NUS Department of Physics

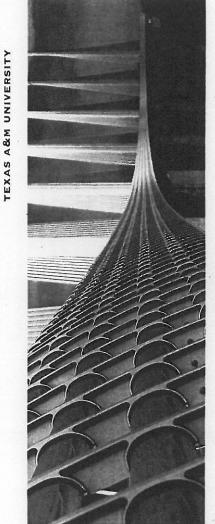
Syllabus for the Comprehensive Exam

Subject		Science Library
Matter	Exemplary Textbook (defining the scope)	Call Number
General Physics	Hugh D. Young and Roger A. Freedman, Sears and Zemansky's University Physics: With Modern Physics, (12th edition, Pearson Addison Wesley, San Francisco 2008), excluding Chapters 14 and 44	QC23 Sea
Classical Mechanics	Tom W. B. Kibble and Frank H. Berkshire <i>Classical Mechanics</i> , (5th edition, Imperial College Press, London 2004), excluding Chapters 12–14	QA845 Tho 2004
Electro- magnetism	David J. Griffiths, <i>Introduction to Electrodynamics</i> , (3rd edition, Prentice Hall 1999), excluding Chapter 11 and Sections 9.4, 9.5, 10.2.2, and 12.3	QC680 Gri
Quantum Mechanics	David J. Griffiths, <i>Introduction to Quantum Mechanics</i> , (Prentice Hall 1995), Chapters 1–7	QC174.12 Gri
Statistical Physics	Franz Mandl, <i>Statistical Physics</i> , (2nd edition, Wiley, New York 1988)	QC174.8 Man

Note: These textbook chapters identify the material that is examined in the Comprehensive Exam; the listed textbooks themselves are just examples. The same material is also covered by other books, and all of them can be used equally well when preparing for the exam.

SEARS AND ZEMANSKY'S

UNIVERSITY PHYSICS


12TH EDITION

WITH MODERN PHYSICS

HUGH D. YOUNG
CARNEGIE MELLON UNIVERSITY

ROGER A. FREEDMAN

UNIVERSITY OF CALIFORNIA, SANTA BARBARA
CONTRIBUTING AUTHOR
A. LEWIS FORD

San Francisco Boston New York
Cape Town Hong Kong London Madrid Mexico City
Montreal Munich Paris Singapore Sydney Tokyo Toronto

DETAILED CONTENTS

MEC	MECHANICS	0	APPLYING NEWTON'S LAWS	136
	TINITS PHYSICAL	5.1	Using Newton's First Law: Particles in Equilibrium	136
-	QUANTITIES, AND VECTORS	1 5.2	Using Newton's Second Law:	77
1.1	The Nature of Physics		Dynamics of Faucies Frictional Forces	149
1.2	Solving Physics Problems	5.4	Dynamics of Circular Motion	158
. 4: . 4:	Unit Consistency and Conversions	6 *5.5	The Fundamental Forces of Nature	165
1.5	Uncertainty and Significant Figures	∞ ;	Questions/Exercises/Problems	166
1.6	Estimates and Orders of Magnitude	100		
	Components of Vectors	15 6	WORK AND KINETIC ENERGY	181
1.9	Unit Vectors	20 6.1	Work	182
1.10	Products of Vectors		Kinetic Energy and the Work-Energy	
	Summary/Key 1erms Onestions/Exercises/Problems	28	Theorem	186
		6.4	Work and Energy with varying 1 orces.	199
C	MOTION ALONG		Summary/Key Terms	202
1	A STRAIGHT LINE	36	Questions/Exercises/Problems	503
2.1	Displacement, Time, and Average Velocity	37	POTENTIAL ENERGY	
2.2	Instantaneous Velocity	39	AND ENERGY CONSERVATION	213
2.3	Average and Instantaneous Acceleration			
2.4	Motion With Constant Acceleration Freely Falling Rodies	53 7.1	Gravitational Potential Energy	214
*2.6	Velocity and Position by Integration		Concernative and Nonconcernative Forces	220
2.4	Summary/Key Terms	60 74	Force and Potential Energy	232
	Ouestions/Exercises/Problems		Finergy Disorams	235
		2	Summary/Key Terms	237
2	MOTION IN TWO	71	Questions/Exercises/Problems	238
)	ON THREE DIMENSIONS		. And it is a summary to be	
3.1	Position and Velocity Vectors	72	MOMENIUM, IMPULSE,	247
3.2	The Acceleration Vector		AIND COLLISIONS	1
3.3	Projectile Motion		Momentum and Impulse	247
4. 6	Motion in a Circle	8.2	Conservation of Momentum	253
3.5	Kelative velocity	96 8.3	Momentum Conservation and Collisions	157
	Ouestions/Exercises/Problems	97 8 5	Center of Mass	266
		*8.6	Rocket Propulsion	270
4	NEWTON'S LAWS OF MOTION	107	Summary/Key Terms	273
4			Questions/Exercises/Problems	274
4.1	Force and Interactions	108		
4 4	Newton's Second Law		ROTATION OF RIGID BODIES,	285
4.4	Mass and Weight	120 9.1	Angular Velocity and Acceleration	285
4.5	Newton's Third Law	123 9.2	Rotation with Constant Angular	
4.6	Free-Body Diagrams		Acceleration	290
	Summary/Key Jerms Ouestions/Freezises/Problems	130 0.3	Relating Linear and Angular Minematics Fraction in Rotational Motion	296

*		·	, ш (,
456 458 463 466 468 472 477	487 488 489 492 493 502 505 507 511 516 518	527 527 532 537 541 541 548 548 550 552 553 553	570 571 572 574 574 576 576 586 580
FLUID MECHANICS Density Pressure in a Fluid Buoyancy Fluid Flow Bernoulli's Equation Viscosity and Turbulence Summary/Key Terms Questions/Exercises/Problems	MAVES/ACOUSTICS 1 MECHANICAL WAVES 15.1 Types of Mechanical Waves 15.2 Periodic Waves 15.3 Mathematical Description of a Wave 15.4 Speed of a Transverse Wave 15.5 Energy in Wave Motion 15.6 Wave Interference, Boundary Conditions, and Superposition 15.7 Standing Waves on a String 15.8 Normal Modes of a String 15.8 Normal Modes of a String 15.9 Summary/Rey Terms Questions/Exercises/Problems	SOUND AND HEARING Sound Waves Speed of Sound Waves Sound Intensity Standing Sound Waves and Normal Modes Resonance and Sound Interference of Waves Beats The Doppler Effect Shock Waves Summary/Key Terms Questions/Exercises/Problems	THERMODYNAMICS 17.1 TEMPERATURE AND HEAT 17.1 Temperature and Thermal Equilibrium 17.2 Thermometers and Temperature Scales 17.3 Gas Thermometers and the Kelvin Scale 17.4 Thermal Expansion 17.5 Quantity of Heat 17.6 Calorimetry and Phase Changes 17.7 Mechanisms of Heat Transfer
14.1 14.2 14.3 14.4 14.5 *14.6	MAVE 15.1 15.2 15.3 15.4 15.5 15.6 15.6	16.1 16.1 16.2 16.3 16.4 16.5 16.6 16.7 16.8 *16.9	THERU 17.1 17.1 17.2 17.3 17.4 17.5 17.5 17.5 17.5 17.5 17.5 17.7 17.7
(1)	329 333 337 341 343 355 355 355 358 368 370	383 388 390 393 394 400 403 410 411	419 419 421 428 432 436 440 442 447
Parallel-Axis Theorem Moment-of-Inertia Calculations Summary/Key Terms Questions/Exercises/Problems DYNAMICS OF ROTATIONAL MOTION Torque Torque and Angular Acceleration for a Rigid Body Rigid Body Stagid Body Moving About a Moving Axis	Work and Power in Rotational Motion 329 Angular Momentum 331 Conservation of Angular Momentum 333 Gyroscopes and Precession 347 Summary/Key Terms 341 Questions/Exercises/Problems 343 Questions/Exercises/Problems 343 EQUILIBRIUM AND ELASTICITY 354 Conditions for Equilibrium 355 Center of Gravity 355 Solving Rigid-Body Equilibrium Problems 355 Solving Rigid-Body Equilibrium Problems 358 Stress, Strain, and Elastic Moduli 363 Elasticity and Plasticity 363 Elasticity and Plasticity 373 Questions/Exercises/Problems 377 Questions/Exercises/Problems 371	GRAVITATION Newton's Law of Gravitation Weight Gravitational Potential Energy The Motion of Satellites Kepler's Laws and the Motion of Planets Spherical Mass Distributions Apparent Weight and the Earth's Rotation Black Holes Summary/Key Terms Questions/Exercises/Problems	PERIODIC MOTION Describing Oscillation Simple Harmonic Motion Energy in Simple Harmonic Motion Applications of Simple Harmonic Motion The Simple Pendulum Damped Oscillations Forced Oscillations Summary/Key Terms Questions/Exercises/Problems
\$9.5 *9.6 10.1 10.1 10.3	10.5 10.5 10.6 10.7 11.1 11.3 11.3	12.1 12.2 12.2 12.3 12.4 12.5 *12.6 *12.7	13. 13.1 13.2 13.3 13.4 13.5 13.6 13.8

Detailed Contents xvii

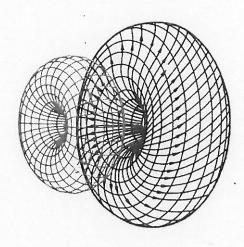
Detailed Contents

xvi

Detailed Contents	
iii.	

Detailed Contents xix

	Summary/Key Terms Questions/Exercises/Problems	905	30.6	The L-R-C Series Circuit Summary/Key Terms Questions/Exercises/Problems	1049 1052 1053
27	MAGNETIC FIELD AND MAGNETIC FORCES	, 916	31	ALTERNATING CURRENT	1001
27.1	Magnetism Magnetic Field	916 918	31.1	Phasors and Alternating Currents Resistance and Reactance	1061
27.3	Magnetic Field Lines and Magnetic Flux Motion of Charged Particles in a Magnetic Field	922	31.3	The L-R-C Series Circuit Power in Alternating-Current Circuits	1070
27.5	Applications of Motion of Charged Particles	020	31.6	Acsonance in Aitemating-Current Circuits Transformers Summary/Key Terms	1080
27.6	Magnetic Force on a	(7)		Questions/Exercises/Problems	1085
27.7	Current-Carrying Conductor Force and Torque on a Current Loop		32	THE POTTO MANAGEMENT TATALLES	1002
*27.8	The Direct-Current Motor The Hall Effect	941	1 - 6		7601
	Summary/Key Terms			and Electromagnetic Waves	1093
(Cuestions/Exelcises/Problems	747	27.7	riane Electromagnetic waves and the Speed of Light	1096
78	SOURCES OF MAGNETIC FIELD	957	32.3	Sinusoidal Electromagnetic Waves	1101
28.1	Magnetic Field of a Moving Charge		1.70	in Electromagnetic Waves	1106
28.2	Magnetic Field of a Current Element Magnetic Field of a	096	32.5	Standing Electromagnetic Waves Summary/Key Terms	1111
00	Straight Current-Carrying Conductor	962		Questions/Exercises/Problems	1116
28.5	Magnetic Field of a Circular Current Loop	296			
28.6	Ampere's Law		ODITO	9.	
*28.8	Applications of Ampere's Law Magnetic Materials			3	
	Summary/Key Terms Questions/Exercises/Problems	982	33	THE NATURE AND PROPAGATION OF LIGHT	1121
29	ELECTROMAGNETIC	003	33.1	The Nature of Light Reflection and Refraction	1121
20.1			33.3	Total Internal Reflection	1129
29.2	induction Experiments Faraday's Law		33.5	Dispersion Polarization	1132
29.3			*33.6	Scattering of Light	1142
29.5	Mottonal Electromotive Force Induced Electric Fields	1008	33.1	Huygens's Principle Summary/Key Terms	1144
*29.6		1011		Questions/Exercises/Problems	1149
7.67	Displacement Current	1012			
*29.8			34	GEOMETRIC OPTICS AND	
	Summary/Key Terms	1019	-		/611
0			1.40	Kenection and Kenaction at a Plane Surface	1157
30	INDUCTANCE 10	1030	34.2	Reflection at a Spherical Surface Refraction at a Spherical Surface	1161
30.1			34.4	Thin Lenses	1174
30.2	Self-inductance and inductors Inductors and Magnetic-Field Energy	1034 3	34.5	Cameras The Eve	1182
30.4	6			The Magnifier	1189
30.3	The L-C Circuit	1045 3	34.8	Microscopes and Telescopes	1191


1338 1340 1342		1349	1350	1352	1360		1361	1369	1	13/5	1375	1380	1387	1392	1394	1395	1401	1401	1409		1417	1423	1428		1/33	1433	1435	1441	1445	1447	1455	1460	1462		1468		1468
Wave-Particle Duality Summary/Key Terms Questions/Exercises/Problems	THE MATTIBE	OF PARTICLES	De Broglie Waves	Electron Diffraction	Probability and Uncertainty The Electron Microscope	Wave Functions	and the Schrödinger Equation Summary/Key Terms	Questions/Exercises/Problems	OF TRAINING TO STATE OF THE STA	QUANTUM MECHANICS	Particle in a Box	Potential Wells	Foreittal Battlets and Tumering The Harmonic Oscillator	Three-Dimensional Problems	Summary/Key Terms	Questions/Exercises/Problems	ATOMIC STRUCTURE	The Hydrogen Atom	The Zeeman Effect	Many-Electron Atoms	and the Exclusion Principle	X-Kay Spectra	Questions/Exercises/Problems		MOLECULES AND	CONDENSED MAILEN	Types of Molecular Bonds	Structure of Solids	Energy Bands	Free-Electron Model of Metals	Semiconductor Devices	Superconductivity	Ouestions/Exercises/Problems	,	NIICLEAR PHYSICS		Properties of Nuclei Nuclear Binding and Nuclear Structure
38.9		39	39.1	39.2	39.3	39.5			10	2	40.1	40.2	40.3	40.5			41	41.1	41.2	41.4	;	41.5			42		42.1	42.3	42.4	42.5	42.7	42.8			43	1 :	43.1
1198	1207	1208	1214	1218	1224	1228		1234	1235	1239	1243	1246	1253	1256	1259	1260			1268	1268	1272	1274	1278		1287	1292	1295	1298	1300		1307	1307	1309	1314	1322	1327	1330
Summary/Key Terms Questions/Exercises/Problems	INTERFERENCE	Interference and Coherent Sources Two-Source Interference of Light	Intensity in Interference Patterns	Interference in Thin Films	The Michelson Interferometer	Questions/Exercises/Problems		DIFFRACTION	Fresnel and Fraunhofer Diffraction Diffraction from a Single Slit	Intensity in the Single-Slit Pattern	Multiple Slits	The Diffraction Grating	X-Kay Diffraction Circular Apertures and Resolving Power	Holography	Summary/Key Terms	Questions/Exercises/Problems	MODERN PHYSICS		RELATIVITY	Invariance of Physical Laure	Relativity of Simultaneity	Relativity of Time Intervals	Relativity of Length The Lorentz Transformation	The Doppler Effect for	Electromagnetic Waves	Relativistic Work and Energy	Newtonian Mechanics and Relativity	Summary/Key Terms	Questions/Exercises/Problems	SHOTONS ELECTBONS	AND ATOMS	Emission and Absorption of Light	The Photoelectric Effect	Atomic Line Spectra and Energy Levels The Nuclear Atom	The Bohr Model	The Laser	X-Ray Production and Scattering Continuous Spectra
ı	35	35.1	35.3	35.4	35.5		(36	36.1	36.3	36.4	36.5	36.7	*36.8			6	2	37	37.1	37.2	37.3	37.4	*37.6	27.7	37.8	37.9				200	38.1	38.2	38.3	38.5	38.6	38.7

	1538 1547 1548		A-1 A-4 A-5	A-6 A-7 A-9 C-1
	44.7 The Beginning of Time Summary/Key Terms Questions/Exercises/Problems	APPENDICES	A The International System of Units B Useful Mathematical Relations C The Greek Alphabet D Periodic Table of Elements	E Unit Conversion Factors F Numerical Constants Answers to Odd-Numbered Problems Photo Credits Index
	1478 1485 1489 1492 1494 1494	1502 1503	1509	1509 1514 1519 1525 1530 1532
Detailed Contents	Nuclear Stability and Radioactivity Activities and Half-Lives Biological Effects of Radiation Nuclear Reactions Nuclear Fission Nuclear Fusion	Summary/Key Terms Questions/Exercises/Problems	44 Particle physics and cosmology	Fundamental Particles—A History Particle Accelerators and Detectors Particles and Interactions Quarks and the Eightfold Way The Standard Model and Beyond The Expanding Universe
×	43.3 43.4 43.5 43.6 43.7 43.8		44	44.1 44.3 44.5 44.5

Imperial College Press

CLASSICAL MECHANICS

5th Edition

Tom W.B. Kibble Frank H. Berkshire Imperial College London

Contents

reface	>	VII.
Jseful C	Seful Constants and Units	×
ist of Symbols		xvii
. Intro	Introduction	\vdash
1.1	Space and Time	7
1.2		10
1.3		10
1.4	External Forces1	13
1.5	Summary	13
. Line		17
2.1	Conservative Forces; Conservation of Energy	17
2.2	Motion near Equilibrium; the Harmonic Oscillator 2	20
2.3	Complex Representation 2	24
2.4		25
2.5		27
2.6		30
2.7	General Periodic Force	34
2.8	Impulsive Forces; the Green's Function Method	37
2.9	Collision Problems	39
2.10	Summary	42

Contents

Statistical Mechanics Made Simple			
Energy and Angular Momentum	7.	The T	The Two-Body Pro
		7.1	Centre-of-ma
		7.2	The Centre-
		7.3	Elastic Colli
Central Forces; Conservation of Angular Momentum		7.4	CM and Lak
		7.5	Summary,
Hamilton's Principle; Lagrange's Equations	∞ ∞	Many-	Many-Body System
3.8 Summary		8.1	Momentum;
Central Concemiative Homos		8.2	Angular Mo
(3		8.3	The Earth-l
The Isotropic Harmonic Oscillator		8.4	Energy; Cor
The Conservation Laws		8.5	Lagrange's I
The Inverse Square Law		8.6	Summary.
	9.	Rigid]	Bodies
Mean Free Path		9.1	Basic Princi
Rutherford Scattering	*	9.5	Rotation ab
4.8 Summary		9.3	Perpendicul
Dotation December		9.4	Principal A
wearing frames		9.2	Calculation
		9.6	Effect of a S
en de		9.7	Instantaneo
		8.6	Rotation ab
		6.6	Euler's Ang
		9.10	Summary.
5.7 Summary	10.	Lagre	Lagrangian Mecha
Potential Macount		10.1	Generalized
1.29		10.2	Lagrange's I
		10.3	Precession o
The Dipole and Quadrupole		10.4	Pendulum C
Spherical Charge Distributions		10.5	Charged Pa
		10.6	The Stretch
2.01		10.7	Summary.
The lides	***		:
The Field Equations	II.		Small Oscillations
6.8 Summary		11.1	Orthogonal

7	The Tv	Two-Body Problem	156
	7.1	Centre-of-mass and Relative Co-ordinates	159 162 167
	5.7 7.5	Edastic Collisions CM and Lab Cross-sections	168
∞.	Many-]	Many-Body Systems	177
	8.1	Momentum; Centre-of-mass Motion	177
	8.2	Angular Momentum; Central Internal Forces	181
	8.3	The Earth-Moon System	183
	8.4	Energy; Conservative Forces	188
	 	Lagrange's Equations	190
	8.6	Summary	192
6	Rigid I	Bodies	197
	9.1	Basic Principles	197
	9.2	Rotation about an Axis	198
	9.3	Perpendicular Components of Angular Momentum	203
	9.4	Principal Axes of Inertia	205
	9.2	Calculation of Moments of Inertia	208
	9.6	Effect of a Small Force on the Axis	211
	9.7	Instantaneous Angular Velocity	216
	8.6	Rotation about a Principal Axis	218
	6.6	Euler's Angles	22
	9.10	Summary	22
10.	Lagra	Lagrangian Mechanics	23
	10.1	Generalized Co-ordinates; Holonomic Systems	23]
	10.2	Lagrange's Equations	233
	10.3	Precession of a Symmetric Top	23(
	10.4	Pendulum Constrained to Rotate about an Axis : .	238
	10.5	Charged Particle in an Electromagnetic Field	24.
	10.6	The Stretched String	244
	10.7	Summary	248
11.	Small	Small Oscillations and Normal Modes	25
	11 1	Orthogonal Condinates	95

xiii

Contents

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		A.2 The Scalar Product	384
Annien Mechanics	String	A.3 A.5 A.5 A.6	388 388 390 393 397
familton's Equations 277 A.10 conservation of Energy 280 Appendix I garorable Co-ordinates 282 B.1 seneral Motion of the Symmetric Top 289 B.2 seneral Motion of the Symmetric Top 289 B.2 iouville's Theorem 291 Appendix I iaillean Transformations 291 Appendix I ummary 291 Appendix I cal Systems and Their Geometry 307 C.3 hase Space and Phase Portraits 307 Appendix I cal Systems and Their Geometry 309 D.1 inst-order Systems — the Phase Plane (n = 1) 309 Answers to rey-Predator, Competing-species Systems and War 318 D.3 rey-Predator, Competing-species Systems and Predictability 324 Answers to mini Cycles 329 Answers to mini Cycles 329 Answers to mini Cycles 324 Answers to mini Cycles 329 Answers to mini Cycles 329 Answers		A.8	401
Conservation of Energy 280 Sprorable Co-ordinates 282 Seneral Motion of the Symmetric Top 285 Siouville's Theorem 291 Jaillean Transformations 291 Jaillean Transformations 295 Jammary 300 cal Systems and Their Geometry 307 hase Space and Phase Portraits 307 irst-order Systems — the Phase Plane (n = 1) 309 econd-order Systems — the Phase Plane (n = 2) 312 rey-Predator, Competing-species Systems and War 324 systems of Third (and Higher) Order 329 mit Cycles 337 mit Cycles 337 manary 347 tegrability 347 tegrability 354 ow Change of Section 354 ow Change of Parameters — Adiabatic Invariance 359 ow Change of Parameters — Adiabatic Invariance 369 ear-integrable Systems 372 unmary 372 unmary 372 unmary 373	Hamilton's Equations	A.10	403
teneral Motion of the Symmetric Top 285 jouville's Theorem 291 ymmetries and Conservation Laws 291 salilean Transformations 293 ummary 293 ummary 307 hase Space and Phase Portraits 307 hase Space and Phase Portraits 309 econd-order Systems — the Phase Line (n = 1) 309 econd-order Systems — the Phase Plane (n = 2) 312 rey-Predator, Competing-species Systems and War 318 mit Cycles 329 rey-Predator, Competing-species Systems and War 318 mit Cycles 329 rey-Bredator, Competing-species Systems and Predictability 337 mmary 337 mmary 337 mmary 337 mmary 347 regrability 337 mmary 359 ow Change of Section 359 ow Change of Parameters — Adiabatic Invariance 369 sar-integrable Systems 437 Wectors 381 Vectors 381	Conservation of Energy		409
iouville's Theorem	General Motion of the Symmetric Top	B.1	409
ymmetries and Conservation Laws	Liouville's Theorem	B.2	412
ummary	Symmetries and Conservation Laws	Appendix C. Phase Plane Analysis near Critical Points	415
cal Systems and Their Geometry 307 C.3 hase Space and Phase Portraits 307 hase Space and Phase Portraits 309 econd-order Systems — the Phase Line $(n=1)$ 312 econd-order Systems — the Phase Plane $(n=2)$ 312 Evy-Predator, Competing-species Systems and War 324 systems of Third (and Higher) Order 329 ensitivity to Initial Conditions and Predictability 340 end Chaos in Hamiltonian Systems 347 etggrability 347 etgrability 354 etgon/Angle Variables 359 ow Change of Parameters — Adiabatic Invariance 369 ear-integrable Systems which Exhibit Chaos 374 Vectors 331 Nature of Parameters — Adiabatic Invariance 369 ear-integrable Systems 374 Vectors 381 Shiftions and Elementary Properties 381	Summary	C.1	415
hase Space and Phase Portraits		C.2 C.3	421 423
become order Systems — the Phase Plane $(n=1)$	Phase Space and Phase Portraits	Appendix D. Discrete Dynamical Systems — Maps	425
rey-Predator, Competing-species Systems and War 318 D.2 imit Cycles	Second-order Systems — the Phase Plane $(n=1)$	D.1 One-dimensional Maps	425
ystems of Third (and Higher) Order	Prey-Predator, Competing-species Systems and War Limit Cycles	D.2 D.3	433
nd Chaos in Hamiltonian Systems 1347 146 157 168 179 170 170 170 170 170 170 170	Systems of Third (and Higher) Order		445
tegrability	Summary		463
rtegrability			
triaces of Section ction/Angle Variables ome Hamiltonian Systems which Exhibit Chaos ow Change of Parameters — Adiabatic Invariance ear-integrable Systems Vectors Vectors			465
ome Hamiltonian Systems which Exhibit Chaos. ow Change of Parameters — Adiabatic Invariance. ear-integrable Systems Wectors Similary Properties	:		
ow Change of Parameters — Adiabatic Invariance ear-integrable Systems			
ear-integrable Systems	eo		
ummary	Systems		
Vectors Efficitions and Elementary Properties			
	Vectors		
	Definitions and Elementary Properties 381		

445

Contents

S
.2
20
2
7
1
2
=
田
-
2
.=
-
×
Introduction to Electrodynamics
2
7
+
E

David J. Griffiths Reed College

(3rd edition)

PEARSON Benjamin Cummings San Francisco Boston New York
Cape Town Hong Kong London Madrid Mexico City
Montreal Munich Paris Singapore Sydney Tokyo Toronto

H

	ix
	xi
Vector Analysis	
90	Vector Algebra
SC	Vector Operations
Sct	Vector Algebra: Component Form
igi	Triple Products
Sit	Position, Displacement, and Separation Vectors
NO.	How Vectors Transform
al (Differential Calculus
PT("Ordinary" Derivatives
rad	Gradient1
)e	The Operator ∇
Je.	The Divergence
Je (The Curl
po.	Product Rules
00	Second Derivatives
alc	Calculus
ne,	Line, Surface, and Volume Integrals
<u>s</u>	The Fundamental Theorem of Calculus
<u>e</u>	The Fundamental Theorem for Gradients
<u>e</u>	The Fundamental Theorem for Divergences
9	The Fundamental Theorem for Curls
teg	Integration by Parts
L'	Curvilinear Coordinates
he	Spherical Polar Coordinates
=	Cylindrical Coordinates
D	The Dirac Delta Function
9	The Divergence of $\hat{\mathbf{r}}/r^2$
je	The One-Dimensional Dirac Delta Function

CONTRINE	CONTEINIO	

CONTENTS

123 124 127 127 137 146 146 149⁹ 151

E.	3.3.1 Cartesian Coordinates	bo	3.4.1 Approximate Potentials at Large Distances	Origin of Coordinates in Multipole		A Flactric Rields in Motter	4 1 Polarization			4.1.3 Alignment of Polar Molecules	4.1.4 Polarization	4.2 The Field of a Polarized Object				4.3 The Electric Displacement	4.3.1 Gauss's Law in the Presence of Dielectrics	4.3.2 A Deceptive Parallel	4.3.3 Boundary Conditions	4.4 Linear Dielectrics		4.4.2 Boundary Value Problems with Linear Dielectrics	4.4.3 Energy in Dielectric Systems	4.4.4 Forces on Dielectrics		5 I The I organia Borge I aw			5.2 The Biot-Savart Law	5.2.1 Steady Currents	5.2.2 The Magnetic Field of a Steady Current	<u>.</u>			5.3.4 Comparison of Magnetostatics and Electrostatics
1.5.3 The Three-Dimensional Delta Function	LOCALIDADS	nic Field	2.1.1	Coulomb's Law	The Electric Field	2.2 Divergence and Curl of Electrostatic Fields 65		The Divergence of E	Applications of Gauss's Law	2.2.4 The Curl of E	ic Potential	Introduction to Potential	Comments on Potential	Poisson's Equation and Laplace's Equation	The Potential of a Localized Charge Distribution	2.5.5 Summary; Electrostatic Boundary Conditions	and Energy in Electrostatics	The Work Done to Move a Charge	The Energy of a Point Charge Distribution	The Energy of a Continuous Charge Distribution	2.4.4 Comments on Electrostatic Energy	actors		Induced Charges	a Conductor	2.5.4 Capacitots	Special Techniques	3	Laplace's Equation in One Dimension	Laplace's Equation in Two Dimensions	Laplace's Equation in Three Dimensions		Theorem	3.2.1 The Classic Image Problem	

202 202 202 203 204 208 215 215 221 222 222 222 225 232

agnetostatics and Electrostatics

OT KITTING	24

			CONTENTS	CONIENIS
	5.4	Magnetic Vector Potential .	Potential	8 Conservation Laws
	41			~
	41		Summary; Magnetostatic Boundary Conditions	8.1.1 The Co
	41	5.4.3 Multipol	Multipole Expansion of the Vector Potential	
	Moan	Mornotic Dielde in Metter		8.2 Momentum .
	Magn	formations III IV		
		<u>ភ</u>		
	•			
	9		Torques and Forces on Magnetic Dipoles	o.z.4 Augula
	9		Effect of a Magnetic Field on Atomic Orbits	9 Electromagnetic W
	9	6.1.4 Magnetization	zation 262	
	6.2 T	he Field of a M	The Field of a Magnetized Object	
	9	6.2.1 Bound Currents		
	9	6.2.2 Physical	Physical Interpretation of Bound Currents	9.1.3 Bounds
	9	6.2.3 The Mag		9.1.4 Polariz
	6.3 T	he Auxiliary Fig		ō
	9	6.3.1 Ampère's	9	
	9	6.3.2 A Decept		
	9	6.3.3 Boundary		
	6.4 L	r a		ō
			tv and Permeahility	9.5.1 Fropag
	9			
)			F
	Electr	Electrodynamics	285	
5	7.1 E	Electromotive Force.		9.4.2 Reflect
	7	7.1.1 Ohm's La	Ohm's Law	9.4.3 The Fre
	7	7.1.2 Electrome	Electromotive Force	b
	7	7.1.3 Motional emf		
	7.2 E	Electromagnetic Induction		
	7.	7.2.1 Faraday's Law		9.5.3 The Co
	7.	7.2.2 The Induc	The Induced Electric Field	10 Potentials and Field
	7.	7.2.3 Inductance	ze 310	10.1 The Potential F
		7.2.4 Energy in	Energy in Magnetic Fields	
٠.	7.3 M	Maxwell's Equations		
	7.	7.3.1 Electrody	Electrodynamics Before Maxwell321	
	7.	7.3.2 How Max	npère's Law	10.2 Continuous Dis
	7.		Maxwell's Equations	10.2.1 Ketarde
	7		Magnetic Charge	10.3 Point Charges
	7		Maxwell's Equations in Matter	
	7	7.3.6 Boundary	Boundary Conditions	10.3.2 The Fig

r.	_	
ř	2	
Ξ	7	
1	3	
ū	٥	
F		
L	,	
4	5	
$\overline{}$	`	

vii

0	100	iser vari	Collect Valuel Laws	Ś
	8.1	Charge 8 1 1	Charge and Energy	346
		8.1.2	Poynting's Theorem	346
	8.2	Momentum	ntum	346
		8.2.1	Newton's Third Law in Electrodynamics	346
		8.2.2	Maxwell's Stress Tensor	35
		8.2.3	Conservation of Momentum	35,
		8.2.4	Angular Momentum	358
6	Elec	tromag	Electromagnetic Waves	36
	9.1	Waves	Waves in One Dimension	364
		9.1.1	The Wave Equation	364
		9.1.2	Sinusoidal Waves	36,
		9.1.3	Boundary Conditions: Reflection and Transmission	37(
		9.1.4	Polarization	37.
	9.5	Electro	Electromagnetic Waves in Vacuum	37.
		9.2.1	The Wave Equation for E and B	37.
		9.2.2	Monochromatic Plane Waves	37
		9.2.3	Energy and Momentum in Electromagnetic Waves	38(
	9.3	Electro	Electromagnetic Waves in Matter	38
		9.3.1	Propagation in Linear Media	38
		9.3.2	Reflection and Transmission at Normal Incidence	38
		9.3.3	Reflection and Transmission at Oblique Incidence	386
	9.4	Absorp	Absorption and Dispersion	39,
		9.4.1	Electromagnetic Waves in Conductors	39.
		9.4.2	Reflection at a Conducting Surface	39
		9.4.3	The Frequency Dependence of Permittivity	398
	9.5	Guided	Waves	4
		9.5.1	Wave Guides	4
		9.5.2	TE Waves in a Rectangular Wave Guide	40
		9.5.3	The Coaxial Transmission Line	41
10		entials a	Potentials and Fields	41
	10.1		The Potential Formulation	41(
		10.1.1	Scalar and Vector Potentials	41(
		10.1.2		416
			Coulomb Gauge and Lorentz* Gauge	42
	10.2		Continuous Distributions	42
		10.2.1	Retarded Potentials	42
			Jefimenko's Equations	42
	10.3		Point Charges	42
		10.3.1		42
		10.3.2	The Fields of a Moving Point Charge	43

SHNHKOU	OT THE PARTY OF	

CONTENTS	443 443 444 451 454 454 456 460 460 465	477 477 477 483 483 483 493 500 500 507 507 509 511 516 522 522 522 522 522 523 535 541	547 547 547 548 548 552	555 558 562
viii	11 Radiation 11.1 Dipole Radiation 11.1.1 What is Radiation? 11.1.2 Electric Dipole Radiation 11.1.3 Magnetic Dipole Radiation 11.1.4 Radiation from an Arbitrary Source 11.2 Point Charges 11.2.1 Power Radiated by a Point Charge 11.2.2 Radiation Reaction 11.2.3 The Physical Basis of the Radiation Reaction	12 Electrodynamics and Relativity 12.1 The Special Theory of Relativity 12.1.1 Einstein's Postulates 12.1.2 The Geometry of Relativity 12.1.3 The Lorentz Transformations 12.1.4 The Structure of Spacetime 12.2 Relativistic Mechanics 12.2.1 Proper Time and Proper Velocity 12.2.2 Relativistic Energy and Momentum 12.2.3 Relativistic Energy and Momentum 12.3.4 Relativistic Electrodynamics 12.3.4 Relativistic Electrodynamics 12.3.5 The Field Tensor 12.3.5 Relativistic Potentials 12.3.5 Relativistic Potentials	A. Vector Calculus in Curvilinear Coordinates A.1 Introduction A.2 Notation A.3 Gradient A.4 Divergence A.5 Curl A.6 Laplacian	B The Helmholtz Theorem C Units Index

Quantum Mechanics Introduction to

David J. Griffiths

Reed College

CONTENTS

PREFACE, vii

THEORY PARTI

THE WAVE FUNCTION, 1 CHAPTER 1

1.1 The Schrodinger Equation, 1

1.2 The Statistical Interpretation, 2 1.3 Probability, 5

1.4 Normalization, 11

1.5 Momentum, 14

1.6 The Uncertainty Principle, 17

CHAPTER 2 THE TIME-INDEPENDENT SCHRODINGER EQUATION, 20

2.1 Stationary States, 20 2.2 The Infinite Square Well, 24

2.3 The Harmonic Oscillator, 31

2.4 The Free Particle, 44

2.5 The Delta-Function Potential, 50 2.6 The Finite Square Well, 60

Upper Saddle River, New Jersey 07458

Prentice Hall

>

Contents

Further Problems for Chapter 2, 68 2.7 The Scattering Matrix, 66

FORMALISM, 75 CHAPTER 3

- 3.1 Linear Algebra, 75
- 3.2 Function Spaces, 95
- 3.3 The Generalized Statistical Interpretation, 104
- 3.4 The Uncertainty Principle, 108
- Further Problems for Chapter 3, 116

CHAPTER 4

QUANTUM MECHANICS IN THREE DIMENSIONS, 121

- 4.1 Schrodinger Equations in Spherical Coordinates, 121
 - 4.2 The Hydrogen Atom, 133
- 4.3 Angular Momentum, 145
 - 4.4 Spin, 154
- Further Problems for Chapter 4, 170

CHAPTER 5

IDENTICAL PARTICLES, 177

- 5.1 Two-Particle Systems, 177
- 5.2 Atoms, 186
- 5.3 Solids, 193
- 5.4 Quantum Statistical Mechanics, 204
 - Further Problems for Chapter 5, 218

APPLICATIONS

TIME-INDEPENDENT PERTURBATION THEORY, 221 CHAPTER 6

- 6.1 Nondegenerate Perturbation Theory, 221 6.2 Degenerate Perturbation Theory, 227
 - 6.3 The Fine Structure of Hydrogen, 235
- 6.4 The Zeeman Effect, 244
 - 6.5 Hyperfined Splitting, 250
- Further Problems for Chapter 6, 252

THE VARIATIONAL PRINCIPLE, 256 CHAPTER 7

7.1 Theory, 256

7.2 The Ground State of Helium, 261

7.3 The Hydrogen Molecule Ion, 266 Further Problems for Chapter 7, 271

CHAPTER 8

THE WKB APPROXIMATION, 274

- 8.1 The "Classical" Region, 275
 - 8.2 Tunneling, 280
- 8.3 The Connection Formulas, 284
- Further Problems for Chapter 8, 293

CHAPTER 9

TIME-DEPENDENT PERTURBATION THEORY, 298

- 9.1 Two-Level Systems, 299
- 9.2 Emission and Absorption of Radiation, 306
 - 9.3 Spontaneous Emission, 311
- Further Problems for Chapter 9, 319

CHAPTER 10

THE ADIABATIC APPROXIMATION, 323

- 10.1 The Adiabatic Theorem, 323
 - 10.2 Berry's Phase, 333
- Further Problems for Chapter. 10, 349

CHAPTER 11 SCATTERING, 352

- 11.1 Introduction, 352
- 11.2 Partial Wave Analysis, 357
- 11.3 The Born Approximation, 363
- Further Problems for Chapter 11, 373

AFTERWORD, 374

INDEX, 386

F. Mandl Statistical Thysics (2nd edition)

XIII

Contents

Contents

Flow diagram	H	iside	inside front cover	cover	
THE FIRST LAW OF THERMODYNAMICS					
Macroscopic Physics				1	
Some Thermal Concepts				4	
The First Law				10	
Magnetic Work				21	
Summary				28	
Problems 1				29	
The Direction of Natural Processes.				31	
The Statistical Weight of a Macrostate .				34	
Equilibrium of an Isolated System.				40	
The Schottky Defect				48	
Equilibrium of a System in a Heat Bath.				52	
Summary				64	
PROBLEMS 2				99	
PARAMAGNETISM					
3.1 A Paramagnetic Solid in a Heat Bath .				89	

* Starred sections may be omitted as they are not required later in the book.

* 3.2	The Heat Capacity and the Entropy.		75
	Negative Temperature		78
	PROBLEMS 3		81
	I SOLVE INVOCATION OF THE DAY OF THE SOLVE WAS A STATE OF THE SOLVE OF		
4 1HE			Č
4.1	The Second Law for Infinitesimal Changes		83
4.2	The Clausius Inequality		68
4.3	Simple Applications		92
	4.3.1 Heating Water		93
	4.3.2 Melting Ice		94
	4.3.3 Temperature Equalization		94
	4.3.4 Isothermal Compression of a Perfect Gas		95
4.4	The Helmholtz Free Energy		97
4.5	Other Thermodynamic Potentials		66
★ 4.6	Maximum Work		102
4.7	The Third Law of Thermodynamics.		105
★ 4.8	The Third Law (continued)		109
*	Summary		1111
	PROBLEMS 4		113
5 SIN	SIMPLE THERMODYNAMIC SYSTEMS		
* 5.1	Other Forms of the Second Law		115
★ 5.2	Heat Engines and Refrigerators		117
	Differenc		123
¥ 5.4	Some Properties of Perfect Gases		125
	5.4.1 The Entropy	S. Frank	125
	5.4.2 The Entropy of Mixing.		126
* 5.5	Some Properties of Real Gases		130
	5.5.1 The Joule Effect		130
	5.5.2 The Joule-Thomson Effect		132
	5.5.3 The Counter-Current Heat Exchanger.	Sales of	137
¥ 5.6	Adiabatic cooling		139
	PROBLEMS 5		145.
			100
6 THE	E HEAT CAPACITY OF SOLIDS		•
6.1	Introductory Remarks	9 150	147
6.2	Ei.		149
			149
463	6.2.2 Comparison of Einstein's Result with Experiment Dehye's Theory	ment .	155

	-	_	3
	5	ī	
	ŧ		1
	9		9
-	•	•	,

11 SYSTEMS WITH VARIABLE PARTICLE NUMBERS	11.1 The Gibbs Distribution*	The FI	★ 11.2.1 Fluctuations in a Perfect Gas		•			iŦī	Thermo	4		S			11.9.4 Pressure Dependence of the Reaction Equilibrium	PROBLEMS 11		A MATHEMATICAL RESULTS	A 1 Stirling's Formula	A 2 Evaluation of $\int_{0}^{\infty} (e^{x} - 1)^{-1} x^{3} dx$			B THE DENSITY OF STATES			B.2 The Schrödinger Equation			C MAGNETIC SYSTEMS		D HINTS FOR SOLVING PROBLEMS	Bibliography	Index.	Physical constants and conversion factors inside		*Sections 11 1-11 2 and section 11 3 are alternative treatments which can be rea	of each other. Either suffices for the applications in sections 11.4 to 11.6. Secti	depend on section 11.1 only.
157	162	104		166	169	175	178	179	181	184	191	204	210	214		218	221	223	226	230	230	231	231	232	237		230	240	244	245			246	247	249	251	256	259
	ent .			a.				•					•					•		٠				•				•										
6.3.1 Derivation of Debye's Result	6.3.2 Comparison of Debye's Result with Experiment	r KUBLEMS 0	THE PERFECT CLASSICAL GAS	7.1 The Definition of the Perfect Classical Gas .	7.2 The Partition Function		7.4 The Equation of State	★ 7.5 The Heat Capacity.	* 7.6 The Entropy.	7.7	00	7.9 Classical Statistical Mechanics.	7.9.1 The Equipartition of Energy.	PROBLEMS 7	PHASE EQUILIBRIA		★ 8.2 Alternative Derivation of the Equilibrium Conditions.	8.3 Discussion of the Equilibrium Conditions.	8.4 The Clausius-Clapeyron Equation	8.5 Applications of the Clausius-Clapeyron Equation.		8.5.2 Pressure Dependence of the Boiling Point.		★ 8.6 The Critical Point.	Problems 8	THE PERFECT OFFANTAL GAS	0 1 Introductory Demonstr					BLACK-BODY RADIATION	10.1 Introductory Remarks	10.2 The Partition Function for Photons	10.3 Planck's Law: Derivation		10.5 The Thermodynamics of Black-Body Radiation .	PROBLEMS 10

	> ×		
	2	2777	
C		1	

	11.1	The Gibbs Distribution*		761
	11.2	The FD and BE Distributions*		265
	*	11.2.1 Fluctuations in a Perfect Gas		270
*	: 11.3	The FD and BE Distributions: Alternative Approach*		272
*		The Classical Limit.		281
*	11.5	The Free Electron Model of Metals.		283
		11.5.1 The Fermi-Dirac Energy Distribution.		284
		11.5.2 The Electronic Heat Capacity of Metals .		290
*	★ 11.6	Bose-Einstein Condensation		292
	11.7	Thermodynamics of the Gibbs Distribution .		299
	*	11.7.1 Fluctuations of Particle Numbers		301
*	★ 11.8	The Perfect Classical Gas		303
	11.9	Chemical Reactions		304
		11.9.1 Conditions for Chemical Equilibrium .		305
				307
		11.9.3 Heat of Reaction		310
			H.	313
	٠	田		314
A		MATHEMATICAL RESULTS		
	A.1	Stirling's Formula.		317
	A.2	Evaluation of $\int_0^\infty (e^x - 1)^{-1} x^3 dx$		318
	A.3	Some Kinetic Theory Integrals	٠	321
В	THE	DENSITY OF STATES		
	B.1	The General Case.		324
	B.2	The Schrödinger Equation		331
	B.3	Electromagnetic Waves		332
	B.4	Elastic Waves in a Continuous Solid		333
C		MAGNETIC SYSTEMS	•	336
D		HINTS FOR SOLVING PROBLEMS		340
В	Bibliography	· · · · · · · · · · · · · · · · · · ·		374
Ir	Index .			319
Д	hysical	Physical constants and conversion factors inside	back	inside back cover

1.2 and section 11.3 are alternative treatments which can be read independently ner suffices for the applications in sections 11.4 to 11.6. Sections 11.7 to 11.9 to 11.1 only.