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Abstract

The 1-D time-independent Schrodinger equation is an ordinary differential equations
that can be solved numerically using the well-known Numerov method. Recently the ba-
sic version of Numerov method has been recast into the Basic Matrix Numerov Method
which has great advantage when used in modern high-level programming environments
but produces results only to a limited accuracy. In this thesis, we recast the generalized
version of the Numerov method into the Generalized Matrix Numerov Method based on
the algorithm of the existing Basic Matrix Numerov Method. The Generalized Matrix
Numerov Method is capable of producing results to any desired accuracy. It is illus-
trated by finding stationary states with the corresponding energies and simulating the
dynamics of Simple Harmonic Oscillator and Coupled Harmonic Oscillators, with the aid
of MATHEMATICA. Results of varied accuracy are obtained, and highly accurate results
are obtained with short CPU time, thus confirming the validity and effectiveness of this
method.
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Chapter 1
Introduction

The Numerov method, which was developed by Boris Vasil’evich Numerov, is a well-
known numerical method for solving ordinary differential equations of second order that
does not contain first order terms. An example of such differential equations is the most
fundamental equation in Quantum Mechanics - the 1-D time-independent Schrodinger
equation. Depending on the form of the potential, it might be difficult or even impossible
to solve the equation analytically. Thus the Numerov method is very useful in providing
numerical solutions in such cases.

Modern programming tools such as MATHEMATICA and MATLAB increase the value of
numerical methods since the routine computations can be done with less human effort in
a relatively shorter time than computation by hand. In 2012, Mohandas Pillai, Joshua
Goglio, and Thad G. Walker brought up the idea of Matrix Numerov Method for solving
the Schrodinger equation®. This method further simplifies the calculations by discretizing
the wave function on a linear lattice with appropriate boundary conditions, thus allowing
the Hamiltonian to be represented by a square matrix whose eigenvalues and eigenvectors
can be computed simultaneously.

While Pillai, Goglio, and Walkera placed their emphasis on simplicity and obtained
results to a limited accuracy, with a reasonable increase in complexity it is possible
to modifiy this method to attain much higher accuracy and to solve more complicated
problems such as the dynamics of entangled quantum systems. Quantum entanglement
has extreme importance in the emerging technologies of quantum computing and quantum
cryptography, yet the intricacy in analysing the dynamics of entangled systems is even
greater than that of simple systems. Therefore it is very helpful if we could solve such
problems numerically to give us a general sense of the solution before making any attempt
to get to the solution analytically, if it is even possible.

In this thesis, we will first introduce the most basic ideas of the Numerov method which

has limited accuracy, and how it is developed into the Basic Matrix Numerov Method.



Next we will proceed to explain the generalized Numerov method, which produces results
to any accuracy we choose. The main section of this thesis is to modify the generalized
Numerov method into the matrix form in a similar manner as the Basic Matrix Numerov
Method, and to apply the Generalized Matrix Numerov Method in solving for simple
systems and entangled systems, with the aid of MATHEMATICA.



Chapter 2

Matrix Numerov Method

2.1 Basic Matrix Numerov Method

The Numerov method is a numerical method for solving ordinary differential equations

of the form P(a)
o = J(@)u(a)

The time-independent 1-D Schrodinger equation

P ) £V @)e() = Be()

2m dx?

can be written into the form of (2.1) as

where

Taylor series expansions of the wave function ¢ (x) gives

Wz +d) = (x) £ dpW(z) + %d%@) (z) £ %d?’z/;(?’) (z) + ld%(‘*) (z) 4.

4l
It follows that

Yo+ d) + 9o — d) = 20() + PYO(w) + a9 () + O(d)

which can be rearranged as

50 (z) = U(x+d)+ 1/)(;;— d) —2¢(x) %dzw(z;)(x) oY,

(2.1)

(2.2)

(2.3)

(2.6)



Substituting (2.6) into (2.3), we have

750(4)(1’) _ f(‘r + dW(JC + d) + f(l‘ ;2d)¢(95 — d) — 2f(x)z/1(x) + O(dZ) (27)

Substitution of (2.7) into (2.6) yields an equation to O(d*)

it i =29 1
fii = d? 12

(fir1¥iyr + fisrioa — 2fidy) (2.8)

where

fiei = fle—d), fi
Yica =Y(x—d),

f(x)a ferlEf(x—i_d)a
(), i1 =(x—d).

Rearranging (2.8), we have

Vg1 + i — 29 1
= 2 1 = 15 intins + fiortioa + 10fitfn). (2.9)
Recall that
fiz1 —ﬁ( —‘/;—1), fz__ﬁ(E—‘/;)7 fir1 _ﬁ(E WH),
we have
_h_Qwifl — 2¢; + i1 i Vicitio + 10V + Vi _ sz;l + 109); + wiH. (2.10)
It follows that 2
—-—Ay + BVy = EBY (2.11)
2m
where
-2 1 0 0 0 10 1 0 0 O
1 -2 1 0 0 1 10 1 0 O
1 0 -2 1 0 0O 1 10 1 0
A=— . B=— ’
a2l o0 0 1 -2 1 1210 0 1 10 1
0 0 0 1 =2 0O 0 0 1 10




Vi 0 0 0 O (0
0 V2 0 0 0 (5
V= 0 0 V3 0 O = s
o 0 o0 VvV, 0 .- )y
00 0 0 Vs - Ps
Multiplying both sides of (2.11) by B™!, we get
h2
—— B YAy + Vi = By (2.12)
2m
which is in the form of
h2
Hy=FE¢y, H=—-——B''A+V (2.13)
2m
where the square matrix H is the Hamiltonian of the system, i.e. the sum of the kinetic
energy matrix —%B 1A and the potential energy matrix V. The eigenvectors of H are

the stationary states of the time-independent Schrodinger equation, and the eigenvalues

are the corresponding energies of the stationary states.

2.2 Generalization

Again we consider Taylor Series expansion of the wave function v (x) in (2.4), it follows
that

2r

D) +i(e—d)~20(a) = 2500 (@) 2500 @) 420 0 )0 (214)

and

1/)(2)(:13) _ ¢(x + d) + w<d-12'_ d) - 2¢($) L %w(%—&ﬂ)(m) + O(d2r+2). (2.15)




Similarly,

(@ +d) +¢(x —d) — 2¢(x)

e d' (o) 242
=2—1 (ZE)—FQZ@D (m)—l—---%—QQ—T'@/} "x) +O0(d*" )

2!
(x4 2d) + P(z — 2d) — 2¢(x)
_ 2(226? w ( )_‘_2(25') w (.1')—|—---—|—2<22C?!Tw(2r)(x)+O((2d)2r+2)

U(z+rd) + Y(x —rd) — 2¢(x)

(rd)? (rd)*
O g ) 4270

(rd)?

=2
27!

YW (z)+ -+ 2 V) (z) + O((rd)*+2).

We thus have a set of simultaneous equations with r equations and r unknowns

d2 2 d4 4 d?r 2 2r+2
SV @) + TEO@) o+ T (@) + O )
Yo+ d)+(a = d) - 20()

2
(2;)21/)(2)(33) + (25)4¢(4)($) 44 %¢(2r)($) + O((Qd)2r+2)
_ (@ +2d) + ¢(x — 2d) — 2¢(x)
2
rd)? rd)! rd)* (o 2r42
U 0@ + Ty ) 1 CDL 00y 4 O+

_ Y@ Ard) +¢(x —rd) — 2¢(x)
5 ;

which can be solved to obtain 1(® (z) and ") (z). Suppose that

1 < 2d%" . .
V@) = 2 e = gy @) + 0@ (2.16)
and
1 T
(2r) ) = i Z k. (2.17)
Substituting (2.15) into (2.3), we get
w(2r+2) == Z ki iy (2.18)

i=—r



Substituting (2.16) into (2.14), we get

Therefore, to O(d*+?),

% Z cipy = Z Lkifﬂ/}i + fit);.

(2r 4+ 2)!

i=—r i=—T

(2.19)

(2.20)

(2.18) is in a similar form to (2.9), and can be expanded into the form of (2.10). The

non-zero elements of matrix A are given by the coefficients of ¢;, while that of matrix B

are given by the coefficients of f;1);. With this, we can use the Matrix Numerov Method

to an error of any order 2r + 2. For example, to O(d®), the matrices A and B are given

by

490 270 —27 2 0 0

270 —490 270 27 2 0

97 270 —490 270 —27 0

9 927 270 —490 270 —27 2

__ L 10 9 27 270 —490 270 —27
1804 | 0 9 927 270 —490 270
0 0 0 9 97 270 —490

0 0 0 0 2 27 270

20140 150 —6 1 0 0

150 20140 150  —6 0

6 150 20140 150  —6 0

1 -6 150 20140 150 -6 1

_ L oo 1 -6 150 20140 150  —6
201601 0 1 —6 150 20140 150
0 0 0 1 -6 150 20140

0 0 0 0 1 -6 150

O O O O

=27
270
—490

_ o O O O

—6
150
20140

The Basic Matrix Numerov Method in Section 2.1 is a special case with » = 1 to an



error O(d*). While the generalized Numerov method is not a new idea, in this paper we
will apply it in the matrix form as Generalized Matrix Numerov Method so as to solve

the Schrodinger equation to any desired accuracy.

2.3 Determination of Grids

Suppose that the dimensions of the square matrices A and B are both N x N. The
dimension of the eigenvector ¢ is N as well; effectively we have thus implemented a
boundary condition ¢y = ¥yi1 = 0, which is equivalent to placing the potential of
interest inside an infinite-walled box.

The value of N is related to the maximum energy F,, of all stationary states we wish
to find. It is possible to fix F,, and find N, or vice versa.

First we fix the maximum energy F,,. The minimum local de Broglie wavelength is
A = h/\2mE,,. Sufficient accuracy is generally obtained by taking the grid spacing d
corresponding to about one point per radian, i.e., d = \/27 = h/v/2mE,,. The number
of grid points needed can be estimated by finding the outer turning points x; such that
V(z;) = E, and allowing for an extra 2\ in the classically forbidden region. Thus,
N = 2(x/d + 47) rounded to the nearest integer.

On the other hand, if we first have a fixed N value, we may express x; as x; =
(N/2 —4m)d = (N/2 — 47)h/v/2mE,,. By substituting x; into V(z;) = E,,, we can solve

for the maximum potential energy Fi,.

2.4 Example: Simple Harmonic Oscillator

Matrix Numerov Method can be used to solve the time-independent Schrodinger equation
even if the potential V' is in a form that is not analytically solvable. However, in this

section, we will apply the Generalized Matrix Numerov Method to Simple Harmonic

Oscillator with potential V(z) = %oﬂx, which is analytically solvable and thus useful for

comparison to the numerical results.
By using scaled variables s = /% and € = %, we have
1 d? 1,

xl/4

with stationary states 1, (s) = WHn(S)e*SQ/Z and energies e = n + 3.

(2.21) can be written into the matrix form

—%B‘lAw + %s% = €. (2.22)

9



Setting €,, = 50, we have d, = ﬁ = 0.1 and N = 2(47 + 2) ~ 225.

A comparison of the exact and numerical results for selected energy levels is shown
in Table 2.1.

n 0 1 2 3 10 20 35 49
Exact 0.5 1.5 2.5 3.5 10.5 20.5 35.5 49.5
Numerov O(d,*) 0.5000 1.5000 2.5000 3.5000 10.499 20.495 35.476 49.434
Numerov O(d,®) 0.5000 1.5000 2.5000 3.5000 10.500 20.499 35.495 49.480

Table 2.1: Comparison of exact and numerical results for selected eigenenergies of the
SHO.

Table 2.2 gives an overall comparison of the exact and numerical results for all the
eigenenergies within the effective range ¢ < ¢, = 50. This is achieved by doing a
linear regression of the numerical results versus the exact results, and a perfect match is
represented by the equation y = x, with correlation coefficient r. = 1.

It is shown that, numerical results with higher accuracy can be produced at the cost
of longer CPU time. Nevertheless, the time taken to obtain sensible results is generally

shorter than solving analytically.

Equation Te CPU time*
Exact Match y==x 1 -
Numerov O(d,*) y = 0.9988z 4 0.0135 0.999999700  1.78 seconds
Numerov O(d,®) 3 = 0.9997x + 0.0042 0.999999964 11.95 seconds

Table 2.2: Overall comparison of exact and numerical results for eigenenergies of the

SHO.

For O(d,"), the comparison between the analytical solution and the Numerov results
for the n = 49 state of the SHO, with ¢ = 49.5 i.e. the highest energy state below the
maximum value €,, = 50, is shown in Figure 2.1.

Given the solutions 1, (z) of the time-independent Schrodinger equation, the solution

U(z,t) of the time-dependent Schrodinger equation can be expressed as
U(z,t) = Z ot (x)e 1 Ent/h, (2.23)
n=0

The coefficients ¢, can be found, if the initial wave function ¥(z,0) is known, by

Cp = /dx i (x)¥(z,0). (2.24)

*Varies with computer configuration.

10



Figure 2.1: The blue solid line shows the analytical solution to the Schrodinger equation

for the n = 49 state of the SHO, while the numerical results are shown by the red dots,
for O(d,").

After substituting s = /%~ and € = %, we have

U(s,t) = chwn(s)e_iE”t, Cp = /ds Ur(s)W(s,0). (2.25)

n=0

Here we use the Gaussian wave packet U(s,0) = (1)"%e~*"/® as the initial wave
function.

Figure 2.2 shows the graphs of the real part W(s,600), i.e. solution to the time-
dependent Schrédinger equation at ¢t = 600, for O(d,*) and O(d,®) respectively. By
comparing the Numerov results with the analytical solution, it can be seen that the

accuracy of the numerical results is significantly improved by increasing the value of r in

O(d2r+2).

11
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Figure 2.2: The upper graph shows the real part of ¥(s, 600) for O(ds*); the lower graph
shows the real part of W(s,600) for O(d,®). The analytical solution is represented by the
blue solid line and the Numerov results are represented by the red dots.
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Chapter 3

Entanglement

3.1 Key Concepts

Quantum entanglement is a physical phenomenon that occurs when pairs or groups of
particles are generated or interact in ways such that the quantum state of each particle
cannot be described independently.

Consider two noninteracting systems A and B, in Hilbert spaces H, and Hp respec-

tively. The Hilbert space of the composite system is the tensor product
H=H,® Hpg. (3.1)
If A is in state [14) and B is in state |¢pg), the state of the composite system is

Map) = [¢4) © |¢5)- (3.2)

A states of the composite system which can be represented in this form is called a product
state. However, not all states in H are product states.
Let {]ia)} be the basis vectors of H4, and {|jg)} be the basis vectors of Hg. Then

the most general state in H is of the form

|Wap) = Z%\Z}O ® |7B)- (3.3)

This state is a product state if there exist ¢! and cf such that ¢;; = c{lcf . On the other
hand, if ¢;; # cfcf for all ¢ and c}g, this state is called an entangled state.

The density operator p for the composite system is given by

p=[Vap)(Vag| (3.4)

13



and the elements of the density matrix is given by

Pmn = (map|¥ap){Vap|nap) (3.5)

where {|map)} is a set of basis vectors of the composite system H.

The reduced density operator of system A is by definition?

pa = Trp(p) (3.6)

where the partial trace over B is defined by

Trp(lia)(kal @ 17){ls]) = [ia)(ka|Tx(|jB)(l5])- (3.7)

Similarly,
pB = Tra(p), (3.8)
Tra(lia)(kal @ i) (lsl) = Tr([ia)(kal)lis) (5] (3.9)

The reduced density operator describes all the properties or outcomes of measurements
of one system, given that the other system is left unobserved. To determine whether a

state is a product state or entangled state, we may find the purity

v =Te(ph) = Te(pp). (3.10)

The condition v = 1 corresponds to a product state whereas 0 < p < 1 corresponds to
an entangled state. An entangled state means that we cannot distinguish, or ”trace out”
one system from the other.

For example, if both A and B are two-level systems, we may take

1 0 0 0
. . 1 0 0 1 0 0

1 = = ) Y m = ) ) Y
{lia)} = (i) {(0> (J} DR o 1N 1 Y
0 0 0 1

1
For a state |¥;) = \/Li (_El> in H, we have
0 -1 0
1 0 0 0
= |\ U, | == * * * * | —

p=[U1){¥] _q (10 10> 5210 1 ol°

0 0 0 0 0

14



pa=

N | —

10 ~1 0

Tr Tr

(0 0) <0 0) 1(1 —1) ) 1<1 —1) ,
= - , pal == = pa;
1 0 10 2 2\1 1

Tr Tr

_afroy, 1(ro)y_ (1o , (10}

P5=5\0 o) "2\0 o) " \o o) 0 o) PP

Since v = TY(P,QU = Tr(P?B)

1, we conclude that |¥;) is a product state. In fact, it can

be expressed as |¥q) \% <_1 ) = % ® (3)-
For another state |U5) :\%( ) we have
0 0 0 0
p= ) (W] = R O 1 M
0 0 0 O
pA—% (1) (1) pf—i(é ?)#pm

1({1 0 , 1(1 0
PB—2<O 1>, PB—4<O 1>#PB-

Since v = Tr(p?%) = Tr(p%) = 0.5 < 1, |¥y) is an entangled state.

3.2 Example: Coupled Harmonic Oscillators

The Hamiltonian of Coupled Harmonic Oscillators is represented by

o0 1 b 5 RB* 0 1 5 o
hl = 2oa 012 MW Ty F god1Ty (3.11)

where g, is the coupling constant. By using scaled variables

s1 = mx S = m_lzl: :i
1= hu 1, S2= hM 2 9—h29z

with g = (my/ms)Y* and m = (myms)*/2, we have

10 b 10
T 5 9. 9 1°1

1
5952 %1517 55,

1
5+ w232 + gs152. (3.12)

15



The ground state wave function of this Hamiltonian is given by?

o) = G 010,0) = [ exp { =S +07142)} (313

where o o p p
= - — in — = in — — 3.14
Y1 = S1 COS 5 S9 8in 5 Yo = $1 8in 5 + 59 COS 5 ( )
9 2 2 T 9\2 1 42
tanf = — g - Wi +wy + \/(W12 w3)* +4g 7 — (WPl — g2
ws — wy 2w

provided that the condition wiw3 > ¢* must be fulfilled.
Other states can then be calculated by

(@ ad)

Nni,Ng) = , 3.15
| 1 2> \/W ( )
where ai and ag are the creation operators
t_ Y2 1 e 0 t_ Y2 LY. 9
a; =4/ =e — —e "T—  ay=4/ze€ — —e/"—.
! 2t U V2w oy ? 2 v V2w Oy
The corresponding eigenenergies are

€ny.ny = w(€"my + e ng + coshn). (3.16)

To obtain expressions of the wavefunctions in terms of (si, s3), one can simply substi-
tute (3.14) back into the expression. For example, the ground state wavefunction (3.13)

can be written as

o(5) = (s1, $2/0,0)

Y E S 0 ™ o (ssn? e (8:17)
= 7TeXp 5 e 510032 S98 5 e 818 5 820082 .

In terms of the Matrix Numerov Method, the Hamiltonian (3.5) is represented by
1.4 1,
H= (=3B A+ V)@ L+ Lo (=58 A+ V5) + 951 ® 5, (3.18)

where
S = diag(- -+, 8i-1, 56, Sit1," " )-
Here we follow the same standard to determine the grids for individual systems. This

time N = 50 is first fixed, with w; = 1.5, wy = 1.0 and g = 0.2, we then have d; ~ 0.23,

16



dy =~ 0.28, €,,1 =~ 9.33 and €,,5 ~ 6.22. The maximum energy of the composite system is
taken to be the sum of those of the individual systems, i.e. €, = €,,1 + €2 = 15.54.

A comparison of the exact and numerical results for selected energy levels is shown
in Table 3.1.

1, Mo 0,0 0,1 1,0 1,1 1,2 3,2 35 6,5

Exact 1.2473 2.2316 2.7577 3.7420 4.7262 7.7470 10.700 15.231
Numerov O(d,*)  1.2473 22314 2.7574 3.7415 4.7253 7.7436 10.690 15.207
Numerov O(d,®)  1.2473 22316 2.7577 3.7419 4.7261 7.7462 10.697 15.223
Numerov O(d,"?) 1.2473 22316 2.7577 3.7420 4.7262 7.7470 10.700 15.231

Table 3.1: Comparison of exact and numerical results for selected eigenenergies of the
coupled oscillators.

Table 3.2 gives an overall comparison of the exact and numerical results for all the

eigenenergies within the effective range € < ¢, = 15.54.

Equation Te CPU time
Exact Match y==x 1 -
Numerov O(d,*) 3 = 0.9963z 4+ 0.0192 0.999985 19.27 seconds
Numerov O(d,®)  y = 0.9983z + 0.0097 0.999995 79.76 seconds
Numerov O(d,"?) 3 = 0.99992 4+ 0.0008 1.000000 96.33 seconds

Table 3.2: Overall comparison of exact and numerical results for eigenenergies of the
coupled oscillators.

Figure 3.1 shows a 3-D plot of the state (ny,ns) = (6,5), with e = 15.23 which is close
to the maximum effective value €, = 15.54.
The solution W(sy, s9,t) of the time-dependent Schrédinger equation can be expressed
as o -
U(sy, S9,t) = Z Z Cryny Wy my (81, S2)€ rumat, (3.19)
n1=0n2=0
The coefficients ¢, », can be found, if the initial wave function W(sy, s2,0) is known,

by
Cryme = //dsldSQ Vi np (51, 82) ¥ (81, 82, 0). (3.20)

Here we use the Gaussian wave packet U(s1, sp,0) = (&) 4e=(1-D*/4(L)1/de=(52+2)/4
as the initial wave function.

Figure 3.2 gives a sketch of the real part of the wave function at ¢ = 150, for O(d,*),
O(d,®) and O(d,"*) respectively. It can be observed that the Basic Matrix Numerov

Method with an error O(df) does not have sufficient accuracy to produce sensible results.

17



Figure 3.1: 3-D plot of the state (ny,ny) = (6,5) to O(d,®). The curved surface represents
the analytical solution and the black lines represent the numerical results.

By increasing r in the Generalized Matrix Numerov Method, it is possible to obtain results
that are very close to the analytical solutions.

Nevertheless, in order to achieve satisfactory results, it is insufficient to increase r
solely. Again we set N = 50, wy = 1.5, wy = 1.0, and ¥(sy, $9,0) =
()= (1= D4 L)1/4e=(242)*/4 a5 the initial wave function; but this time with coupling
constant g = 0. The single qubit states are expected to be pure, i.e. 7 = Tr(p?) = 1. Yet
in Table 3.3 it is shown that 7 < 1, and an increase in r has little effect on improving its
accuracy.

However, if we modify the initial wave function either by reducing its width or shift-
ing its centre towards the origin, the accuracy of v improves significantly as shown in
Table 3.4. The reason is that when the modified initial wave functions (V9 and V) are
decomposed into a sum of the stationary states, the states of lower energies will have
larger coefficients and states of higher energies will have smaller coefficients compared to

those in the original initial wave function (¥;). Since in Matrix Numerov Method we

18



t=0 150 300 500 1000
Exact 1 1 1 1 1
Numerov O(d84) 0.96482 0.96482 0.96482 0.96482 0.96482
Numerov O(dSS) 0.96505 0.96505 0.96505 0.96505 0.96505
Numerov O(d512) 0.96520 0.96520 0.96520 0.96520 0.96520

Table 3.3: Purity v for ¢ = 0, with N = 50, w; = 1.5, ws = 1.0, and ¥(sq, s9,0) =
(%)1/467(8171)2/4(%)1/4ef(sz+2)2/4.

only keep stationary states with energy € < ¢,,, if the coefficients of the stationary states
with € > ¢, are larger, the error caused by excluding these states will be larger, and vice

versa.

t=0 150 300 500 1000
Exact 1 1 1 1 1
Numerov ¥(sq, $2,0) = ¥y 0.96520 0.96520 0.96520 0.96520 0.96520
Numerov ¥(sq, $2,0) = ¥y 0.99999 0.99999 0.99999 0.99999 0.99999
Numerov ¥(sy, s9,0) = W3  0.99943 0.99943 0.99943 0.99943 0.99943

—(s1—1)2 (s 2
\111 — (% 1/46 (s1 12) /4(%)1/46 ( 22+2) /4’ 2 2
\112 — (%)1/46—(81—1) (%)1/46—(52-1—2) 7 \1/3 — (%)1/46_81/4(%)1/46_82/4.

Table 3.4: Purity v for g = 0, with N = 50, w; = 1.5, wy = 1.0 for O(d,'?).

On the other hand, the accuracy of 7 can be increased by increasing N as well. An
increase in /N corresponds to an increase in ¢,,, hence more stationary states with higher
energies are included in our results. There are fewer stationary states with € > ¢,,, thus

smaller error for truncating them off, as observed in Table 3.5.

t=0 150 300 500 1000
Exact 1 1 1 1 1
Numerov N = 50 (€, = 15.54) 0.96520 0.96520 0.96520 0.96520 0.96520
Numerov N = 60 (¢, = 21.79) 0.99659 0.99659 0.99659 0.99659 0.99659
Numerov N = 70 (e, = 28.04) 0.99964 0.99964 0.99964 0.99964 0.99964

Table 3.5: Purity v for ¢ = 0, with w; = 1.5, wy = 1.0 and W(sy,s,0) =

(55) /e CrmDA(G) e (21 for O(d, ).

For a fixed initial wave function, the accuracy of results is determined by both r and N

(€). An increase in r, which is possible only in the Generalized Matrix Numerov Method
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but not in the Basic Matrix Numerov Method, corresponds to an increase of non-zero
elements in the kinetic energy matrix and makes each stationary state within the effective
energy range closer to the analytical solution; an increase in N (e,,) corresponds to an
increase in dimension of the kinetic energy matrix, extending the effective energy range
thus reducing the number of stationary states being truncated off.

To find the dynamics of coupled oscillators with a given initial wave function, we can
choose r and N such that when ¢ = 0, we have v &~ 1 to our desired accuracy. For

example, if we were to solve a problem with

wy =15, wy=12, ¢g=0.5,
1 1

U (s, 0) = (—)1/4 —512/47 2 \1/4 —(s2+1)2/2
(51:82,0) = () e /1) e

we first set ¢ = 0 and keep all other parameters unchanged. It is found that with r =5
and N = 60, v = 0.999976, approximated to 1 with an error of order 1075, We may then
proceed with g = 0.5; by comparing the value of v at different time ¢ with ~,, we have a
rough estimate of when the system is entangled and relatively how much it is entangled.

Figure 3.3 is an illustration for the purity change of the coupled oscillators. The blue
horizontal line indicates the vy value for the g = 0 case and the red dots represents the
~ values for the g = 0.5 case, with time ¢ varying from 0 to 100. Dots which lie well
below vy imply that the coupled oscillators are entangled at those points of time while
dots close to vy show that they are nearly non-entangled. The red broken line is obtained

by joining the dots, providing a clearer view of how ~ varies with ¢.
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Figure 3.2: Graphs of the real part of the wave function at ¢ = 150, for O(d,"), O(d,®) and
O(d,'?) respectively. The left column shows 3D plots of the wave function; the curved
surface represents the analytical solution and the black lines represent the numerical
results. The right column is the cross-section of the wave function at so = 2.69; the
blue solid line represents the analytical solution and the red dots represent the numerical
results.

21



1.00

085

[kl o

0BiE

0.0 - 20 40 &0 ] 100
1.00

0.8in

0Bi

0.BD - 20 40 &0 2D 100

Figure 3.3: The blue horizontal line indicates the ~ value for ¢ = 0. The red dots in the
upper graph show the v values for g = 0.5, from ¢t = 0 to t = 100. The red broken line in
the lower graph is obtained by joining the red dots.
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Chapter 4
Conclusions

With reference to the existing Basic Matrix Numerov method, we have successfully de-
veloped the generalized Numerov method into the Generalized Matrix Numerov Method,
and applied it to the Simple Harmonic Oscillator and Coupled Harmonic Oscillators
problems.

Basic Matrix Numerov Method has the advantage of giving a large number of eigen-
states simultaneously by discretizing the wave function on a linear lattice with appropriate
boundary conditions and representing the Hamiltonian with a square matrix. However,
the accuracy of results is limited, making it unsuitable for solving problems with greater
complexity.

Generalized Matrix Numerov Method preserves the advatange and, at the same time,
overcomes the limitation. Its validity is confirmed by comparing the numerical results
with the analytical solutions, and we are able to conclude that with this method it is
possible to solve rather complex quantum dynamics problems to infinitely high accuracy,
provided that there is sufficient computing power. Given a certain computing environ-
ment, optinum results can be obtained with minimum CPU time by choosing suitable
parameters.

The potential application of the Generalized Matrix Numerov Method is to simulate
quantum dynamics for pedagogical purposes, as well as for comparison and reference in
scientific research. Apparently the utility of this method is not limited to solving the
Schrodinger equation; with slight modification it will be suitable for finding solutions to

other Numerov-type problems as well.
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Chapter 5

Appendix

5.1 Mathematica Codes for Finding Elements in the
Kinetic Energy Matrix

r = 3; (* Enter the value of r in O (d?"*2) *)

g = Solve [Table [%b)ﬁ:, {a, 1,7}, {b,1,r }] .Table[¥[2¢], {c,r}] ==
Table [#=2yettiss (k, r}] | Table{¥(2d), {e,r}]]

coefficientA = Coefficient [g[[1]][[1]][[2]], Table [¥.+i, {m, —1, 7}]]

coefficientBraw = ﬁd?’Coeﬁicient [9[[1]][[—=1]1[[2]], Table [¥m+i, {m, —r,7}]] ;

coefficientB = ReplacePart|coefficientBraw, r + 1 — coefficientBraw|[r + 1]] + 1]

{L_Li_&i_iL}
9042’ 20d%7 2d2> 1842’ 2d2’  20d2’ 90d2

1 1 1007 1 1

1 1
{201607 33607 13447 1008’ 1344’ 3360’ 20160}
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5.2 Mathematica Codes for Simple Harmonic Oscil-

lator

r =1; (* Enter the value of r in O (d?"*2) *)

(* Find elements in matrices A and B *)

g = Solve [Table [% {a,1,7}, {b, 1, r}] “Table[¥[2d], {¢,}] ==

Table [%, {k, r}] , Table[¥[2¢], {c, r}]] ;

coefficientA = Coeflicient [g[[1]][[1]][[2]], Table [¥m+i, {m, —1,7}]] ;
coefficientBraw = ﬁd”Coeﬂ‘icient [9[[1]][[—=1]1[[2]], Table [¥mm1i, {m, —r,7}]] ;

coefficientB = ReplacePart|coefficientBraw, r + 1 — coefficientBraw([[r + 1]] + 1];

(*Potential, desired max energy*)

V[s]:=.5s%em = 50.;

(* Determine grid *)
rturn = FindRoot[V[s] == em, {s, em}][[1,2]};d = —A=;

n = Round [2 (%% + 477)] ; s = Table [—ﬂnz,ﬂ + di, {i, n}] ;

(* Calculate KE matrix *)

I[n_, d_]:=DiagonalMatrix[1 + ORange[n — Abs[d]], d];

B = Total[Table[coefficientB[[u + r + 1]] * I[n, u], {u, —r,7}]];
A = Total[Table[coefficientA[[v + r + 1]] * I[n, v], {v, —r,7}]];
KE = S!Inverse[B).4;

(* Hamiltonian *)

H = KE + DiagonalMatrix[V'[s]];

(* Energies, wavefunctions *)
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{eval, evec} = Eigensystem[H];

(* Ordering of eigenvalues and eigenfunctions *)
in = Ordering[eval;

eval = eval[[in]]; evec = evec|[in]];

(* Pick out eigenvalues within the energy range *)

evalnum = Select[eval, # < em&];

(* Find theoretical eigenvalues *)
l = Length[evalnum];
evaltheo = Table[w — 0.5, {w, l}];

(* Linear regression *)
Im = LinearModelFit[Transpose[{evaltheo, evalnum}|, z, z]
rsquared = lm[“RSquared”]

FittedModel[0.0135104 + 0.998789z]

1.

(* Plot Numerov wavefunctions, normalize to 1 *)
evecnum|n_|:=evec[[n + 1]| / vd;
fli=—(d(n+1))/2+di

scale = Map|f, Range[n]);

result = Transpose[{scale, evecnum[49]}];

numerov = ListPlot[result, PlotRange — All, PlotStyle — {Red}];

(* Theoretical eigenvector *)
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evectheo[s_,n_]:= " _Fxp [—%] *x HermiteH[n, s];

1/ 2"*(n)!
analytical = Plot[evectheo[s,49], {s, —12.5,12.5}, PlotRange — All];

(* Plot graph for n = 49 state *)

Show[numerov, analytical, ImageSize — 800]

(* Coefficient list for ¥(s,t) *)
ctheo = Table [ J2°_ Conjugate[evectheo[z, n]] * (&) 14 g—a?/ 8dx, {n,0,l — l}] //N;
cnum = Table [Total [Conjugate[evecnum[n]] * () Vag=s[8 d] ,{n,0,1 — 1}] ;

(* Numerov and theoretical solutions for ¥(s,t) *)

realpsinum([t_]:=Re [Total [e~/*evalnum* 4 cnum x Table[evecnum(n], {n,0,1 — 1}]]] ;
realpsitheo[x_, t_]:=Re [Total [e~I*evaltheo*t  ctheo x Table[evectheo[z, n], {n,0,1 — 1}]]] ;
impsinum(t_]:=Im [Total [e~*evalnum* 4 cpyum x Table[evecnum(n], {n,0,1 — 1}]]] ;

impsitheo[x_, t_]:=Im [Total [e~T*evaltheo*t 4 ctheo x Table[evectheo[z, n], {n,0,1 — 1}]]] ;
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(* Plot graph for real part of ¥(s, 600) *)

Show|Plot[realpsitheo[z, 600], {z, —12.5,12.5}, PlotRange — {{—12.5,12.5},
{—0.045,0.005} }], ListPlot[{ s, realpsinum[600] } T, PlotStyle — {Red},
PlotRange — {{—12.5,12.5}, {—0.045, 0.005}}], ImageSize — 800]
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5.3 Mathematica Codes for Coupled Harmonic Os-

cillators

wl = 1.5; (* Enter the value for wl *)

w2 =1; (* Enter the value for w2 *)

cc = 0.2; (* Enter the value for coupling constant g *)
r = 5; (*EnterthevalueofrinO (d?72) *)

n = 50; (* Enter the value of N *)
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(* Find elements in matrices A and B *)

g = Solve [Table [(«(1_;))&!"’ {a,1,7},{b, l,r}] .Table[¥[2¢], {c,r}] ==

Table [% {k, r}] , Table[¥[2d], {c, r}]] ;

coefficientA = Coefficient [g[[1]][[1]][[2]], Table [¥m+i, {m, —r,7}]] ;
coefficientBraw = ﬁd?”Coefﬁcient [g[[1[[-1]][[2]], Table ¥, 4i, {m, —7,7}]] ;

coefficientB = ReplacePart|coefficientBraw, r + 1 — coefficientBraw[[r + 1]] + 1];

(* Determine grid *)

xtl = /(3 — 4m) (Z);

el = .5 *wl? xxt1?;

_ 1 .
dl = 7
x1 = Table [—ﬂ;ﬂ +d14, {i, n}] :

V1 = .5 % wl? xx12%;

stz = /(5 4n) (&)
€2 = .5 * w2? x xt2?%;
__1 .
2=
x2 = Table [—g';ﬂ + d2i, {, n}] ;

V2 = .5 % w2? x x22;

(* Calculate KE matrix *)

I[n_, d_]:=DiagonalMatrix[1 + ORange[n — Abs|d]], d];

B = Total[Table[coefficientB[[u + r + 1]] * I[n, u], {u, —r,7}]];
A = Total[Table[coefficientA[[v + r + 1]] * I[n, v], {v, —r, 7}]];
Al=A/d—d1;

A2=A/.d— d2;

KE1 = —1Inverse[B].A1;

KE2 = —Inverse[B].A2;
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(* Hamiltonian *)

H = KroneckerProduct|KE1 + DiagonalMatrix[V1], IdentityMatrix[n]]
+KroneckerProduct[IdentityMatrix[n], KE2 + DiagonalMatrix[V2]]
+cc * KroneckerProduct[DiagonalMatrix[x1], DiagonalMatrix[x2][;

(* Energies, wavefunctions *)
{eval, evec} = Eigensystem|[H]|;
in = Ordering[eval;

eval = eval[[in]]; evec = evec|[in]];

(* Theoretical eigenvalues *)
w = (wl?w2? — cc2)1/4 //N;

w2 w22 ) (w12-w2?) Hcc? |
n = 1Log [ ( ) //N;

2\/ w12w22—cc2?

If [w22 == wl? 6 =%,0 = ArcTan —,2“—5]] :

evaltheo = w(Flatten[Table[(E"n)i + (E"(—n))j + Cosh[n], {i,0,n — 1},{5,0,n — 1}]]);
in2 = Ordering[evaltheo];

evaltheo = evaltheo[[in2]];

(* Pick out eigenvalues within the energy range *)
evaltheo = Select[evaltheo, # < (el + €2)&];
l = Length[evaltheo|;

evalnum = eval[[1;;{]];

(* Linear regression *)

Im = LinearModelFit[Transpose[{evaltheo, evalnum}], z, 2]

30



rsquared = lm[“RSquared”]
FittedModel[0.00078274 + 0.999875z]

1.

(* Set up noncommutative multiplication *)*
scalarQ[_]:=False

ncTimes[]:=1

ncTimes[a_|:=a

ncTimes[a___, ncTimes[b_, ¢__],d__]:=ncTimes][a, b, c, d]
ncTimes[a___, x_+ y_, b__]:=ncTimes[a, z, b] + ncTimes|a, y, ]
ncTimes[a___, i Integer * c_,b___|:=i * ncTimes]a, ¢, b|
ncTimes[a___, i Integer, b___]:=i * ncTimes|a, b]
ncTimes[a___, s[i_Integer|, s[i-], b___]:=ncTimes][a, b]
ncTimes[a___, s[i_Integer], s[j_Integer],b__]/;j > i:=

— ncTimes|a, s[j], s[i], ]

differentialOperate|a_, expr_] /;FreeQ[a, D]:=a * expr

differentialOperate[L1_ + L2_ expr_|:=

differentialOperate[L1, expr] + differentialOperate[L2, expr]
differentialOperate[a_ * L_, expr_]/;FreeQ|a, D]:=a * differentialOperate[L, expr]
differentialOperate[a : HoldPattern[D[_]&], expr_|:=a[expr]
differentialOperate[ncTimes[L1_, L2 ], expr_|:=

Expand|[differentialOperate[L1, differentialOperate[L2, expr]]]
differentialOperate[L1_"n_Integer, expr_]/;n > 1:=
Nest|Expand|[differentialOperate[L1, #]])&, expr, n]

ddvar[x_,n_:1]:=D[#, {z,n}|&
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(* Theoretical expression for eigenstates *)

$[0,0] = /2 x Exp [—4 (Exp[n] * y112 + Exp[—n] * y22%)] ;
Pip[i, j-]:=differentialOperate [ncTimes [(,/% * Exp[n/2] * y11
—\/; * Exp[—n/2] * ddvar[yll])i ,

(\/g * Exp[—n/2] * y22 — \/%* Exp[n/2] * ddvar[y22])1]
/v, [0, 0]]

¥[p-, q:==¥¢[p, g]/ ncTimes[a_,b] = a * b;

yl = x11 % Cos [g] — x22 * Sin [g] ;

y2 = x11 « Sin [§] + %22 Cos [£] ;

evectheo[nl_, n2_|:=¢[nl,n2]/.{yll — y1,y22 — y2};

(* Numerov expression for eigenstates *)

evecnum|nl_, n2_|:=evec[[First[First[Position[in2, n1 * n + (n2 + 1)]]]]] / Vdlxd2;

(* Plot (ny,ms2) = (6,5) state *)

Show|[Plot3D|evectheo|6, 5], {x11, First[x1], Last[x1] }, {x22, First[x2], Last[x2]},
Mesh — None, PlotRange — All, ImageSize — 600],
ListPlot3D[Transpose[Partition[evecnum|6, 5], n]], PlotStyle — None,
PlotRange — All, ImageSize — 600, DataRange — {{First[x1], Last[x1]},
{First[x2], Last[x2]}, Automatic}], AxesLabel — {s1, s2}]

(* Coefficient list for U (s1, 89,t) *)

evaltheotable = w(Table[(E"n)i + (E*(—n))j + Cosh[n], {i,0,n — 1},{4,0,n — 1}]);
evaltheoposition = Position[evaltheotable, ?(# < (el + €2)&)];

evaltheopositionn = evaltheoposition — 1;

evectheolist = Table[evectheo[evaltheopositionn[[n]][[1]], evaltheopositionn|[n]][[2]]], {n, [}];
ctheo = NIntegrate [Conjugate[evectheolist] * () /4 o—(x11-1) /4 (%) V4 oG24 [2.
{x11, —o0, 00}, {%x22, —00, 00}, MaxRecursion — 16]//N;
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cnum = Table [Total [Conjugate [evec[[k]] / Vd1 d2]
*Flatten [Table [(%) 14 - Galill-1)*/4 (%) 14 - G2lill+2) /4, {i,n}, {3, n}]]
xd1 x d2], {k, l}];

(* Numerical and theoretical solutions for ¥ (s;, s2,t) *)
psinum|t_]:=Total [e" revalnumst y enyum * Table [evec[[k]] / Vdlxd2, {k, l}]] ;
psitheo[t_]:=Total [Table [e—I*Extract[evaltheotable,eva.ltheoposition[[n]]]*t, {n, l}]

xctheo * evectheolist];

(* 3-D plot for real part of ¥ (s;, s, 150) *)
Show[Plot3D[Re[psitheo[150]], {x11, First[x1], Last[x1]}, {x22, First[x2], Last[x2]},
Mesh — None, ImageSize — 600, PlotRange — {—0.05,0.3}],
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ListPlot3D[Re[Transpose[Partition[psinum[150], n]]], PlotStyle — None,
DataRange — {{First[x1], Last[x1]}, {First[x2], Last[x2]} }, ImageSize — 600,
PlotRange — {—0.05, 0.3}], AxesLabel — {s, 32}

(* Cross section for real part of U (s;, s2,150) at sy = 2.69 *)
Show|[Plot[Re[psitheo[150]/.{x22 — x2[[35]]}], {x11, First[x1], Last[x1]},
PlotRange — {—0.05, 0.25}, ImageSize — 600],
ListPlot[Re[Transpose[Partition[psinum[150], n]]|[[35]],

DataRange — {First[x1], Last[x1]}, ImageSize — 600,

PlotRange — {—0.05,0.25}, PlotStyle — {Red}], AxesLabel — {s;, None}]
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(* Purity p; at t = 150 *)
p1 = Tr[MatrixPower|[Table[Tr[Take[KroneckerProduct[psinum[150], Conjugate[psinum|[150]]],
{fn*xi—n+1nxi},{nxj—n+1nxj5}],{in}, {j,n},2] *d1* xd2?

0.970268 + 5.12754 x 10719

(* Purity pe at t = 150 *)
p2 = Tr[MatrixPower[Sum|Take[KroneckerProduct[psinum[150], Conjugate[psinum[150]]],
{nxi—n+1nxi},{nxi—n+1,nx*i}],{i,n}],2] xd1* x d2°]

0.970268 + 2.83854 x 10719
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