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Abstract

Barium optical clocks have potential to be used as a sensor to provide accurate cali-
bration of the environment. This capability can be used to determine atomic properties
of other species, such as the Lutetium clock that the research group is working on. One
application of the Barium clock is in the calibration of laser intensities, which requires
determining the differential scalar polarisability, ∆α0(ω) of a Barium S1/2 ↔ D5/2 clock
transition. Part of the effort to specify ∆α0(ω) involves determining matrix elements〈
P1/2

∣∣∣|r|∣∣∣S1/2
〉

,
〈
P3/2

∣∣∣|r|∣∣∣S1/2
〉

and
〈
P3/2

∣∣∣|r|∣∣∣D5/2
〉

. This project is focused on de-
termination of the P1/2 → D3/2 branching ratio, p, one of the quantities needed to
specify

〈
P1/2

∣∣∣|r|∣∣∣S1/2
〉

. We report the weighted average from ∼ 14 billion experiments,
p = 0.267979(21), and identify the detector deadtime as a key systematic. Using a
measured deadtime τd = 28.5(2) ns, we simulated the deadtime effects and arrived at a
preliminary systematic shift of 1− 2× 10−4 in the branching ratio measurement.
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Chapter 1

Introduction

The advent of the optical atomic clock has brought about greater standards in the
measurement of time. This capability is an asset in the modern world. Clocks have
helped to push scientific frontiers by contributing to tests of fundamental physics, basic
science and precision measurement. They have also played a role in many technological
applications, including navigation systems and telecommunications [1]. Thus, it is not
surprising to observe consistent efforts at improving clock uncertainty.

In this chapter, a basic background on clocks will be given. Next, we discuss how
the Barium (138Ba+) clock is used as a sensor to provide support measurements for high
performance clocks. Finally, the scope of this project and an outline of this report will
be provided.

1.1 Optical atomic clocks
All clocks work on the same basic principle. First, we require a system that exhibits

a regular periodic event which provides a stable frequency reference and basic unit of
time. Counting cycles of these events produce time intervals. For much of human
history, frequency standards were based on celestial observations, e.g. Earth’s rotation
rate. Then, in the early 20th century came the mechanical clocks using pendulum swings
and voltage driven quartz crystal oscillations. Today, the modern atomic clock consists
of a laser that is referenced to the resonant frequency of a carefully chosen atomic
transition [2].

Optical atomic clocks are at the forefront of timekeeping because they are stable
and accurate. Stability is defined as the precision with which we can measure the clock
frequency, analogous to how widely scattered a group of arrows fired at a target might
be. In general, the stability of an atomic clock, σy, can be written as

σy(τ) ≈ ∆ν
ν0
√
N

Tc
τ
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where ∆ν is the linewidth of the clock transition, ν0 as the resonant frequency, N is
the number of atoms in each measurement, Tc is the time for a single measurement
cycle and τ is the averaging period. The appearance of ν0 in the denominator implies
that it is advantageous to enter the optical domain and run clocks at higher frequency.
Alternatively, this can be thought of in terms of line Q, for which optical systems have
demonstrated values as high as 1015, five orders of magnitude greater than analogous
microwave systems, giving optical clocks a tremendous advantage in terms of frequency
stability [1].

Accuracy is defined as how well one can define the frequency, similar to how off center
a group of arrows fired at a target might be. This is specified by the determining the
systematic effects which shifts the measured frequency from its unperturbed frequency.
Examples of such systematics are magnetic field shifts and electric field shifts. In optical
clocks, the high stability enables the evaluation of systematic effects more swiftly and
precisely, thereby enabling reduced uncertainty budgets [1].

1.2 Role of the Barium clock
Barium is used as a sensor to characterise the environment. There are a few reasons

for this choice. First, Barium has well known atomic properties. For example, crucial
properties like the g-factors, matrix elements and branching ratios of certain Barium
transitions are known to high level of accuracy. These properties are important because
they scale the response of Barium towards the environment. Secondly, the Barium
clock transition exhibits high sensitivity to the environment. For example, the fractional
blackbody radiation shift to the clock transition is on the order 10−15 at 300K as opposed
to Lutetium’s 10−18 at the same temperature [3]. A high sensitivity implies a relatively
larger response to the environment than other clocks towards the same stimuli. Hence,
Barium can be crudely labelled as a ’bad clock’ but a good sensor for the environment.

The supporting role of the Barium sensor will be explained further. In clocks, many
systematics stem from environmental perturbations. The environment induced shifts to
the clock transitions can be broadly described as

Shift ∝ Atomic property× Environmental factor

Knowledge of both factors is essential for a complete understanding of the shifts in a
high performance clock such as Lu+ clock. Barium’s high sensitivity and well-known
atomic properties leads to an accurate calibration of environmental factors. Conversely,
a well characterised environment can be used to relate well known properties of Barium
to corresponding atomic properties in Lutetium.
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1.3 Scope
The long term goal is to use Barium to provide accurate calibration of environmental

factors, such as magnetic fields, laser intensities. With accurate determination of these
quantities, the corresponding atomic property in Lutetium can be better assessed. The
calibration of laser intensities involves determining the differential scalar polarisability of a
Barium clock transition, which amounts to determining certain relevant matrix elements.
One approach enables us to experimentally obtain these matrix elements using just the
ac Stark shift, scattering rate and branching ratio measurements. My project is focused
on determining the P1/2 → D3/2 branching ratio because it is the most direct experiment
to conduct and is manageable within the timeframe of this FYP.

1.4 Outline
The outline for the report will be established here. In chapter 2, a description on

Barium and the relevant atomic properties (polarisability and branching ratio) is given.
In chapter 3, the experiment set-up and branching ratio measurements are provided. In
chapter 4, we identify detector deadtime as a key systematic and assess its effect on our
branching ratio estimate. In chapter 5, we briefly discuss other systematics commonly
cited in literature but were determined to be insignificant in our experiments. Finally, a
summary and future work discussion is provided at the end to conclude this report.



Chapter 2

Barium Ion 138Ba+

This chapter will first give an introduction to Barium (138Ba+) and its level scheme.
This is followed by a theoretical discussion on atomic polarisability using perturbation
theory. Next, we model the differential dynamic scalar polarisability of the Barium
clock transition (for frequencies at and below visible) as a sum of contributions from 3
dominant poles and 1 fictitious pole. We then show a method to determine the matrix
element associated with one of the dominant poles using ac Stark shift, scattering rate,
and branching ratio experiments (the focus of this project).

2.1 Barium level scheme

Figure 2.1: Level structure for 138Ba+ showing clock (brown), detection (red), and
repump (blue) transitions. Numbers given are the approximate wavelengths in nm.

The Barium clock transition is the S1/2 ↔ D5/2 (1762 nm) transition. The S1/2 ↔
P1/2 (493 nm) and D3/2 ↔ P1/2 (650 nm) transitions are used in the branching ratio
experiment. They also serve a second purpose as Doppler lasers. Doppler cooling is
performed on the S1/2 ↔ P1/2 transition. The P1/2 level has a broad linewidth of 20
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MHz, suitable for Doppler cooling, but there is a significant chance of decay to the
metastable D3/2 state. This level is repumped using 650 nm laser to bring ion back to
the cooling state. The 614 nm transition is typically used for repumping when the ion
occasionally pumps into the D5/2 and becomes dark. However, it is not used in our
branching ratio experiments.

2.2 Atomic polarisability
In the presence of an electric field, be it from a laser or blackbody radiation, the

energy level of a state will shift. This is known as the Stark effect and the extent of this
shift is governed by an atomic property known as the polarisability.

There are two forms of the Stark effect, the dc case and the ac case. We will discuss
the simpler dc case first. The interaction Hamiltonian for a field, E , along z-axis,

V = −~d · ~E = −eErz

Since dipole operator is of odd parity, we demand the coupled states to be of different
parity. Thus, the first order energy correction vanishes and the second order energy
correction of a state |γ, J,mJ〉 is

∆E = E2 ∑
γ′,J ′,m′

J

| 〈γ′, J ′,m′J |rz|γ, J,mJ〉|2

Eγ,J − Eγ′,J ′
= E2 ∑

γ,J ′

| 〈γ′, J ′,mJ |rz|γ, J,mJ〉|2

Eγ,J − Eγ′,J ′

= −1
2αDC(γ, J,mJ)E2

where we used the fact [rz, Jz] = 0 and demanded ∆mJ = 0. And in the last line, we
defined the static polarisability of the state |γ, J,mJ〉 as

αDC = −2
∑
γ′,J ′

| 〈γ′, J ′,mJ |rz|γ, J,mJ〉|2

Eγ,J − Eγ′,J ′
(2.1)

In the ac regime, the perturbation for a z-oriented field now assumes a time depen-
dence

V (t) = −~d · ~E(t) = −E0rz cos(ωt)

The state can be generically written as

Ψ(x, t) =
∑
k

ck(t)ψk(x)e−iEkt/~

and time-dependent perturbation theory is used to find the probability amplitude, ca(t),
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of a state a. Note that at t = 0, ck(0) = δka because we demand the system to have
an initial state |a〉 ≡ |γ, J,mJ〉. Since the amplitude can be complex,

ca(t) = |ca(t)|e−iη(t)

So, the state at some time t,

ca(t)ψa(x)e−iEat/~ = |ca(t)|e−iη(t)ψ(x)e−iEat/~ = |ca(t)|ψ(x)e−
i
~

∫ t

0 [Ea+∆Ea(t′)]dt′

where one can interpret ∆Ea(t) = ~η̇(t) as the shift of energy level of state a at time
t. The time evolution of a state |a〉 is

UI |a〉 =
∑
n

|n〉 〈n|UI |a〉︸ ︷︷ ︸
cn(t)

cn(t) = δna + 1
i~

∫ t

0
dt′ 〈n|VI(t′)|a〉+

∑
m

1
(i~)2

∫ t

0
dt′
∫ t′

0
dt′′ 〈n|VI(t′)|m〉 〈m|VI(t′′)|a〉

where VI is the perturbation in the interaction picture. For ca(t), the first order correction
is zero, leaving the second order correction,

ca(t) = 1 + 1
(i~)2

∑
m

1
(i~)2

∫ t

0
dt′
∫ t′

0
dt′′

[
〈a|V (t′)|m〉 〈m|V (t′′)|a〉 eiωamt′eiωmat′′

]

where ωma = Em−Ea

~ = −ωam. Recalling that ca(t) can be written as |ca(t)|e−iη(t), the
time derivative of ca(t) is

ċa(t) = d|ca(t)|
dt e−iη(t) − ica(t)η̇(t) ≈ −iη̇(t)

because for small perturbations we expect, ca(t) to remain close to unity. So the energy
shift of a state |a〉 is related to the time derivative of its probability amplitude,

∆Ea(t) = ~η̇(t) = i~ċa(t)

= 1
i~
∑
m 6=a
〈a|V (t)|m〉 eiωamt

∫ t

0
dt′ 〈m|V (t′)|a〉 eiωmat′

Defining 〈a|V (t)|m〉 = −E0 cos(ωt) 〈a|rz|m〉 = −E0 cos(ωt)µam, the integration above
can be evaluated as

∫
dt′ 〈m|V (t′)|a〉 eiωmat′ = −E0µma

2

(
ei(ω+ωma)t − 1
i(ω + ωma)

+ e−i(ω−ωma)t − 1
−i(ω − ωma)

)
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If we plug the above integration result into ∆Ea, and average over time, i.e. eiωt → 0,

〈∆Ea〉t = −e
2E2

0
2~

∑
m6=a
| 〈m|rz|a〉|2

ωma
ω2
ma − ω2

= −e
2 〈E(t)2〉t

~
∑
m 6=a
| 〈m|rz|a〉|2

ωma
ω2
ma − ω2

= −1
2α(ω)

〈
E(t)2

〉
t

(2.2)

where the mean squared field 〈E(t)2〉 = E2
0
2 and the dynamic polarisability is

α(ω) = 2e2

~
∑
m 6=a

| 〈m|rz|a〉|2

ωma

1
1− (ω/ωma)2 (2.3)

A more thorough treatment of the atomic polarisability is given in [4], where the polar-
isability has a scalar and tensor component. The α(ω) we found in [2.3] is the scalar
component because there is no polarisation dependence and it is the same for all states.
Without proof, we state the scalar dynamic polarisability (in atomuc units) of a state
from [4],

α0(ω) = 2
3(2Ja + 1)

∑
m6=a

| 〈m||r||a〉|2

ωma

1
1− (ω/ωma)2 (2.4)

where Ja is the total angular momentum of state |a〉, 〈m||r||a〉 is the reduced matrix
element. The above differs from our expression in Eqn (2.3) found by simpler means by
a constant.

2.3 Barium dynamic differential scalar polarisability
From computational studies done by the research group, the α0(ω) of S1/2 state is

primarily determined by coupling between S1/2 ↔ P1/2 (493 nm) and S1/2 ↔ P3/2 (455
nm). The α0(ω) of D5/2 is primarily determined by coupling between D5/2 ↔ P3/2 (614
nm). The rest of the contributions are small and in the UV region.

α0(ω;S1/2) = 1
3


∣∣∣ 〈P1/2

∣∣∣|r|∣∣∣S1/2
〉∣∣∣2

ω493[1− (ω/ω493)2] +

∣∣∣ 〈P3/2

∣∣∣|r|∣∣∣S1/2
〉∣∣∣2

ω455[1− (ω/ω455)2]

+ [UV poles]

α0(ω;D5/2) = 1
9


∣∣∣ 〈P3/2

∣∣∣|r|∣∣∣D5/2
〉∣∣∣2

ω614[1− (ω/ω614)2]

+ [UV poles]
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We define the differential dynamic scalar polarisability of the clock transition,

∆α0(ω) = α0(ω;D5/2)− α0(ω, S1/2)

and this is predominantly determined by three poles at 455, 493, 614 nm. As seen in
Figure 2.2, if we focus on frequencies at or below visible (ω = 0 to ω = 0.065 a.u.), the
UV poles introduce a dc offset between the theoretical curve (solid line) and the curve
generated from 3 poles (dotted line).

Figure 2.2: Plot of differential dynamic scalar polarisability, ∆α0(ω) against frequency ω
in atomic units. The solid curve was obtained from theoretical calculations. The dashed
curve is the contribution from the transitions at 455, 493 and 614 nm.

Hence, accurate determination of the matrix elements associated with the three poles
and a characterisation of the dc offset should give a reasonably accurate representation
of the ∆α0(ω) over the region of interest.

The contribution of the UV poles to the ∆α0(ω) is

∑
k⊂UV

Ck
1− (ω/ωk)2 ≈

∑
k⊂UV

Ck

(
1 +

(
ω

ωk

)2
+
(
ω

ωk

)4
)

= C0 +
(
ω

ω′1

)2

+
(
ω

ω′2

)4

= C0 + C1

(
ω

ω0

)2
+ C1

(
ω

ω0

)4

≈ C0 + C1(ω/ω0)2

1− (ω/ω0)2

= C0

1− (ω/ω0)2 +

∆C︷ ︸︸ ︷
(C1 − C0)(ω/ω0)2

1− (ω/ω0)2

where in the second to third line we made the parameterisaton ω′21 = ω2
0
C1
, ω′42 = ω4

0
C1

.
Using this parameterisation, we can describe the sum of poles as a fictitious pole (C0

term) and a ∆C term as seen in the final line above. The research group has found that
for the ∆α0(ω) of S1/2 ↔ D5/2 transition, the ∆C term is negligibly small, so the sum
of UV poles can be approximated as a single fictitious pole. With this, the ∆α0(ω) can
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well be described by 3 dominant poles and a fictitious pole.
There are certainly errors incurred in such an estimation. However, the research group

determined that the maximum error was found to be ∼ 0.5% over the frequencies of
interest. This is a desirable level of error because it allows calibration of laser intensities
to the same level without any work on the beam characterisation or calibration of the
power meter.

2.4 Matrix elements
The contribution from the dominant poles can be determined if the relevant matrix

elements are known,
〈
P1/2

∣∣∣|r|∣∣∣S1/2
〉

,
〈
P3/2

∣∣∣|r|∣∣∣S1/2
〉

and
〈
P3/2

∣∣∣|r|∣∣∣D5/2
〉

. To determine
the matrix element µ =

〈
P1/2

∣∣∣|r|∣∣∣S1/2
〉

, we can probe the relevant transition, ω0 , with
a slightly detuned beam ∆ = ω − ω0. Thus, ∆α0(ω) would be strongly determined by
that pole.

∆α0(ω) ≈ − e
2

3~
µ2

ω0

1
1− (ω/ω0)2

= −e
2µ2

3~
ω0

(ω0 − ω)︸ ︷︷ ︸
−∆

(ω0 + ω)

≈ 1
6
e2µ2

~∆

where from the second to third line we used ω0 + ω ≈ 2ω0. The ac Stark shift for the
clock transition (see Eqn (2.2)) is

∆E = ~δf = −1
2

[
e2µ2

6~∆

] 〈
E(t)2

〉
t

= − 1
24
e2µ2E2

0
~∆

⇒δf = − 1
24
e2µ2E2

0
~2∆ = − Ω2

24∆; Ω = eµE0

~
(2.5)

At the same time, a small detuned beam will lead to considerable scattering out of S1/2.
Since it is close to resonance, a two level atom approximation (S1/2 ↔ P1/2) is valid.
The optical Bloch equations for a two level atom at steady state gives the excited state
population as

ρee = 1
2

2Ω2/Γ2

1 + 2Ω2

Γ2 + 4∆2

Γ2

= 1
2

s0

1 + s0 + 4∆2/Γ2 ; s0 = 2Ω2

Γ2
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where Γ is the linewidth of the excited state P1/2. In our context, |∆| > Γ and the
saturation is low s0 < 1,

ρee ≈
s0

2
Γ2

4∆2 = Ω2

4∆2

From P1/2, the ion can either decay to D3/2 with branching ratio p or decay to S1/2 with
branching ratio (1− p). The scattering rate into S1/2 is thus

R = (1− p)Γρee = (1− p)Γ Ω2

4∆2 (2.6)

Taking ratios of Eqn (2.6) to Eqn (2.5) and rearranging, the overall decay rate out of
P1/2 can be expressed as

Γ ∝ R∆
(1− p)δf ∝

∣∣∣ 〈P1/2

∣∣∣|r|∣∣∣S1/2
〉∣∣∣2 (2.7)

Hence, the matrix element of interest can be specified by 4 experimentally determined
quantities, (i) scattering rate R, (ii) detuning ∆, (iii) ac Stark shift δf and (iv) branching
ratio p.



Chapter 3

Experiment

This chapter opens with the experiment set up and a discussion on the P1/2 → D3/2

branching ratio measurement scheme. Next, it details the results obtained from the
branching ratio measurements.

3.1 Experiment setup
138Ba+ ions are produced by photo-ionisation of Barium. A single 138Ba+ ion is

loaded into a linear Paul trap and illuminated by the 493 nm and 650 nm beams. With
reference to Figure 3.1, we define a coordinate frame to specify the orientations of various
components of the experiment. The 493 nm and 650 nm beams co-propagate in the
z direction. The 493 nm beam and 650 nm beam are linearly polarised in the x and y
directions respectively. The Single Photon Counting Module (SPCM) detector (Perkin
Elmer SPCM-AQR-16) is located along the x axis.

Figure 3.1: Experiment setup relative to a specified coordinate frame.

The fluorescence from the ion is collected using an aspheric lens with numerical
aperture (NA) of 0.42, imaged through a 650 nm narrow-band filter onto the SPCM

15
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with reported quantum efficiency of 65%. The efficiency of the aspheric lens is

1
4π

∫ θ/2

0
dθ sin θ

∫ 2π

0
dφ = 0.046

where θ/2 = sin−1(NA). This gives an estimate of the detection efficiency at 3%. Our
experiments yielded a detection efficiency ≈ 2.7%, which is consistent to within 10% of
the NA and quantum efficiency specifications.

3.2 Branching ratio
Before each experiment, we conducted measurements of the optical pumping times,

τ , for the 493 nm (pumps S1/2 → D3/2) and 650 nm beams (pumps D3/2 → S1/2).
τ can be interpreted as the characteristic time scale over which the population of the
initial state exponentially decays into the target state.

3.2.1 Measurement scheme

Figure 3.2: (a)Sequence of pumping pulses. (b) Measured intensity profiles of 493 nm
(blue) and 650 nm (red) laser pulses. (c) Example of measured signals from 4.9 × 107

experiments using high resolution time tagging (0.25 ns). The detection events within
the grey region are accumulated to obtain the four signals, b, b̄, r, r̄.

With reference to Figure 3.2, we describe the the experiment scheme to determine
the branching ratio of P1/2 → D3/2.
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1. Pump ion from S1/2 to D3/2 with 493 nm for duration T . This will step will ideally
emit one photon and is collected with a detection efficiency, q.

2. Measure background counts with 493 nm turned on for duration T .

3. Pump ion from D3/2 to S1/2 using 650 nm for duration τ . On average, the ion
will emit p

1−p photons, of which qp
1−p gets detected.

4. Measure background counts with 650 nm turned on for duration T .

5. The above 4 steps constitute one cycle. The T here is normally 6µs. Accounting
for small delays between each pulse, a single cycle spans about 31 µs.

6. Every 104 cycles (defined as one experiment block), there is approximately 44 ms
of Doppler cooling where the 493 and 650 nm beams are on.

We introduce the following notation that will be used for this report.

Notation Intepretation

b
Mean number of red photons collected when pumping
ion from S1/2 to D3/2 from N experiment cycles.

b̄
Mean number of red photons collected during back-
ground measurement with 493 nm on, from N ex-
periment cycles.

r
Mean number of red photons collected when pumping
ion from D3/2 to S1/2 from N experiment cycles

r̄
Mean number of red photons collected during back-
ground measurement with 650 nm on, from N ex-
periment cycles.

Table 3.1: Description of notation to be used in this report.

Based on the above table, the detection efficiency q, is

q = b− b̄ (3.1)

After accounting for background, the mean number of photons collected when pumping
the ion from D3/2 to S1/2 is

s = r − r̄ = qp

1− p (3.2)

The branching ratio p is estimated via

p̄ = s

s+ q
= r − r̄
b+ b̄+ r − r̄

(3.3)
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3.2.2 Pre-measurement calculations

It is worthwhile to assess the effort needed to experimentally determine p̄ to the
desired level of uncertainty. To simplify the analysis, we ignore background noise.

(dp̄) =

√√√√(∂p̄
∂s

)2

(ds)2 +
(
∂p̄

∂q

)2

(dq)2

= p̄(1− p̄)

√√√√(ds
s

)2

+
(
dq

q

)2
(3.4)

In pumping the atom from S1/2 to D3/2 exactly one photon is emitted. The probability
of its detection is described by the Bernoulli trial,

b(x; q) =


(1− q) x = 0

q x = 1

0 otherwise

The variance of this distribution is q(1−q). For N experiments, and using Central Limit
Theorem, the sample standard deviation is

√
q(1−q)
N

. Thus,

dq

q
=
√

1− q
Nq

(3.5)

When pumping ion from D3/2 to S1/2, the ion emits n photons according to a geometric
distribution.

G(n; p) = pn(1− p)

Out of n photons emitted, k ≤ n of them are detected and they are governed by a
binomial distribution

B(k;n, q) =
n
k

 qk(1− q)n−k
The effective distribution for detected photons is simply a joint probability distribution
comprising of a geometric and binomial distribution

f(k; p, q) =
∞∑
n=k

G(n; p)B(k;n, q) = (1− p)pkqk
(1− p(1− q))k+1 (3.6)



19

where the second equality can be generated from Mathematica. The mean of this
distribution is

∑
k

f(k; p, q)k = pq

1− p = s (3.7)

which exactly matches Eqn (3.2). The variance of f(k; p, q) is s2(1−p+pq
pq

). So,

ds

s
=
√

1− p+ pq

Npq
(3.8)

Plugging Eqn (3.5) and (3.8) into Eqn (3.4), the fractional error for our branching ratio
estimate is

dp̄

p̄
= 1− p√

Npq
(3.9)

This error is solely statistical in nature, and completely neglects background noise (which
tends to contribute to the error). However, it gives a sense of how many N experiments
we need to conduct to get to the desired level of accuracy. Using expected values of
p = 0.268, q = 0.0268, and N = 109, the fractional error is ∼ 3× 10−4. In light of this,
a typical run has ∼ 109 experiments.

Aside from the statistical error in our estimate, it is also important to check for the
error associated with estimation bias due to non-linearity of the equation,

p̄ = s

s+ q
= 1

1 + (q/s) = 1
1 + x

; x = q

s

If we perform a taylor expansion of the branching ratio estimate, p̄, at 〈x〉,

p̄ ≈ 1
1 + 〈x〉 −

(x− 〈x〉)
(1 + 〈x〉)2 + (x− 〈x〉)2

(1 + 〈x〉)3 ; 〈x〉 = 1− p
p

If we average the above equation, (x − 〈x〉) averages to zero and (x − 〈x〉)2 gives the
statistical uncertainty in x, denoted as σx. Consequently,

p̄ ≈ p(1 + p2σ2
x)

Using Eqn 3.5 and 3.8, σx can be written as

σx = 1√
Npq
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and the fractional error in our estimation of the branching ratio due to estimation bias

p2σ2
x = p

Nq

In our experiments, we anticipate p/q ∼ 10 and N ∼ 109, so this effect is dominated by
the statistical uncertainty and is negligible at the level of precision we are interested in.

3.2.3 Experiment results

Figure 3.3: (dots) Raw measurements of branching ratio using Eqn (3.3). (dots) Raw
measurements of branching ratio with weighted mean (black line) of p = 0.267979(21)
excluding outliers (purple dots).

Figure 3.3 shows the branching ratio measurements, p̄ from 16 runs (dots), with their
associated statistical error. The pumping times for the 493 nm and 650 nm beams were
measured for each dataset and they were sufficiently fast such that negligible population
(< 10−7) is not optically pumped by the end of the pulse (typically 6µs). Excluding the
two outlier points (purple dot), we compute the weighted mean of the black dots. This
can be done by a χ2 minimisation,

χ2(p) =
n∑
i

(
(p̄i − p)
σi

)2

where p is the weighted mean, p̄i is the branching ratio measurement of the ith run, and
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σi is its associated statistical uncertainty. Minimising χ2 yields p as a function of pi.

dχ2(p)
dp = 0⇒ p =

∑ pi

σ2
i∑ 1
σ2

i

= f(pi)

The uncertainty in p is

(∆p)2 =
n∑
i

(
∂f(pi)
∂pi

)2

σ2
i ⇒ ∆p = 21× 10−6

The preliminary value of the branching ratio (from taking weighted average of raw
measurements) is

p = 0.267979(21) (3.10)

with reduced χ2
ν = 0.79 and a fractional uncertainty of 8× 10−5.

Also, we have identified two key systematics that have a statistically significant effect
on the branching ratio measurements. The first systematic is the detector deadtime. This
suppresses the counts that we receive from the ion, especially when pumping from D3/2

to S1/2. Using Eqn (3.3), this results in an underestimate of p. The detailed description
of this systematic will be dealt with in the next chapter. The second systematic is
the imperfect background subtraction. There was a small but statistically significant
difference (∼ 1%) between the background levels of the first and second red pulses,
and this has to be taken into account in the branching ratio estimate. Presently, we
are working to assess these effects and we expect the final fractional uncertainty to be
∼ 1− 2× 10−4.

3.2.4 Statistical limitation of measurements

In the above section, it was stated that all measurements, b, b̄, r, r̄, p̄ are statistically
limited. Ideally, photon emissions from the ion are governed by Poisson statistics, so
given a rate R, the counts measured over time T is C = RT ±

√
C. The fractional

uncertainty in the counts, 1√
C

= 1√
RT

, is a function of the measurement time. Thus, by
averaging over longer periods the fractional uncertainty decreases, and a measurement
is statistically limited if its fractional Allan deviation has the same behaviour. The Allan
deviation σa, is a function of averaging time τ ,

σA(τ) = 1
2(N − 1)

N∑
i=1

(ȳτ (i+ 1)− ȳτ (i))2 (3.11)

where the measurements are partitioned into N bins of length τ , and ȳτ (i) is the average
value of the ith bin.
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For the s and q measurements, we plot the fractional Allan deviation and the statis-
tical uncertainty with respect to averaging time in Figure 3.4. For the duration of runs
(∼ 105 experiment blocks), the s and q measurements used in Eqn (3.3) are statistically
limited over the experiments that were conducted. Since the branching ratio estimate,

Figure 3.4: Plot of fractional Allan deviation for s (red) and q (blue) measurements
against number of experiments. The black lines are the statistical limit associated with
s and q

p̄, is derived from s, q, it is also statistically limited over the number of experiments that
were conducted, as seen in Figure 3.5.

Figure 3.5: Plot of fractional Allan deviation for branching ratio estimate p̄ against
number of experiments. The black line indicates the statistical limit for p̄.



Chapter 4

Key Systematics: Detector deadtime

In this chapter, we first describe the attempts to experimentally measure the detector
deadtime. Next, we demonstrate various models to correct for deadtime effects in the
branching ratio estimate.

4.1 Background
The deadtime in SPCM is a consequence of its working mechanism. When a photon

comes in, an electron hole pair is created and a strong reverse bias voltage triggers an
avalanche breakdown. When this occurs, the current rises and rapidly reaches a steady-
state value. This is stopped by a quenching circuit which reduces the bias voltage below
breakdown. Until this bias is restored, there is a time window during which the SPCM is
non responsive to incoming photons and no counts are registered [5]. In our experiments,
this would reduce the count rate depending on the photon arrival statistics and distort
the branching ratio measurement.

Aside from deadtime, there is a secondary effect at work, known as afterpulsing.
This is a small probability in generating a secondary pulse following a detection event.
Briefly speaking, during the avalanche, some carriers can be trapped in deep levels of
the semiconductor band structure and released at a later time after the bias is restored
[6]. Thus, afterpulses are restricted to the occurring after the deadtime of the detection
event. Overall, the afterpulsing effect is expected to provide a fractional increase on the
mean counts, which cancels out in the branching ratio estimate.

4.2 Deadtime measurement
The first step to assessing a deadtime effect is to measure the detector deadtime.

We attempted to determine the deadtime via two methods.

23
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4.2.1 Method 1: Count rate vs. power

This method attempts to indirectly determine the detector deadtime by measuring
the power of the beam before entering the detector and the counts that the detector
record. A stabilised laser was split into two. The first beam goes to a power meter. The
second beam was attenuated and directed into the SPCM. If the second beam going
into the SPCM has a rate of λ, the rate n detected by the SPCM is [7],

n = λ

1 + λτd
= αP

1 + αPτd
(4.1)

where τd is the deadtime, P is the power we measure in the first beam, α is a scale factor
that relates λ and P . In Figure 4.1, we fitted the data (red dots) to the model (Eqn (4.1)
and obtained the fitting curve (blue line) with τd = 33.7 ns and α = 3.28 × 105 as fit
parameters. Upon plotting the fractional difference between the fit and the data points
in Figure 4.2, it is clear that there is some systematic variation of the residuals, indicating
that the model is a poor fit. Furthermore, τd = 33.7 ns is in large disagreement with
the manufacturer specified deadtime of ∼ 28 ns.

Figure 4.1: Plot (red dots) of counts observed against the power applied with the fitting
curve (blue line). The green line is a plot of Eqn (4.1) using τd = 28 ns, further implying
that Eqn (4.1) may not be a good fitting model

4.2.2 Method 2: High resolution time tagging

Since the indirect method does not fit well with the data, we were motivated to
attempt a direct measurement of the deadtime. We direct a beam (∼ 76 cts/s) to a
high resolution time tagging module (2 ns resolution) and obtained the arrival times of
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Figure 4.2: Plot of the fractional difference between the fit and the datapoints.

the photons. As expected, the interarrival times between photons are well captured by
an exponential fit, shown in Figure 4.3.

Figure 4.3: Histogram (red dots) of the occurrences in each interarrival time bin (1ms)
and the exponential fit (blue).

In Figure 4.4, we zoom in to interarrival times below 200 ns. One can observe the
minimum interarrival time between photons at 28(2) ns. This is a direct indication of the
detector deadtime because this is the shortest time between detection events. Another
feature of interest is the discrepancy between the observed occurrences (red dots) and
the exponential fit predicted occurrence (blue line). This is attributed to afterpulsing
and we deduce an afterpulsing probability of ∼ 0.36%.

After this initial measurement, we repeat the above procedure for beams of various
intensities using time taggers with higher resolution. It was found that the deadtime
measured varied from 28.5 ns (at low saturation; 170 kcts/s) to about 33 ns (at high
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Figure 4.4: Histogram (red dots) of the occurrences in each time bin (2 ns) and the
expected occurence in each bin from the exponential fit (blue)

saturation; 20 Mcts/s). This would explain why the previous method fail because it
assumes a constant deadtime. For our branching ratio experiments, a low saturation
regime holds and we use a deadtime of 28.5±2 ns for assessing systematic shifts.

4.3 Deadtime corrections

We examine the four measurements, b, b̄, r, r̄ and consider in which measurement
deadtime effects manifest. Firstly, the background measurements b̄ and r̄ are small to
begin with, and the probability of getting two photons is on the order 10−6, thus we
safely neglect deadtime effects here. Secondly, pumping the ion from S1/2 to D3/2 results
in only one photon emitted, so deadtime cannot manifest here. Thus, we only consider
deadtime effects on r because pumping the ion from D3/2 to S1/2 may result in multiple
photons emitted.

From here, we present the methods used to assess the deadtime effects, in increasing
order of complexity. We start with a model that has a simplistic assumption of population
dynamics and a basic rate correction to account for deadtime. Then we add a new layer
of complexity that accounts for the quantum nature of the population dynamics. Finally,
we consider the photon emission time statistics, P (t), from the master equation and use
it to estimate the probability of subsequent photons coming in within the deadtime of
the detection event.

4.3.1 Rate equation population dynamics with rate correction

This model was motivated by the desire to assess the deadtime effects in a simple and
less computationally intensive manner. While it is not the most comprehensive model,
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it offers a sense of the branching ratio corrections to reasonable degree.
The population dynamics is simulated as follows. Assuming a constant pulse, the

rate at which the ion pumps out of D3/2 into P1/2 is related to the D3/2 → S1/2 pumping
times τ via

R = 1
τ(1− p) (4.2)

Defining variables g(t), e(t),m(t) to be the time dependent population of D3/2, P1/2

and S1/2 state, Γ to be the decay rate of P1/2, and choosing the best known estimate
of p = 0.268, q = 0.0268, the rate equations are

dg
dt = −Rg + Γpe
de
dt = −Γe+Rg

dm
dt = Γ(1− p)e

(4.3)

It should be noted that these equations do not account for the internal ’switch on’ time of
the atom. In reality, an atom can only emit a photon after it is excited to the upper state.
The above equations were then solved with the initial conditions g = 1, e = 0,m = 0.
Using the time dependent population of the excited state, e(t), the rate of emission of
red photons is

λ(t) = qpΓe(t) (4.4)

This construction of λ(t) is such that the integral over the pulse time gives the ideal
mean red photons emitted

∫
λ(t)dt = qp

1− p

The corrected rate, λc(t), due to detector deadtime, τd, [7] is

λc(t) = λ(t)
1 + τdλ(t) (4.5)

The measured red photon counts is computed by taking the time integral of λc(t) over
the full pulse duration. With this we can compute the new branching ratio estimates
under an ideal (constant) pulse. (see Table 4.1)

This model can be easily tweaked to account for the ’transient’ switching on of the
pulse. Instead of having a square temporal pulse profile, there is a finite time that the
pulse takes to reach maximum intensity after turning on. The actual pulse was modelled
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using a sigmoid function,

I(t) = c

1 + e−a(t−b)

where a, b, c are fit parameters, and a polynomial function. The polynomial fit accounts
for the tiny rise near 0µs.

Figure 4.5: (black) Actual pulse profile, (red) polynomial fit to the actual pulse, (blue)
sigmoid fit, (green) ideal pulse

As seen in Fig 4.5, both sigmoid (blue line) and polynomial fits (red line) are sufficient
to describe the actual pulse. Since the intensity is no longer constant, the scattering
rate from D3/2 to P1/2 is now time dependent, i.e. R→ R(t). R(t) is determined by a
intensity dependent scaling of R

R(t) = I(t)
I0
× 1
τ(1− p)

where I0 is the maximum intensity of the pulse. Likewise, we can replace R with R(t)
in the rate equations (Eqn (4.3)). Similar to the ideal pulse case, we calculate the
λ(t) of red photons arriving, determine the deadtime corrected rate λc(t), and finally
the corrected red counts and the new branching ratio estimate. Fixing τd = 28.5 ns,
we compute the shifts p − p̄ in the ideal and actual pulse profiles for all the pumping
times used in our experiments. (see Table 4.1) It turns out that there is at most a 5%
difference due to the effect of the transient switching times.
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τ (µs) Ideal [-4] Sigmoid [-4] Poly[-4] Difference [%]
0.140 1.8203 1.7409 1.7822 4.5592
0.180 1.4388 1.3897 1.4162 3.5376
0.195 1.3336 1.2924 1.3144 3.1845
0.210 1.2428 1.2073 1.2260 2.9400
0.255 1.0327 1.0086 1.0205 2.3834
0.283 0.9342 0.9146 0.9238 2.1345
0.286 0.9245 0.9060 0.9143 2.0378
0.300 0.8831 0.8661 0.8734 1.9524
0.307 0.8638 0.8473 0.8542 1.9257

Table 4.1: Tabulated branching ratio shifts p − p̄ for various pumping times, using the
ideal, sigmoid and polynomial pulse profiles The percentage difference between the ideal
shift and sigmoid shift is computed in the rightmost column.

4.3.2 Master equation population dynamics with rate correction

This method maintains the same rate correction method (see Eqn (4.5)), but im-
proves on the previous model by having a quantum treatment of the population dynam-
ics. In short, we will solve the quantum master equation for the population dynamics of
S1/2, P1/2, D3/2 in response to a 650 nm coupling field.

A brief discussion on basic quantum theory is necessary. For a system interacting
with the environment,

ρ̇tot = −i[Htot, ρtot(t)]; Htot = Hsys +Henv +Hint

Since we are only interested in dynamics of the system, we perform a partial trace over
the environmental degrees of freedom and obtain a master equation for the motion of
the system density matrix, ρ = Trenv[ρtot]. The result is the Lindblad master equation

ρ̇(t) = −i[H(t), ρ(t)] +
∑
n

1
2[2Cnρ(t)C†n − ρ(t)C†nCn − C†nCnρ(t)]

= −i[H(t), ρ(t)] +
∑
n

γn
2 [2Anρ(t)A†n − ρ(t)A†nAn − A†nAnρ(t)]

where Cn = √γnAn, An are the operators through which environment couples to system
in Hint and γn are the corresponding rates.

In our case, we perform the summation over two parameters, λ: polarisation of field
that couples a transition and a: blue (P1/2 → S1/2) and red (P1/2 → D3/2) decay
paths. The operator Aa,λ is the dipole operator for a transition characterised by λ, a
with Clebsch Gordan coefficients as its elements. The rates γa are the decay rates for
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the red and blue decay paths, i.e. γr = pΓ, γb = (1− p)Γ. So we write,

dρ
dt = −i[H, ρ] +

∑
λ,a

γa
2 (2Aa,λρA†a,λ − A

†
a,λAa,λρ− ρA

†
a,λAa,λ (4.6)

The Hamiltonian here consists of

H = Hdet +Hz +Hc

Hdet is the detuning that couples the ground states in the transition we are driving, i.e.
Hdet = ∆∑

g |g〉 〈g|. The Zeeman Hamiltonian is Hz = gJµBmJBz, where the Lande
g-factors for S1/2, P1/2, D3/2 are 2, 2

3 ,
4
5 . As a convention, we keep our quantisation

axis pointed along the direction of the magnetic field, so Hz is always diagonal. Hc

describes the coupling between states driven by the field with the key components,
Ω0
2 ×pol×CG, where CG is a Clebsch Gordan coefficient, pol is the relevant component

of light polarisation and Ω0 is coupling strength between the 650 nm laser and the
transition.

There are four quantities that determine the simulation dynamics from the master
equation, (i) magnetic field strength, (ii) coupling strength of the 650 nm laser (which
determines the pumping time), (iii) 650 nm light polarisation and (iv) temporal profile
of the 650 nm pulse. The magnetic field strength is user specified and since we align
the quantisation axis with the field direction, the magnetic field strength comes in as
a constant, Bz, in Hz. The pumping times measured in the experiment determine the
how fast the ion is pumped out of D3/2 into S1/2. We set up Ω0 (coupling strength)
in the Hamiltonian as a free parameter in our simulation, and choose a value that
gives a decay behaviour of D3/2 that agrees with the pumping time measured in an
independent experiment. Figure 4.6 gives an example of the model generated population
dynamics of D3/2 from a well-selected Ω0 matching the exponential decay of D3/2 with
characteristic time scale equal to the pumping time. Next, the 650 nm light polarisation
and propagation direction are user specified. With respect to the quantisation axis, we
can determine the spherical components of the polarisation. Finally, the temporal profile
of the pulse is treated as a square profile here in light of the fact that the transients
are expected to have a small effect (∼ 5%) as seen in the previous model (see Section
4.3.1).

Once the above 4 quantities are specified, and using the best known estimate of
p = 0.268, q = 0.0268, we can fully describe the system that starts in D3/2 (distributed
evenly in each m state) and solve how the population evolves over time. The excited
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Figure 4.6: (blue) Exponential decay of D3/2 with characteristic time scale equal to
the experimentally measured pumping time. (red) Population dynamics of D3/2 state
simulated by master equation.

state (P1/2) population can be written as the expectation value of the excited population

e(t) = Tr
(∑

m

∣∣∣P1/2,m
〉 〈
P1/2,m

∣∣∣ ρ(t)
)

(4.7)

where the excited state projection operator is ∑m

∣∣∣P1/2,m
〉 〈
P1/2,m

∣∣∣. The rate of 650
nm photons detected is then

λ(t) = pqΓe(t)

Now, using λ(t) from the simulations, we apply the rate correction (Eqn (4.5)) to find
the corrected red counts and the new branching ratio estimate p̄.

4.3.3 Master equation population dynamics with analytic count
correction

This model uses the same master equation population dynamics as the previous
model, but it considers a more sophisticated deadtime correction to the red counts.
Instead of a simple rescaling of the rates (see Eqn (4.5)), we use the probability distribu-
tion of photon emission times P (t) to examine the probabilities of subsequent photons
arriving within the deadtime.

To get P (t), we solve the following master equation,

ρ̇(t) = −i[H(t), ρ(t)]−
∑
a,λ

γa
2 (A†a,λAa,λρ+ ρA†a,λAa,λ) (4.8)
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This differs from the full master equation Eqn 4.6) by the term ∑
a,λ γαAa,λρA

†
a,λ because

we are not interested in knowing ground state population dynamics. Instead, we want
to know the time statistics of decay of the excited state. Similar to the previous, we still
specify the magnetic field, 650 nm polarisation, pumping times and assume a constant
pulse in the simulation. Upon solving for ρ(t), P (t) can be obtained via

P (t) = Γ Tr
(∑

m

∣∣∣P1/2,m
〉 〈
P1/2,m

∣∣∣ ρ(t)
)

(4.9)

and P (t) obeys the normalisation condition
∫

pulse
P (t)dt = 1

We proceed with the description of our model. For the best estimated p = 0.268, q =
0.0268, the distribution for k detected photons when pumping the ion from D3/2 to S1/2

by a deadtime free detector is f(k; p, q) (see Eqn (3.6)). With deadtime, the distribution
function for k photons will definitely change and it would be difficult to determine this
new distribution. Instead, one can keep f(k; p, q) unchanged but assign f(k; p, q) as the
probability of detecting some effective number of photons which is < k.The corrected r
is

r =
∑
k

f(k; p, q)k̄k (4.10)

where k̄k is the effective counts given k counts in the ideal case. Once the k̄k and the
corrected r is determined, we can compute the new branching ratio estimate p̄ using
Eqn (3.3).

We will now demonstrate how to determine k̄k by using the probability distribution
of photon emission times P (t). First, we define the recursive functions

Pm(t) =
∫ t

0
Pm−1(t− x)P0(x)dx; P0(t) = P (t) (4.11)

where Pm(t) is the arrival time probability distribution of a subsequent detected photon,
given that m photons were missed. The probability of the subsequent detected photon
arriving within the deadtime, given m photons were missed, is

pm =
∫ τd

0
Pm(t)dt (4.12)

k = 2 case: First consider n = 2 photons emitted and k = 2 photons reaching the
detector. The detector detects one count if the second arrives within τd of the first. So,
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the probability of one count instead of two is

p0 =
∫ τd

0
P (t)dt (4.13)

There may be n = 3 photons emitted and k = 2 detected photons as well. There are
3 possible configurations in this case, (1, 1, 0), (0, 1, 1), (1, 0, 1), where ”1” indicates a
count, ”0” otherwise. For the first two configurations, the probability of getting one
count is in Eqn (4.13). In the last configuration, there is one missed photon between
the two detected photons. The distribution arrival time of the third photon is

P1(t) =
∫ t

0
P (t− t2)P (t2)dt2

So, in (1,0,1), the probability of getting the third photon within the dead-time of the
first detected photon is

p1 =
∫ τd

0
P1(t)dt =

∫ τd

0

[∫ t

0
P (t− x)P (x)dx

]
dt (4.14)

If there are n = 4 photons emitted and k = 2 photons detected, this gives 6 configu-
rations: (1,1,0,0), (0,1,1,0), (0,0,1,1), (1,0,1,0), (0,1,0,1), (1,0,0,1). The probability of
getting one count for the first 3 configurations is described by Eqn (4.13). The proba-
bility of getting one counts for the fourth and fifth configurations is described by Eqn
(4.14). The last (1,0,0,1) configuration involves two missed photons. The probability
distribution for arrival of the fourth photon given two were missed is

P2(t) =
∫ t

0
P (t− t3)

∫ t3

0
P (t3 − t2)P (t2)dt2dt3

So, in (1,0,0,1), the probability of getting one count is

p2 =
∫ τd

0
P2(t)dt

=
∫ τd

0

[∫ t

0
P (t− t3)

∫ t3

0
P (t3 − t2)P (t2)dt2dt3

]
dt

(4.15)

So, for arbitrary n ≥ 2, k = 2, one can repeat this to find the net probability of getting
one count instead of two due to τd.

∞∑
n=m+2

n−2∑
m=0

[pn(1− p)][nC2q
2(1− q)n−2]

[
n− (m+ 1)

nC2
pm

]

= (1− p(1− q))f(2; p, q)
∑
m

pm(1− q)mpm

where nC2 =
n

2

. The first term in parenthesis describes the probability of obtaining n



34

emitted photons from geometric distribution. The second term in parenthesis describes
the probability of getting 2 detected photons out of n emitted photons. The third term
in parenthesis states that the number of ways two photons can arrive with m missing
photons in between is n−m− 1 out of nC2. The effective mean count for k = 2 is

k̄2 = 2− (1− p(1− q))
∑
m

pm(1− q)mpm (4.16)

k̄2 has a summation over m (number of missed photons between two hits). But, in our
experiments, the probability of getting 4 photons is 10−8. Thus it is reasonable to sum
till m = 2.

k = 3 case: Consider n = 3 photons emitted and k = 3 photons reaching the
detector. With dead-time, this can give 1,2 or 3 counts. Consider the extreme case
where the second and third arrives within τd of the first. The probability of having one
count out of possible 3

p3,1 =
∫ τd

0

∫ τd−t3

0
P (t3)P (t2)dt2dt3 (4.17)

The other extreme case is that all 3 photons are separated by at least τd. The probability
of getting 3 counts out of 3 is

p3,3 =
(

1−
∫ τd

0
P (t)dt

)2
(4.18)

Thus by normalisation, the probability of getting 2 counts out of 3 is 1− p3,1− p3,2 (the
combined probability of getting 1,2,3 counts of a possible 3 is unity). There are also
n > 3, k = 3 cases to consider. But it gets really complicated from here due to the
diverse combinations. We are warranted in excluding these cases with n > 3 photons
because of the low probability of getting n > 3 photons in our experiments. Instead, we
can establish a lower bound and upper bound k̄3,

3∑
i=1

i× p3i < k̄3 < 3

We chose our estimation of k̄3 as the midpoint between the lower and upper bound

k̄3 = 1
2

(
3 +

3∑
i

i× p3i

)
(4.19)

And the error in this estimate half the difference between the upper and lower bound,
1
2(3−∑i i× p3i).

With k̄2, k̄3 established, using a best known estimate of p = 0.268, q = 0.0268,
τd = 28.5 ns, we calculated the shifts for the various pumping times and magnetic



35

field configurations used in the experiment. From our simulation results, the error in
estimating k̄3 is only about 1− 2% so this validates our use of Eqn (4.19).

4.3.4 Summary

Figure 4.7: Shifts, p−p̄, against pumping time generated by the 3 different models. (red)
Rate equation model considering constant pulse, (blue) rate equation model considering
pulse transients, (green) master equation model with rate correction, (black) master
equation model with analytic count correction.

To summarise, we are focused on deadtime effects on the red photon counts when
pumping from D3/2 to S1/2. We used 3 models to determine this. The first uses the
rate equations to simulate dynamics and implements a rate correction for deadtime. The
second uses master equation population dynamics with the same rate correction. The
third uses master equation dynamics to evaluate an analytic correction accounting for
the proper proper distribution of emission times.

We used these models to have a preliminary assessment of the shifts associated with
deadtime. We fix the magnetic field to a typical value of 2.23 G and vary the pumping
times over the range used in our experiments. From Figure 4.7, we note the following
observations

1. Generally, the shifts predicted by the models vary in a consistent way. As the
pumping times get longer, there is lower probability of photons coming in within
the deadtime, thus the shifts decrease across all models.

2. The rate equation models (blue and green lines) and the master equation with
rate correction model (red line) tend to agree as the pumping times get larger.
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This is because for longer pump times, the master equation dynamics are well
approximated by the rate equation dynamics. Conversely, the difference between
the models will be apparent if we make the pumping times really short. For
example, Figure 4.8 shows the true dynamics (blue line) obtained from the master
equation for a short pumping time (30 ns) compared to the rate equation model
which is not a valid physical model in this regime.

Figure 4.8: P1/2 population with time generated using master equation (blue line) and
rate equation (green line) using a short pumping time of 30 ns.

3. In Figure 4.7, the shifts from the master equation using analytic corrections (black
line) undershoots the other models that use rate corrections (red, blue, green line)
at longer pump times and overshoots at shorter pump times. Implicit in the rate
corrections is the fact that photon arrival times are governed by a exponential
distribution, P (t) = λ(t)e−λ(t)t. In contrast, the P (t) from the master equation
fully accounts for the quantum nature of single atom emissions (atom cannot emit
photon until it is excited). With reference to Figure 4.9, at short pumping times
(100 ns), the P (t) of the master equation (blue) has a higher peak in the deadtime
region than the P (t) of the rate equation (red). Thus, the probability of photons
arriving within the deadtime is relatively higher resulting in greater computed shifts.
At longer pumping times (400 ns), the P (t) from the master equation (green) has
a slower rise time than the P (t) from the rate equation (black), resulting in lower
probability of photon falling within the deadtime.
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Figure 4.9: Photon arrival time distributions, P (t), generated from master equation and
rate equation, with different pumping times.

4.3.5 Supplementary: Validation of master equation model

Figure 4.10: (black) Red photons collected when pumping from D3/2 to S1/2, with a
2.23 G magnetic field, 150 ns pumping time, 650 nm perpendicularly polarised, using
high resolution time tagging. Under the same conditions, we compute the rate of red
photon emissions (see Eqn (4.7)) using a constant pulse (blue) and considering the pulse
transient (red).

In the above models that utilise the master equations, we specify the pumping time,
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magnetic field, 650 nm polarisations to solve for the population dynamics, and use them
to compute the branching ratio shifts. We will show here that the master equation we
constructed (see Eqn (4.6)) indeed simulates our system well. We conducted independent
experiments with a high resolution time tagger for a chosen magnetic field configration,
light polarisation and pumping time. With reference to Figure 4.10, the black dots
refers to the photons collected when pumping from D3/2 to P1/2. The blue line is
λ(t) obtained via the master equation. It is clear that even with a constant pulse, the
population dynamics are sufficiently well modelled by our master equation model. If one
accounts for the pulse transients, there is a remarkable fit between the master equation
result (red line) and the experimental counts, with no free parameters needed. This
is a validation that the master equation dynamics produced in our simulation is indeed
reflected in our experiments. Furthermore, our knowledge of the magnetic field, pumping
time and 650 nm polarisations was sufficient to characterise any given experiment.

4.3.6 Supplementary: Numerical experiments

As an additional consistency check for our rate and master equation models, we
performed numerical simulations of the branching ratio shifts. First, we randomly sample
N numbers, n, from a geometric distribution characterised by the best known branching
ratio estimate p. This is equivalent to pumping the atom from D3/2 to S1/2 N times
and getting the red photon emissions, n, from each experiment. Next, from solving the
master equation (see Eqn (4.6)), we obtain the photon emission time statistics, P (t),
and we assign an emission time to each photon. Then, each photon is selected via a
Bernoulli trial with probability q = 0.0268, replicating the detection process. The mean
of these counts should be ∼ qp

1−p . To implement a deadtime correction, we check for the
time difference between neighbouring photons from each experiment. If the subsequent
photon arrives within the deadtime of a detected photon, this photon is removed from
the photon counts of that experiment. The mean corrected red photon counts is fed to
Eqn (3.3) to determine the new p̄. Preliminary runs yielded shifts that were consistent
with the four models.
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Other systematics

We have also explored other systematics cited in literature but these were determined
to be negligible at the level of accuracy we are concerned with. In this chapter, we offer
a description of these systematics and our analysis of their effect.

5.1 Finite lifetime of D3/2

During optical pumping from S1/2 to D3/2, there is a small probability that the ion
may decay from D3/2 back to S1/2 resulting in an increase in the signal. The optical
pumping from S1/2 to D3/2 can be described as an exponential with time scale τb.
Denoting γ as the decay rate of D3/2, T as the length of the pulse, the probability of
decay of D3/2 is simply the decay rate multiplied with the population of the D3/2 state.

γ
∫ T

0
1− e−t/τbdt ≈ γ(T − τb)

For a detection efficiency, q, the counts collected in the first 493 nm pulse is

q + qγ(T − τb) + background

and the counts collected during the second 493 nm pulse is

qγT + background

Upon performing background subtraction, we get

q(1− γτb)

Hence, the above represents a fractional decrease in background subtracted signal of
−γτb.

The lifetime of the D3/2 level also affects optical pumping from D3/2 to S1/2. In this
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case, the background is not affected because the D3/2 is only transiently occupied. This
gives a decay probability of approximately −γτr, which is the fractional decrease in the
measured signal. For Ba+, the γr,b ∼ 0.0125/s, and γτ < 5× 10−9. Thus the effect is
negligible.

5.2 Off resonant excitation to P3/2

During optical pumping from S1/2 to D3/2, there is a small probability of off-resonant
excitation to P3/2. In this event, the atom can scatter to S1/2, D3/2 or D5/2 with
probability p1/2, p3/2 and p5/2 respectively. Scattering to D5/2 places the ion in a dark
state, and this will be known during the cooling pulse with 493 and 650 nm beams since
the ion won’t fluoresce. If the atom scatters back to S1/2, the pumping will still continue
and there is no effect on the b signal. Thus the issue occurs only when it scatters to
D3/2 and the emitted photon (<650 nm) is not detected. The probability of scattering
from P3/2 to D3/2 is

p3/2Γ Ω2
b

4∆2 τb

where Γ is the linewidth of P3/2, Ωb is the coupling strength to the 493 nm laser to P3/2

level, ∆ is approximately the fine structure splitting between P3/2 and P1/2 and τb is the
pumping time for the 493 nm beam. This also represents the fractional decrease in the
b signal. The same analysis can be repeated when pumping from D3/2 back to S1/2.
Here, the problem occurs when the ion scatters to S1/2 and no red photons are emitted.
The fractional decrease in the r signal is

p1/2Γ Ω2
r

4∆2 τr

where Ωr is the coupling strength between 650 nm laser and the P3/2 level, τr is the
pumping time for the 650 nm beam, the Γ,∆ definitions follow from the previous case.
In our experiments, the pumping times are short (τr,b ≤ 300 ns) and the fine structure
splitting is large (∆ = 2π × 50.7THz). Thus, the fractional change is negligible.

5.3 Finite pulse duration
The finite duration of the pulses can result in either a loss of accuracy or precision. If

the pulses are too long, it will take too much time to accumulate enough data to reach a
desired level of precision. If the duration is too short, there will be incomplete transfer of
population affecting the accuracy of the branching ratio estimate. In our experiments,
we kept the duration of the laser pulses to be at least 20τ where τ (pumping time)
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is the independently measured characteristic time scale to pump S1/2 ↔ D3/2 using
493 and 650 nm lasers. This ensures that the population left behind is negligibly small
e−20 ∼ 10−9 while at the same time not needing to collect data for overly long periods.



Chapter 6

Conclusion

In conclusion, this work was part of a bigger effort to characterise the dynamic
differential scalar polarisability, ∆α0(ω) of a Barium clock transition, which in turn
enables Barium to provide accurate calibration of the environment. The research group
did earlier work that showed ∆α0(ω) in Barium can be largely specified using measured
matrix elements (associated with three dominant contributions). All other contributions
can be modelled by a single UV pole that basically offsets the curve, and this can be
constrained by finding the zero crossing. We have also shown that each matrix element
can be determined by experimental measurements, one of them is the branching ratio
associated with the states in the matrix element. My project was focused on confirming
measurement claims of the P1/2 → D3/2 branching ratio that was made in the literature.

We have presented our raw data from 16 measurements of the branching ratio, over
a course of 6 months. We identified two key systematics, and one of them (detector
deadtime) was extensively modelled in this report. We tested various models to assess
the deadtime effect and for sufficiently slow pumping times, the models that use rate
correction show reasonable agreement (∼ 10%) with the model accounting for the
quantum dynamics of photon emission. For the pumping times used in our experiment,
preliminary results indicate that the shifts to our measured values are ∼ 1× 10−4.

While this report has showcased the preliminary assessment for a deadtime correc-
tion to the branching ratio estimate, further work is needed in determining the shifts
associated with the second key systematic identified, imperfect background subtraction
(see section 3.2.2).
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Appendix

7.1 Deadtime corrected photon Poisson counting dis-
tribution

The rate corrections (see Eqn (4.5)) implemented follows from [7]. In the absence
of deadtime, the probability of recording n counts in a time interval T in a detector
illuminated by a laser source is

p(n, λ) = (λT )ne−λT
n!

where λ = αI, α is the quantum efficiency of the detector and I is the irradiance at
the detector. In the presence of deadtime, τd, the probability of registering n counts in
a time interval T is given exactly by

p0(n, λ, τd) =
n∑
k=0

[
λk(T − nτd)k

k!

]
e−λ(T−nτd)

−
n−1∑
k=0

[
λk(T − (n− 1)τd)k

k!

]
e−λ(T−(n−1)τd)

The above expression is valid for counts n such that nτd < T . The new mean of this
distribution n̄ to first order is

n̄ = λT

1 + λτd

This is exactly the rate corrections we implemented in 3 of the models.
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