1. Warming up (10 marks)

You add a milli-calorie of heat ($\simeq 4 \times 10^{-3} \text{J}$) to a certain substance at a temperature of 300 K (water, perhaps, but that is not relevant). What is the corresponding change in the number of microstates available to the system?

Hint: Just get an estimate by a back-of-the-envelope calculation.

2. A simple rubber-band model (30=8+6+8+8 marks)

A physical model of a rubber band is a single long chain in which N molecules are linked:

Each molecule has two possible configurations:

\[a \quad \ell_a \quad \text{and} \quad b \quad \ell_b \]

which have lengths ℓ_a, ℓ_b and energies $E_a = 0$ and $E_b = E_0 > 0$. The rubber band is in thermal contact with the atmosphere at temperature $T = 1/(k_n \beta)$.

(a) Determine the canonical partition function $Q(\beta, N)$ for this system and then find the entropy $S(\beta, N)$.

(b) What is the average number of molecules with energy E_a?

(c) What is $\Omega(E, N)$, the number of microstates with energy E? Is the entropy obtained as $S = k_n \log \Omega$ equal to the entropy found in part (a)?

(d) Find the average length $L(T, N)$ of the rubber band. When the temperature is increased, does $L(T, N)$ increase or decrease? What is $L(T, N)$ for very low temperatures ($k_n T \ll E_0$) and for very high temperatures ($k_n T \gg E_0$)?
3. A dilute gas (30=5+7+14+4 marks)
The grand-canonical partition function $Z(\beta, V, z)$ of a dilute gas is given by
\[\log Z = (k_B T_0/\beta)^{-\kappa} V/V_0 z, \]
where T_0, V_0, and κ are positive material constants.

(a) Confirm that $PV = \text{constant}$ for isothermal changes.

(b) What is the equation of state for isentropic changes? Confirm that you get the expected answer when $\kappa = \frac{3}{2}$.

(c) Determine the free energy $F(T, V, N)$ and the internal energy $U(S, V, N)$.

(d) What are the heat capacities for constant volume and constant pressure?

4. Ising with next-next-neighbor interaction (30=4+4+12+10 marks)
Consider a modified Ising chain (or ring) with N sites, no on-site energy, and next-neighbor interaction strength J. There is also a next-next-neighbor interaction of strength J'. Symbolically, then, we have this picture:

As usual, we use $K = \beta J$ and $K' = \beta J'$ for convenience.

(a) What is the free energy $F(K, 0, N)$ when $K' = 0$?

(b) What is the free energy $F(0, K', N)$ when $K = 0$?

(c) For $K \neq 0$ and $K' \neq 0$, find the canonical partition function and then find the free energy $F(K, K', N)$. Verify that you get the expected expressions when $K' = 0$ or $K = 0$.

(d) Determine the heat capacity to the leading order in K' when $0 < K' \ll 1$.
Hint: Remember that $s_j s_{j+1} = (s_{j-1}s_j)(s_js_{j+1})$.

End of Paper
(BG Englert)