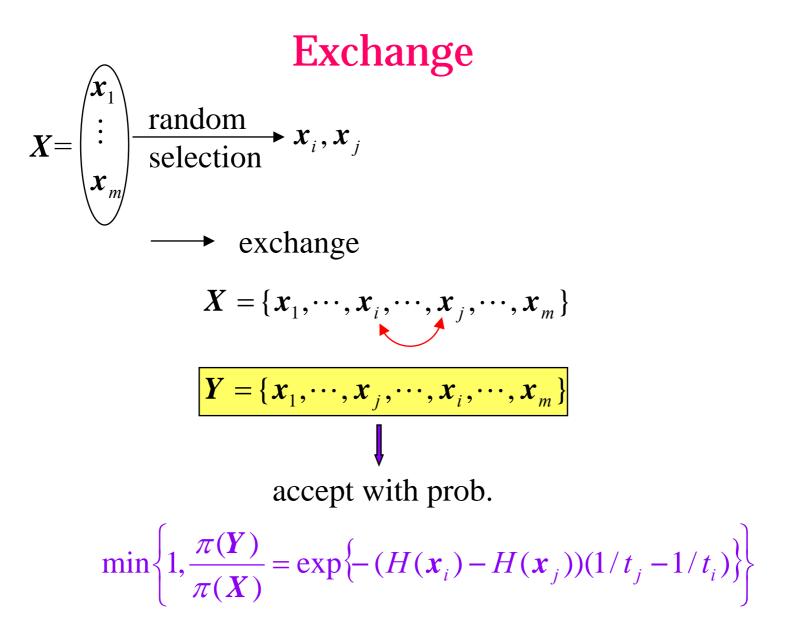
Example: binary-coded state space

$$\boldsymbol{x}_i = (b_{i,1}, \cdots, b_{i,d}), \quad i = 1, \cdots, m$$

Mutation



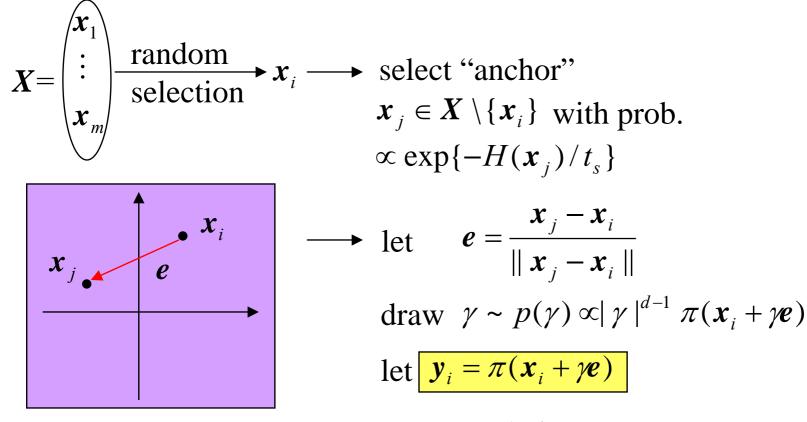




Continuous Sample Space: Mutation

Any kind of Metropolis-Hasting move independently for each chain!

Continuous Sample Space: Snooker Crossover



new population

$$\boldsymbol{Y} = \{\boldsymbol{x}_1, \cdots, \boldsymbol{y}_i, \cdots, \boldsymbol{x}_m\}$$

Outline

- Design Principle of a MCMC Scheme
- Generalized Gibbs
- Multipoint Metropolis Methods
- Evolutionary Monte Carlo
- Perfect Sampling
- Dynamic Weighting

An Observation

If a Markov chain had been started from the infinite past

The Idea of Coupling

Assume finite Markov chain: $\chi = \{1, \dots, |\chi|\}$

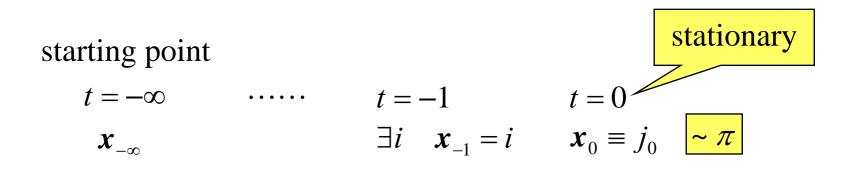
$$t = -1 t = 0$$

$$x_{-1} x_{0} \sim A(x_{-1}, \cdot) x_{0} = \phi(u_{0}, x_{-1})$$
(1) Compute
$$G(x_{-1}, j) = \sum_{k=1}^{j} A(x_{-1}, j) = \Pr(x_{0} \le j \mid x_{-1})$$
(2) generate $u_{0} \sim Uniform(0, 1)$
(3) Let $x_{0} = j$ if
$$G(x_{-1}, j - 1) < u_{0} \le G(x_{-1}, j)$$

The chains starting from all possible states are *t=-1* are *coupled by the same random number u*.

* Perfect Sampling ■ If u₀ makes all the chain "coupled", that is, ∀i $\phi(u_0,i) \equiv j_0$

then $\mathbf{x}_0 = \mathbf{j}_0 \sim \pi$



If the chains are not coupled in one step...

$$\boldsymbol{x}_{-(n-1)} = \boldsymbol{\phi}(\boldsymbol{u}_{-(n-1)}, \boldsymbol{x}_{-n})$$
$$\Rightarrow \boldsymbol{x}_{0} = \boldsymbol{\phi}(\boldsymbol{u}_{0}, \boldsymbol{\phi}(\boldsymbol{u}_{-1}, \cdots, \boldsymbol{\phi}(\boldsymbol{u}_{-(n-1)}, \boldsymbol{x}_{-n}) \cdots))$$

- Equivalently,
 - The sequence of uniform random variables

 $\dots, \mathcal{U}_{-n}, \dots, \mathcal{U}_{-1}, \mathcal{U}_{0}$

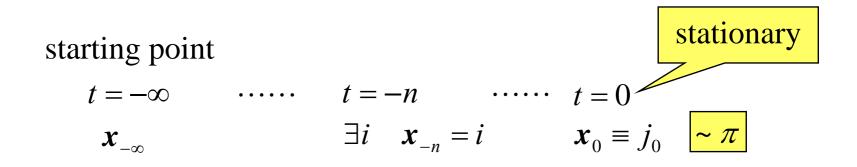
are given in advance

• From the infinite past, we compose

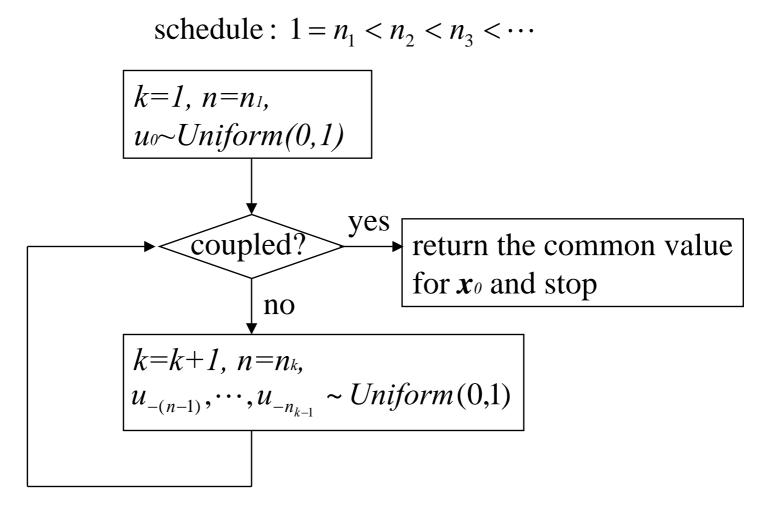
$$\cdots, \boldsymbol{x}_{-n}, \cdots, \boldsymbol{x}_{-1}, \boldsymbol{x}_{0}$$

If
$$\forall i \quad \phi(u_0, \phi(u_{-1}, \dots, \phi(u_{-(n-1)}, i))) = j_0$$

then $\mathbf{x}_0 = \mathbf{j}_0 \sim \pi$



The Conceptual Algorithm



 $\cdots \qquad \mathcal{U}_{-(n_k-1)}, \cdots, \mathcal{U}_{-n_{k-1}} \cdots \mathcal{U}_{-(n_2-1)}, \cdots, \mathcal{U}_{-1} \qquad \mathcal{U}_0$

Outline

- Design Principle of a MCMC Scheme
- Generalized Gibbs
- Multipoint Metropolis Methods
- Evolutionary Monte Carlo
- Perfect Sampling
- Dynamic Weighting

Weighted Sample

• Augment the sample space from \mathcal{X} to $\chi \times R^+$ to include a weight variable for each state.

 $x \rightarrow (x, w)$

Suppose *f*(*x*, *w*) is the joint distribution of (*x*, *w*). *x* is correctly weighted by *w* with respect to *π* if

 $\sum_{w} wf(\boldsymbol{x}, w) \propto \pi(\boldsymbol{x})$

Note: we can estimate $E_{\pi}[h(\mathbf{x})]$ by

$$\frac{\sum_{i=1}^{n} w_i h(\boldsymbol{x}_i)}{\sum_{i=1}^{n} w_i} \quad \text{where } (\boldsymbol{x}_i, w_i) \sim f, i = 1, \cdots, n$$

New Design Principle

- IWIW (Invariance With respect to Importance Weighting).
 - A transition rule *A*(*x*, *w*; *y*, *w*')satisfies IWIW if

$$f(\mathbf{x}, w) \xrightarrow{A(\mathbf{x}, w; \mathbf{y}, w')} f'(\mathbf{y}, w')$$
correctly
correctly
weighted wrt π
weighted wrt π

* Dynamic Weighting

M-type move: Given $(x_t, w_t) = (x, w)$ at iteration *t*.

Draw \mathbf{x}_{t+1} from a transition function that leaves π invariant.

• Set $W_{t+1}=W$.

R-type move: Given $(x_t, w_t) = (x, w)$ at iteration *t*.

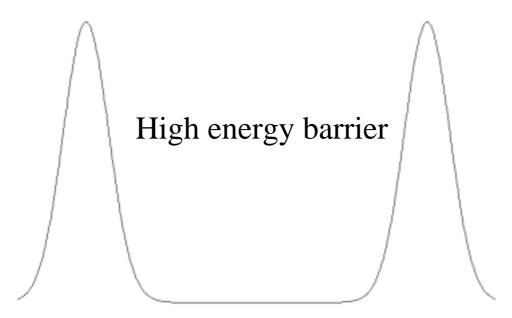
Propose y from T(x, y) and compute

$$r(\boldsymbol{x}, \boldsymbol{y}) = \frac{\pi(\boldsymbol{y})T(\boldsymbol{y}, \boldsymbol{x})}{\pi(\boldsymbol{x})T(\boldsymbol{x}, \boldsymbol{y})}$$

• Choose $\theta = \theta(\mathbf{x}, w) > 0$, and draw $U \sim Uniform(0, 1)$. Let

$$(\boldsymbol{x}_{t+1}, w_{t+1}) = \begin{cases} (\boldsymbol{y}, wr(\boldsymbol{x}, \boldsymbol{y}) + \theta) & \text{if } U \leq \frac{wr(\boldsymbol{x}, \boldsymbol{y})}{wr(\boldsymbol{x}, \boldsymbol{y}) + \theta} \\ \left(\boldsymbol{x}, \frac{w(wr(\boldsymbol{x}, \boldsymbol{y}) + \theta)}{\theta} \right) & \text{otherwise} \end{cases}$$

Waiting Time Infinity --> Importance Weight Infinity



- In the standard Metropolis process, the waiting time to cross over the barriers is infinite.
- The dynamic weighting process can cross the energy barrier, but has "importance weight infinity".

Combinatory Strategy

- Use the weighted moves when proposing large changes in the system.
- Use the standard Metropolis or Gibbs moves for local exploration.

Reference

- Liu, J. S. (2001). Monte Carlo strategies in scientific computing. Springer-Verlag New York.
- Generalized Gibbs:
 - Liu, J. S., Sabatti, C. (2000). Generalized Gibbs sampler and multigrid Monte Carlo for Bayesian computation, *Biometrika*, 87 (2), 353-369.
- Multipoint Metropolis Methods:
 - Liu, J. S., Liang, F. and Wong, W. H. (2000). The use of multiple-try method and local optimization in Metropolis sampling, *Journal of the American Statistical Association*, 95, 121-134.
 - Qin, Z. and Liu, J. S. (2000). Multipoint Metropolis method with application to hybrid Monte Carlo, *Technical report*, Harvard University.

Evolutionary Monte Carlo:

- Liang, F. and Wong, W. H. (2000). Evolutionary Monte Carlo: applications to *Cp* model sampling and change point problem, *Statistica Sinica*, 10 (2), 317-342.
- Perfect Sampling:
 - Propp, J. G. and Wilson, D. B. (1996). Exact sampling with coupled Markov chains and applications to statistical mechanics, *Random Structures and Algorithms*, 9 (1-2): 223-252.
- Dynamic Weighting:
 - Wong, W. H. and Liang, F. M. (1997). Dynamic weighting in Monte Carlo and optimization, *Proceedings of the National Academy of Sciences of USA*, 94 (26), 14220-14224.

