
Answers to Tutorial No 3,
Semester 2, 2023/24

1. A string which has 7 antinodes between its two ends
is vibrating with a frequency of 1,120 Hz. A second
string which has 5 nodes between its two ends (not
counting the nodes at either end) is vibrating at a
frequency of 1,680 Hz and is 80 cm long. What is
the length of the first string which is vibrating with
7 antinodes? A third string which is 70 cm long is
vibrating at a frequency of 1,600 Hz. How many
nodes would this third string have between its two
ends (not counting the nodes at either end)? (As-
sume that the three strings are similar in all respects
except length.)
Answer: The first string has 7 antinodes so it must
be at its 7th harmonic. Therefore its fundamental
frequency is given by 1,120 Hz divided by 7 i.e. 160
Hz. Since the second string is vibrating with 5 nodes
it must have 6 antinodes and is vibrating at its 6th
harmonic. Therefore its fundamental frequency is
given by 1,680 Hz divided by 6 i.e. 280 Hz. The
length of the first string is thus equal to 80 cm times
280
160 i.e. 140 cm. Since the third string is 70 cm long,
its fundamental frequency is equal to 160 Hz times
140
70 i.e. 320 Hz. As it is vibrating at a frequency of
1,600 Hz, it must be vibrating at its 5th harmonic as
1,600 Hz divided by 320 Hz is equal to 5. Hence the
third string must have 5 antinodes and 4 nodes be-
tween its two ends (not counting the nodes at either



end).

2. A canoe is travelling along the surface of the sea in
the same direction and the same speed as the water
waves on the surface of the sea, and it can be ob-
served that the total length of the canoe is exactly
equal to 4 complete wavelengths of the water waves.
If the waves are moving with a speed of 1.2 metres
per second and have a frequency of 1 Hz, calculate
the length of the canoe. The frequency of the waves
then increases to 1.2 Hz and the speed of the waves
increases to 1.5 metres per second. When this hap-
pens, what would be the number of wavelengths of
the waves which would exactly equal the length of
the canoe?
Answer: The sea waves have a wavelength equal to
1.2 metres per second divided by 1 Hz i.e. 1.2 metres.
The length of the canoe is thus equal to 1.2 metres
times 4 i.e. 4.8 metres. When the frequency of the
waves increases to 1.2 Hz and the speed of the waves
increases to 1.5 metres per second, the wavelength
of the waves is then equal to 1.5 metres per second
divided by 1.2 Hz i.e. 1.25 metres. The number of
wavelengths which would exactly equal the length of
the canoe is hence given by 4.8 metres divided by
1.25 metres i.e. 3.84 wavelengths.

3. A string vibrating with 6 antinodes between its two
ends has a fundamental frequency of 280 Hz. Its
frequency is the same as that of a closed pipe of
length k cm which is vibrating with 3 nodes between
its two ends (not counting the node at one end).



Calculate the fundamental frequency of the closed
pipe. When the closed pipe vibrates with 7 nodes
between its two ends (not counting the node at one
end), its frequency is the same as that of an open
pipe vibrating with 8 antinodes between its two ends
(not counting the antinodes at both ends). What is
the length of the open pipe?
Answer: The string is vibrating with 6 antinodes
so it is at its 6th harmonic. Hence its frequency of
vibration is equal to 280 Hz times 6 i.e. 1,680 Hz.
Since the closed pipe has 3 nodes it must be at its
7th harmonic and thus its fundamental frequency is
given by 1,680 Hz divided by 7 i.e. 240 Hz. When
the closed pipe has 7 nodes, it will be at its 15th
harmonic. Therefore its frequency of vibration will
be equal to 240 Hz times 15 i.e. 3,600 Hz. The open
pipe has 8 antinodes, so it will have 9 nodes and will
be at its 9th harmonic, and hence its fundamental
frequency is given by 3,600 Hz divided by 9 i.e. 400
Hz. An open pipe which has the same length k cm as
the closed pipe would have a fundamental frequency
double that of the closed pipe i.e. 480 Hz. Therefore
the open pipe which has a fundamental frequency of
400 Hz must have a length given by k cm times 480

400

i.e. 6k
5 cm.

4. A string which is 34 cm long is vibrating with 4 nodes
(not counting the nodes at both ends). The note
produced by the string combines with a note from a
closed pipe resulting in beats of 15 Hz. The closed
pipe has a fundamental frequency of 150 Hz and is



vibrating with 5 nodes between its two ends (not
counting the node at one end). The string is then
slightly shortened, and the beat frequency decreases
(without passing through 0 Hz). What is the funda-
mental frequency of the string? The string is then
shortened from 34 cm to 32.7 cm, and assuming that
the beats are still produced by the same harmonics of
the string and the closed pipe as before, what is the
new beat frequency? If the length of the closed pipe
is decreased to 80% of its original length, calculate
what the beat frequency would then be, assuming
that the string is still 32.7 cm long.
Answer: Since the closed pipe has 5 nodes, it is at
its 11th harmonic, and its frequency is thus equal to
150 Hz times 11 i.e. 1,650 Hz. On shortening the
string slightly its frequency increases, so if the beat
frequency decreases, the frequency of the string must
have been lower than that of the closed pipe. Since
the beat frequency is 15 Hz, the frequency of the
string is equal to 1,650 Hz minus 15 Hz i.e. 1,635
Hz. Since the string has 4 nodes and 5 antinodes
it must be at its 5th harmonic and its fundamental
frequency is given by 1,635 Hz divided by 5 i.e. 327
Hz. The shortened string has a length of 32.7 cm, so
its fundamental frequency would be equal to 327 Hz
times 34

32.7 i.e. 340 Hz. Since its 5th harmonic would
then be 340 Hz times 5 i.e. 1,700 Hz, the beat fre-
quency would then change to 1,700 Hz minus 1,650
Hz i.e. 50 Hz. When the length of the closed pipe
is decreased to 80% of its original length, its funda-



mental frequency would change to 150 Hz times 1
0.8

i.e. 187.5 Hz. Its 11th harmonic would then be equal
to 187.5 Hz times 11 i.e. 2,062.5 Hz, and the beat
frequency would change to 2,062.5 Hz minus 1,700
Hz i.e. 362.5 Hz.

5. Using an electronic tuner which is producing a mu-
sical note with a frequency of 440 Hz to help her,
a violinist is tuning her violin’s A string. She can
hear beats of 5 Hz when the note from the A string
combines with the note from the tuner. The violin-
ist then gradually loosens the A string of the violin
and the beat frequency gradually decreases (without
passing through 0 Hz) to 4 Hz. Calculate the fre-
quency of the note produced by the violin’s A string
when the beat frequency was equal to 5 Hz. To make
the frequency of the A string come as close as pos-
sible to 440 Hz, what should the violinist do? If the
beat frequency had increased to 6 Hz instead of de-
creasing when the string was loosened, what would
the A string’s frequency have been when the beat
frequency was 5 Hz?
Answer: The beat frequency was 5 Hz so the fre-
quency of the A string’s note was either 440 Hz minus
5 Hz i.e. 435 Hz, or 440 Hz plus 5 Hz i.e. 445 Hz. On
loosening the violin’s A string, its frequency would
have decreased, so since the beat frequency then de-
creased to 4 Hz, this meant that the frequency of the
A string’s note must have moved closer to 440 Hz, so
the A string’s frequency must have been higher than
440 Hz when the beat frequency was 5 Hz i.e. the A



string’s frequency must have been equal to 445 Hz.
To bring the frequency of the A string closer to 440
Hz, the violinist should decrease its frequency further
by continuing to loosen the A string so that the beat
frequency becomes less. When the beat frequency is
at zero, the frequency of the A string must then be
equal to 440 Hz. If the beat frequency had increased
to 6 Hz on loosening the A string, the frequency of
the ’cello’s note must have been lower than 440 Hz.
Hence it must have been at 435 Hz when the beat
frequency was 5 Hz.

Scientific Inquiry discussion points

The Equal-tempered scale is obtained by dividing an
octave into twelve equal steps. This gives us a scale
with twelve notes, which has become the basis of most
of Western music, whether classical, popular, folk, rock
or any other genre of music. The democratic equality of
these twelve notes enables music to modulate into any
of the twelve available keys with ease, using just twelve
notes in one octave. This greatly simplifies the design
of musical instruments and how they are played. But
this is not a “perfect” system in mathematical terms,
as the important interval of the fifth is not exactly 3/2
as in the Just and Pythagorean scales, but deviates by
ever so slightly an amount which is not apparent to
most listeners. Are there other examples in science and
technology where imperfections are an important part
of the basis of an actual working system?

While we may consider mathematical and physical per-



fection to be most desirable, in the real world most
things and processes deviate from mathematical perfec-
tion. One crucial example is in the DNA of our genetic
code. The reproduction of DNA as it replicates in the
multiplication of living cells is not perfect, in that errors
may occur in the replication due to natural events such
as the alteration of the DNA code by natural radiation
or cosmic rays. This may seem undesirable and it does
lead to undesirable effects sometimes, but this same
process makes evolution possible, as the errors in repli-
cation allow changes in the make-up of livings things,
which may then make an organism less or more suited to
the changing environment. Hence the progress brought
about by evolution depends on these imperfections in
replication.


