Problem 1 (20=6+8+6 points)
A harmonic oscillator (natural frequency \(\omega \), ladder operators \(A, A^\dagger \), unperturbed Hamilton operator \(H_0 = \hbar \omega A^\dagger A \) is exposed to a time-independent perturbation that is specified by \(H_1 = \hbar (\Omega A^\dagger + \Omega^* A) \). At the initial time \(t = 0 \), the oscillator is in the ground state of \(H_0 \).

(a) How large is the energy spread \(\delta H \) for \(H = H_0 + H_1 \)?

(b) What is the scattering operator \(S(T) = e^{iH_0T/\hbar} e^{-iHT/\hbar} \) to first order in \(\Omega \)?

(c) What is the probability, to lowest order in \(\Omega \), for finding the oscillator in the 1st, 2nd, 3rd, \ldots excited state of \(H_0 \) after time \(T \) has elapsed?

Problem 2 (25=5+8+5+7 points)
The state of a particle of mass \(M \) is described by the wave function

\[
\psi(\vec{r}, t) = C \frac{x + iy}{r} e^{-r/a} e^{-i\omega t},
\]

where \(C > 0 \), \(a > 0 \), and \(\omega > 0 \).

(a) Determine the normalization constant \(C \).

(b) Find the probability density \(\rho(\vec{r}, t) \) and the probability current density \(\vec{j}(\vec{r}, t) \).

(c) Verify that they obey the continuity equation.

(d) Show that

\[
\frac{d}{dt} \int (d\vec{r}) \rho(\vec{r}, t) = \int (d\vec{r}) \vec{j}(\vec{r}, t)
\]

holds, either by a general argument or by an explicit calculation for the \(\rho(\vec{r}, t) \) and \(\vec{j}(\vec{r}, t) \) of part (b).

Hint: Remember that \(\vec{s} \cdot \nabla \vec{r} = \vec{s} \) for any 3-vector \(\vec{s} \).
Problem 3 (25=12+8+5 points)
A particle of mass \(M \) is scattered by the Gaussian potential

\[
V(\vec{r}) = V_0 e^{-\frac{1}{2} (r/a)^2} \quad \text{with} \quad a > 0 \quad \text{and} \quad V_0 = \frac{(\hbar/a)^2}{2M}.
\]

Apply the first-order Born approximation and determine

(a) the differential cross section \(\frac{d\sigma}{d\Omega(\theta)} \) in terms of \(a \) and \(q = 2k \sin \frac{\theta}{2} \);

(b) the total cross section \(\sigma \) in terms of \(a \) and \(E/V_0 \) with \(E = \frac{(\hbar k)^2}{2M} \);

(c) the dominating \(E \) dependence for \(E \ll V_0 \) and \(E \gg V_0 \).

Hint: Remember that \(d\theta \sin \theta = \frac{1}{k^2} dq \).

Problem 4 (30=5+10+10+5 points)
Two-level atom; probability amplitudes for states 1 and 2 are \(\psi_1 \) and \(\psi_2 \), respectively.

The Schrödinger equation for \(\psi = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} \) is

\[
\frac{i\hbar}{\partial t} \psi(t) = \mathcal{H}(t) \psi(t)
\]

with \(\mathcal{H}(t) = \hbar \omega \begin{pmatrix} \cos(2\phi(t)) & \sin(2\phi(t)) \\ \sin(2\phi(t)) & -\cos(2\phi(t)) \end{pmatrix} \) where \(\phi(t) = \pi t/T \) with \(T > 0 \).

(a) Find the eigencolumns \(\psi_{\pm}(t) \) of \(\mathcal{H}(t) \) to the eigenvalues \(\pm \hbar \omega \).

(b) Write \(\psi(t) = \alpha(t) \psi_+(t) + \beta(t) \psi_-(t) \) and find the 2 \times 2 matrix \(\mathcal{M} \) in

\[
\frac{\partial}{\partial t} \begin{pmatrix} \alpha(t) \\ \beta(t) \end{pmatrix} = i \mathcal{M} \begin{pmatrix} \alpha(t) \\ \beta(t) \end{pmatrix}.
\]

[Check: If you get it right, \(\mathcal{M} \) does not depend on \(t \).]

(c) By solving this equation, find \(\psi(T) \) for \(\psi(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \).

(d) What is the dominating \(T \) dependence of the probability \(|\psi_2(T)|^2 \) for \(\omega T \ll 1 \)? And what is it for \(\omega T \gg 1 \)?