Introduction to Biopolymer Physics
 Problem 2.1

Question

Derive the expression for the radius of gyration of an ideal chain.

Solution

Consider an ideal chain with N segments and segment length l. The radius of gyration is given by

$$
\begin{equation*}
\left\langle R_{g}^{2}\right\rangle=\frac{1}{N^{2}} \sum_{i=1}^{N-1} \sum_{j=2}^{N}\left\langle h_{i j}^{2}\right\rangle \quad \text { with } \quad j>i, \tag{1}
\end{equation*}
$$

where $\left\langle h_{i j}^{2}\right\rangle$ is the mean square distance between segments i and j

$$
\begin{equation*}
\left\langle h_{i j}^{2}\right\rangle=(j-i) l^{2} . \tag{2}
\end{equation*}
$$

Hence, the radius of gyration can be written as

$$
\begin{equation*}
\left\langle R_{g}^{2}\right\rangle=\frac{l^{2}}{N^{2}} \sum_{i=1}^{N-1} \sum_{j=2}^{N}(j-i)=\frac{l^{2}}{N^{2}} \sum_{i=1}^{N-1} \sum_{x=1}^{N-i} x . \tag{3}
\end{equation*}
$$

To solve this double summation, we consider the following results:

$$
\begin{align*}
\sum_{k=1}^{n} 1 & =n \tag{4}\\
\sum_{k=1}^{n} k & =\frac{n(n+1)}{2} \tag{5}\\
\sum_{k=1}^{n} k^{2} & =\frac{n(n+1)(2 n+1)}{6} \tag{6}
\end{align*}
$$

With eqn. (5) one summation of eqn. (3) can be evaluated, and we get

$$
\begin{align*}
\left\langle R_{g}^{2}\right\rangle & =\frac{l^{2}}{N^{2}} \sum_{i=1}^{N-1} \frac{(N-i)(N-i+1)}{2} \tag{7}\\
& =\frac{l^{2}}{2 N^{2}} \sum_{i=1}^{N-1}(\underbrace{N^{2}+N}_{a}-\underbrace{i(2 N+1)}_{b}+\underbrace{i^{2}}_{c}) \tag{8}
\end{align*}
$$

The sums over the three terms a,b and can be evaluated individually, using eqn.(4)-(6), yielding the following results:

$$
\begin{align*}
\frac{l^{2}}{2 N^{2}} \sum_{i=1}^{N-1} N^{2}+N & =l^{2} \frac{\left(N^{2}+N\right)(N-1)}{2 N^{2}} \tag{9}\\
-\frac{l^{2}}{2 N^{2}} \sum_{i=1}^{N-1} i(2 N+1) & =-l^{2} \frac{(2 N+1)(N-1) N}{4 N^{2}} \tag{10}\\
\frac{l^{2}}{2 N^{2}} \sum_{i=1}^{N-1} i^{2} & =l^{2} \frac{(N-1) N(2 N-1)}{12 N^{2}} \tag{11}
\end{align*}
$$

Collecting the terms proportional to N yields

$$
\begin{equation*}
\left\langle R_{g}^{2}\right\rangle=l^{2}\left(\frac{N}{2}-\frac{N}{2}+\frac{N}{6}\right)=\frac{N l^{2}}{6} . \tag{12}
\end{equation*}
$$

As all other terms are of order 1 or N^{-1}, they can be neglected for large polymer chains.

