The current Department of Physics can be traced back through a long and rich history: its earliest forerunner was founded in 1904 as Straits Settlements and Federated Malay States Government Medical School. It was renamed to Raffles College in 1929 and established as a proper university as University of Malaya in 1949. After a further renaming to University of Singapore in 1962 and a merger with Nanyang University in the year 1980, the National University of Singapore was established. It is worth mentioning that famous physicists visited the department, such as Paul A. M. Dirac – a picture of him during a lecture is on display still in the departmental meeting room.

Until around 1990, the department was essentially a teaching department with little research activities. At that time, NUS began to transform itself into a research university. Over these past two decades, tremendous efforts have been made in developing the research capabilities of our department, which is now classified as “research intensive”. Below we list the current major research directions.

- Physics of Nanoscience
- Condensed Matter and Advanced Materials
- Biological Physics
- Physics of Nonlinear and Complex Systems
- Atomic, Molecular Physics (including Nonlinear Optics)
- Computational and Theoretical Physics (including String Theory, Cosmology, Particle Physics, etc)
- Quantum Information
- Graphene and 2D Materials

There are several unique groups in our department, firstly the Centre for Quantum Technologies (CQT), which originated in the physics department and is now a separate research centre, the first Research Centre of Excellence (RCE) funded by the Singapore government. Recently the Centre for Advanced 2D Materials and Graphene Research Centre was set up to spearhead graphene and 2D materials research. The Centre for Ion Beam Application (CIBA) is a unique entity, dedicated to ion beam applications. Many of our faculty members have very active research programmes and have produced high impact research work. Some of them hold editorial positions at prestigious journals and are elite members of professional organizations (such as APS or IoP fellows).

The 2017 and 2018 “QS world university ranking by subjects” has ranked NUS physics at the 25th position in the physics and astronomy category. Over the years, the research output produced by the department has grown quite strongly, as shown in figure 1 below. The figure indicates the number of journal publications indexed by the Web of Science with an author/coauthor from our department. Clearly, tremendous progress has been made.

From this handbook you can quickly find out who is doing what in our department. For more in-depth information, please check out our department webpage at http://www.physics.nus.edu.sg/.
THE FACULTY
HEAD OF DEPARTMENT
Professor Sow Chorng Haur

DEPUTY HEADS OF DEPARTMENT
Professor Gong Jiangbin
Professor Scarani, Valerio
Associate Professor Phil Chan Aik Hui
PROFESSORS
Breese, B.H. Mark
Chen Wei (Dean's Chair)
Englert, Berthold-Georg
Feng Yuan Ping
Gong Jiangbin
Ho, Peter
Ji Wei
Kurtsiefer, Christian
Lai Choy Heng
Liu Xiang Yang
Özyilmaz, Barbaros
Scarani, Valerio
Sow Chorn Haur (Head)
Vedral, Vlatko
Venkatesan, Thirumalai Venky (Provost's Chair)
Wang Jian-Sheng
Wee Thye Shen, Andrew (Class of '62 Professor)
Yan Jie

EMERITUS PROFESSORS
Lim Hock
Oh Choo Hiap
Tan Tiong Gie, Bernard

DISTINGUISHED PROFESSOR
Castro-Neto, Antonio Helio

LEE KONG CHIAN CENTENNIAL PROFESSOR
Ekert, Artur Konrad

ADJUNCT PROFESSOR
Ong Chong Kim
Phua Kok Khoo

DISTINGUISHED VISITING PROFESSORS
Geim, Andre (Nobel Laureate in Physics 2010)
Leggett, Anthony J. (Nobel Laureate in Physics 2003)

VISITING PROFESSOR
Hänggi, Peter

VISITING RESEARCH PROFESSOR
Miniatura, Christian
ASSOCIATE PROFESSORS
Adam, Shaffique
Ariando (Dean’s Chair)
Barrett, Murray Douglas
Bettiol, Andrew A.
Chan Aik Hui, Phil
Chua Lay-Lay
Chung Keng Yeow
Dieckmann, Kai
Eda, Goki (Dean’s Chair)
van Kan, Jeroen Anton
Kaszlikowski, Dagomir
Lim Hock Siah, Paul
Ling Euk Jin, Alexander
van der Maarel, Johan R. C.
Mahendiran, Ramanathan
Mirsaidov, Utkur
Osipowicz, Thomas
Rusydi, Andrivo
Singh, Kuldip
Tan Meng Chwan
Tay Seng Chuan
Tsang Mankei
Teo Ho Khoon, Edward
Tok Eng Soon
Wang Xuesen
Wang Zhisong
Zhang Chun

ADJUNCT ASSOCIATE PROFESSORS
Lee Cheow Lei, James
Goh Kuan Eng, Johnson
Koh Wee Shing
Pan Jisheng
Wang Shijie
Yakovlev, Nikolai

VISITING RESEARCH ASSOCIATE PROFESSOR
Gremaud, Benoit

PRINCIPAL RESEARCH SCIENTIST (CRISP)
Liew Soo Chin
ASSISTANT PROFESSORS
Garaj, Slaven
Li Wenhui
Loh, Duane
Loh Huanqian
Matsukevich, Dzmitry
Mukherjee, Manas
Nicholson, Travis Lee
Quek Su Ying
Soumyanarayanan, Anjan
Viana-Gomes, José Carlos

ADJUNCT ASSISTANT PROFESSORS
Feng Ling
Lee Ching Hua

SENIOR LECTURERS
Chan Taw Kuei
Hong Chong Ming, Kenneth
Ng Shao Chin, Cindy
Sharma, Nidhi
Udalagama, Chammika N B
Wang Qinghai
Yeo Ye

LECTURERS
Ng Wei Khim
Yang Jiahui, Abel

INSTRUCTORS
Lam Poh Fong, Lydia
Ng Siow Yee

TEACHING ASSISTANT
Shu Sze Yi, Angeline

SENIOR TUTORS
Foo Chuan Wei, Darryl
Quek Yihui
Tan Ying Zhe, Ernest
STAFF PROFILES

Department of Physics
CURRENT RESEARCH
Associate Professor Adam’s background is in mesoscopic quantum condensed matter theory. He is currently interested in:

- theoretical studies on the effects of disorder and interactions in Dirac fermion systems such as graphene and topological insulators;
- exploring the effects of impurities and electronic screening on experimentally measurable quantities such as transport and scanning probe experiments;
- application of graphene for new electronic devices.

RECENT PUBLICATIONS
CURRENT RESEARCH
The primary goal of Assistant Professor Ariando’s research effort is to explore heterostructure, superlattices, quantum wells between various epitaxial films, both from a fundamental as well as device-oriented viewpoint. The current research activity has a particular emphasis on atomically controlled functional materials with unconventional electronic, optical, magnetic and thermal properties.

SELECTED PUBLICATIONS
• X. Renshaw Wang et al., “Parallel charge sheets of electron liquid and gas in La_{0.5}Sr_{0.5}TiO_3 heterostructures”, Sci. Rep. 5, 18282 (2015).
MURRAY DOUGLAS BARRETT
Associate Professor
PhD, Georgia Institute of Technology, Atlanta, Ga, USA (2002)

Office : S15-01-11
Tel : (65) 6516 2983
Email : phybmd@nus.edu.sg

CURRENT RESEARCH
Dr. Barrett’s research has shifted towards high precision metrology and focusses on the advancement optical atomic clocks. The CQT clock is based on singly-ionized lutetium, which provides three suitable clock transitions within the one atom. Two of these transitions have favourable systematics compared to world-leading clock systems. His group hopes to further clock performance with a multi-ion system to improve clock stability.

SELECTED PUBLICATIONS
CURRENT RESEARCH

Optics and Photonics
• Ion beam modification of materials for applications in micro/nanophotonics.
• Terhertz spectroscopy and optics - Application in metamaterials.
• Active plasmonics, loss mitigation in micro-optical systems, enhancement of light emission using plasmonics.
• Mid-IR optics, passive and active devices for biosensing.

Nuclear Microscopy and Radiobiology
• Proton induced fluorescence microscopy in biological systems - Super-resolution imaging.
• Radiation effects in single live cells - Applications in cancer treatment using particle therapy.
• Development of diamond based radiation hard particle detectors, delta-E detectors using thin membranes, radiation dosimetry.

SELECTED PUBLICATIONS
• Y.J. Yan, L.F. Ng, L.T. Ng, K.B. Choi, J. Gruber, A.A. Bettiol and N.V. Thakor, “A continuous-flow C. elegans sorting system with integrated optical fiber detection and laminar flow switching”, Lab Chip 14, 4000 (2014).
CURRENT RESEARCH

• Professor Breese’s ion beam research activities are centred around the use of focused high-energy beams of charged particles as a means of imaging the structure and crystallinity of materials and to modify their properties. This work includes areas such as porous silicon formation, electrochemistry, ion optics, and ion channelling, accelerator physics. Much of the current work is on the use of silicon micromachining to fabricate micro- and nanoscale components for silicon photonics.

• His Synchrotron research activities include X-ray lithography, X-ray optics, accelerator physics, soft X-ray scattering.

SELECTED PUBLICATIONS

• Tunable and low-loss correlated plasmons in Mott-like insulating oxides, Nature Communications 8, 15271 (2017)

• Electron transport and visible light absorption in a plasmonic photocatalyst based on strontium Niobate, Nature Communications 8, 15070 (2017)

ANTONIO HELIO CASTRO-NETO
Distinguished Professor
PhD, University of Illinois at Urbana-Champaign, USA (1994)

Office: S14-06-13
Tel: (65) 6601 2575
Email: phycastr@nus.edu.sg

CURRENT RESEARCH
Graphene: all aspects. Strongly correlated systems: spin and charge density wave, quantum magnetism, superconductivity. Disordered magnetic systems.

SELECTED PUBLICATIONS
CURRENT RESEARCH
• QCD soft-hadron phenomenology
• Neutrinos and Large scale structures of the Universe
• Large Hadron Collider (CERN): CMS Collab-NUS EOI co-ordinator

SELECTED PUBLICATIONS

NUS Physics department Roll-off-Roof Observatory (2011): 17” Plain-Wave CDK (F6.8 Corrected Dall-Kirkham) Astograph Telescope (Dual carbon-fiber truss design) equipped with a 4” Takahashi (Hydrogen Alpha Solarscope) on the latest computerized Showa 25E German Equatorial Mount.
CURRENT RESEARCH
• High-resolution depth profiling of elements in advanced materials using methods of Ion Beams Analysis (IBA).
• Ion beam modifications of advanced materials in novel device and technology research.

SELECTED PUBLICATIONS
CURRENT RESEARCH

- Molecular-level interface engineering for organic electronic devices, organic photovoltaic cells, 2D-materials and nanostructured materials;
- Rational design of self-assembled molecular nanostructure arrays over macroscopic area with superior multi-functionalities for molecular nano-devices;
- Interface-controlled nanocatalysis for energy and environmental research.

SELECTED PUBLICATIONS

CURRENT RESEARCH

- Materials development for high-performance organic electronic devices, such as photocrosslinkers and injection layers.
- Structure–morphology–property relations of pi-conjugated semiconducting materials.
- Functionalization and development of new applications for solution-processable graphenes.
- Transfer method and development of new applications for CVD graphenes.

SELECTED PUBLICATIONS

CURRENT RESEARCH
• Use of laser-cooled atoms and Bose-Einstein condensates in ultra-high precision measurements
• Study the feasibility of using atom interferometers to detect effects of quantum gravity

SELECTED PUBLICATIONS
CURRENT RESEARCH
• Experimental Atomic and Molecular Physics and Quantum Optics (AMOP)
• Many body quantum physics with degenerate Bose and Fermi gases and dipolar molecules
• Laser cooling and atom trapping
• Atom interferometry
• Laser spectroscopy and frequency combs

SELECTED PUBLICATIONS
CURRENT RESEARCH
Prof. Eda studies electronic and optical phenomena in two-dimensional (2D) solids. His research group aims to develop novel electronic and photonic devices based on 2D semiconductors for information technologies and energy harvesting applications.
• Light-matter interaction
• Electrooptics and optoelectronics
• Mesoscopic charge transport
• 2D materials growth
• Crystal phase engineering

SELECTED PUBLICATIONS
CURRENT RESEARCH

• Professor A. Ekert is one of the world’s leading authorities in quantum information science, in particular in quantum cryptography. He is the founding Director of the Centre for Quantum Technologies (CQT) at NUS, established as Singapore’s first Research Centre of Excellence in December 2007. He had previously led the Quantum Information Technology group in NUS, which formed the core of the new centre. He has enriched the intellectual environment of the University, attracting outstanding physicists and computer scientists to collaborate with Singapore-based researchers and to join CQT. As of 2013, CQT has more than 200 staff and students.

• His research extends over most aspects of information processing in quantum-mechanical systems, with a focus on quantum cryptography and quantum computation. It is a cross-disciplinary field bringing together theoretical and experimental quantum physics, mathematics, logic, computer science and information theory. His work is mostly theoretical but its results also bear directly on issues of experimental implementation. One reason why it has attracted attention from industry and government agencies is that quantum cryptography can guarantee perfectly secure communication. Another is that projected quantum computers will be capable of efficiently solving some problems for which there is believed to be no efficient classical algorithm.

SELECTED PUBLICATIONS

CURRENT RESEARCH
• Robust storage of quantum bits
• Quantum state estimation, quantum process estimation
• Sampling from the quantum state space
• Ultracold gases of bosonic or fermionic atoms
• Energy functionals for interacting fermions

SELECTED PUBLICATIONS
CURRENT RESEARCH
Complex Networks and critical phase transitions
• Criticality in deep neural networks.
• Complex network theories.
• Spreading/resilience on social/economic networks.

SELECTED PUBLICATIONS
CURRENT RESEARCH
Computational Materials Physics, focusing on first-principles studies of
• Physics and applications of advanced materials,
• Materials and devices for spintronics,
• Two-dimensional materials &
• Materials prediction using genomic approach.

SELECTED PUBLICATIONS
CURRENT RESEARCH

Prof. Garaj explores nanoscale phenomena emerging at the interface of solid-state devices and soft-matter systems. He is interested in behaviour of water molecules and ions in atomic-scale confinements; control and analysis of individual biomolecules using physical methods; and electrical and structural properties of 2D materials. The research is often guided by the desire to address a real technological challenge, and it includes:

• Ultra-fast, inexpensive DNA sequencing using physical methods.
• Nanopore devices for detection, fingerprinting and sequencing of individual proteins
• Electrical sensors based on 2D materials.
• 2D materials as next-generation membranes for filtration and water desalination.

SELECTED PUBLICATIONS

• B. Radha et al., “Molecular transport through capillaries made with atomic-scale precision”, Nature 538, 222 (2016).
• S. Garaj et al., “Graphene as a subnanometre trans-electrode membrane”, Nature 467, 190 (2010).
ANDRE GEIM
Distinguished Visiting Professor
PhD, Institute of Solid State Physics, Chernogolovka, Russia (1981)
Email : phyga@nus.edu.sg / geim@manchester.ac.uk

CURRENT RESEARCH
• Sir Andre Geim is the Regius and Royal Society Research Professor at the University of Manchester. He was awarded the 2010 Nobel Prize for his groundbreaking work on graphene, a one-atom-thick material made of carbon. He has also received numerous international awards and distinctions, including medals from the US National Academy of Sciences and the UK Royal Society, and holds honorary doctorates and professorships from many countries.
• Thomson-Reuters repeatedly named him among the world’s most active scientists and attributed to him three new research fronts – diamagnetic levitation, gecko tape and graphene. He was also awarded the IgNobel prize in 2000 for his work on levitation, becoming the first and only recipient of both Nobel and IgNobel Prizes. He has also received both Dutch and British knighthoods.

SELECTED PUBLICATIONS
CURRENT RESEARCH
• Additive Manufacturing
• Atomic Precision Manufacturing
• Nanofabrication by scanning probe microscopy and molecular beam epitaxy
• Quantum effects in low-dimensional systems
• High-K dielectrics
• Quantum computing

SELECTED PUBLICATIONS
• S. Chen, H. Xu, K.E.J. Goh, L. Liu, and J.N. Randall, “Patterning of sub-1 nm dangling-bond lines with atomic precision alignment on H:Si(100) surface at room temperature”, Nanotechnol. 23, 275301 (2012).
• Deputy Head (Research)
• Singapore NRF Investigator (class of 2017)

www.physics.nus.edu.sg/~phygj/

CURRENT RESEARCH
Topological Aspects of Driven Quantum Systems; Quantum Thermodynamics; Nonlinear Dynamics and Quantum Chaos; Quantum Dynamics Control and Quantum Simulation.

SELECTED PUBLICATIONS

A nonlinear Dirac cone discovered by Prof. Gong’s group, around which the Aharonov-Bohm phase is π but the Berry phase is not quantized.
CURRENT RESEARCH
Ultracold quantum gases, condensed matter, quantum Hall effects. Quantum transport and disorder: weak and strong localization.

SELECTED PUBLICATIONS
CURRENT RESEARCH

Theoretical physics: time-dependent quantum dynamics and quantum control, decoherence and dissipation in quantum mechanics, quantum tunneling, classical and quantum information processing, molecular electronics, Brownian Motors, Stochastic Resonance, colored noise, theory of reaction rates, nonlinear dynamics in systems far from thermal equilibrium, stochastic processes, transport theory and instabilities, relativistic statistical physics and thermodynamics.

SELECTED PUBLICATIONS

CURRENT RESEARCH
Physics and technology of organic semiconductor devices (light-emitting diodes, field-effect transistors and solar cells)

SELECTED PUBLICATIONS
CURRENT RESEARCH
Black holes in higher dimensions.

SELECTED PUBLICATIONS
CURRENT RESEARCH
Professor Ji Wei’s research interests cover nonlinear optics and ultrafast nonlinear spectroscopy, for nonlinear optical and quantum materials which have photonic and optoelectronic applications. He has co-authored over 230 research papers, and his h-index is above 50. Recently, his research interests have been extended to optoelectronics with 2D materials and metal-organic frameworks.

SELECTED PUBLICATIONS
CURRENT RESEARCH

- Micro and Nano fabrication using: Proton Beam Writing (PBW), Nano Imprint Lithograph (NIL) and mold fabrication
- Micro & Nanofluidic lab on chip devices for single molecule detection and particle separation
- Materials modification using ion beams, e.g. Graphene, Magnetic materials and Diamond films.
- Ion source development for next generation ion nano-probes.

SELECTED PUBLICATIONS

CURRENT RESEARCH

• It has been recently shown that large systems in thermal equilibrium can be in entangled states even for high temperatures. Associate Professor Kaszlikowski is interested in how entanglement, which is one of the most fundamental properties of quantum objects, can affect thermodynamic properties of such systems (magnetic susceptibility, heat capacity etc.).

• He currently investigates a connection between entanglement and phase transitions (Bose-Einstein condensation, quantum phase transitions etc.).

• He is also interested how to detect and quantify entanglement in quantum systems where the effects of Bose-Einstein and Fermi-Dirac statistics cannot be neglected (entanglement in Fock space).

SELECTED PUBLICATIONS

KOH WEE SHING
Adjunct Associate Professor
PhD, Electrical and Electronic Engineering, Nanyang Technological University (2007)
Institute of High Performance Computing
Email: KOHWS@ihpc.a-star.edu.sg

CURRENT RESEARCH
• Nano-Photonics and Plasmonics
• Solar cell design and Optoelectronic device physics
• Plasma and particle-in-cell simulations
• Urban environmental & green building modeling - solar irradiance & daylighting

SELECTED PUBLICATIONS
CURRENT RESEARCH
• Experimental Quantum Information and Communication
• Single Photon Technologies, Atom-Light interaction

SELECTED PUBLICATIONS
CURRENT RESEARCH
- Deep learning and Renormalization Group
- Criticality and brain dynamics
- Complex networks and applications

SELECTED PUBLICATIONS
CURRENT RESEARCH
Medical Physics for Radiotherapy:
• Radiation dosimetry techniques for verification of dose and advanced dose algorithms
• Advanced treatment planning studies
• Monte Carlo simulation of radiation transport for radiotherapy
• Effects of motion in radiotherapy

SELECTED PUBLICATIONS
• J. Hu, K.W. Fong, Z. Master, J. Yap, J.C.L. Lee, J. Wee, “Comparison of conformity Index (CI) and Homogeneity Index (HI) between RapidArc and Intensity Modulated Radiation Therapy (IMRT) for 9 Nasopharyngeal Carcinoma(NPC) cases at National Cancer Centre of Singapore (NCCS)”, 13th AOCMP and 11th SEACOMP, Singapore, 12-14 Dec 2013.
CURRENT RESEARCH

Synthetic and non-equilibrium topological matter
Topological signatures are widespread in various synthetic topological metamaterials and non-equilibrium setups, with potential applications in photonics and electronics. My specific directions include:
• topological circuits and their robust topolectrical resonances
• non-Hermitian and Floquet dynamics
• topological photonics and mechanics
• topology of non-linear dynamics

Strongly correlated electronic systems
My research also explores the intriguing interplay of energetics and topology on strongly interacting electrons. Current directions include:
• realization of non-abelian fractional quantum Hall (FQH) states
• topological quantum computing
• holography and conformal field theory
• fractional Chern insulators

SELECTED PUBLICATIONS
CURRENT RESEARCH

- Aspects of cuprate superconductivity
- Experimentally oriented studies of basic conceptual issues in the foundations of quantum mechanics
- Superfluidity and phase coherence in very degenerate atomic gases

SELECTED PUBLICATIONS

CURRENT RESEARCH
- Experimental atomic and molecular physics, quantum gases, quantum many-body physics.
- Collective excitation to high-lying Rydberg states from a degenerate gas of ground-state atoms in optical lattices;
- Laser cooling and trapping;
- Many-body physics with atomic Fermi gases;
- Long-range interaction and strong correlation of Rydberg gases.

SELECTED PUBLICATIONS
LIEW SOO CHIN
Principal Research Scientist, CRISP
PhD, University of Arizona, Tucson, USA (1989)

Office: S17-01
Tel: (65) 6516 5069
Email: phyliews or scliew@nus.edu.sg

CURRENT RESEARCH
- Remote sensing of the aquatic, terrestrial and atmospheric environment using optical, thermal and synthetic aperture radar data
- Ocean optics, optical properties of suspended particles in water, derivation of water quality parameters from remote sensing data
- Radiative transfer in atmosphere and water, characterization of aerosol optical properties
- Hyperspectral data analysis and applications

SELECTED PUBLICATIONS
CURRENT RESEARCH
Prof Lim Hock is the founding Director of Temasek Laboratories at the National University of Singapore (TL@NUS). The research areas of TL@NUS include electromagnetics, aeronautics, control and guidance, information security, signal processing and nonlinear dynamics. His personal research interest are on the dynamics of atmosphere and ocean, image restoration, synthetic aperture radar imaging, and electromagnetic materials.

SELECTED PUBLICATIONS
CURRENT RESEARCH
Associate Professor Paul Lim’s current research is centered on the theoretical calculations of acoustic phonons and dipole-exchanged spin waves in periodic nanostructures.

SELECTED PUBLICATIONS
• H.S. Lim, and M.H. Kuok, “Spin Waves in Ferromagnetic Nanowires and Nanotubes”. In Handbook of Nanophysics: Nanotubes and Nanowires, ed. Klaus D. Sattler, CRC Press (Taylor and Francis Group), Chapter 31 (2010).
CURRENT RESEARCH

- Associate Professor Ling’s research group works to leverage optical technology for building compact, rugged & effective optical entanglement systems.
- He is currently working on a project called SPEQS (Small Photon-Entangling Quantum Systems) which is designed to incorporate photon-pair sources and detectors into a single package of 300 millilitres, capable of running off a single CR1220 battery for 3 hours.

SELECTED PUBLICATIONS

CURRENT RESEARCH

- Biological Materials and Physics: Biomacromolecule crystallization, self-assembly and aggregation in the bulk and at the surface; Antifreeze mechanism; Biomineralization; Silk formation mechanism; Bio mimicking of structural colors, lotus leaves, etc.
- Micro/Nano Materials and Soft Materials Formation and Engineering: Supramolecular self-assembly and micro/nano architecture; Micro/nano particle self assembly; Controlled self assembly of colloidal spheres, etc.
- Crystallization, Molecular Assembly and Hybrid materials: Colloidal, biomolecule crystallization; Surface roughening; Morphologies (shapes) of crystals; Nucleation and crystals growth; Crystal network (and aggregation) formation, etc.

SELECTED PUBLICATIONS

CURRENT RESEARCH

Microscopy is inherently data-informed. We combine modeling, machine learning and optics to create computational lenses to re-invent high-resolution microscopy. My group uses a data-informed approach to tackle fundamental and applied problems in the following fields:

- three-dimensional single-particle imaging,
- structural motifs in disordered materials,
- order-disorder phase transitions,
- nanoparticle dynamics in thin films,
- transient heterogeneous ensembles in non-equilibrium systems.

SELECTED PUBLICATIONS

Despite their small sizes and scattering cross sections, nanoscale cluster aggregates can be serially fingerprinted and morphologically sorted in-situ. This image shows a simulated clusters that are amenable to such methods.
Ultracold molecules exhibit long nuclear spin coherence times, making them promising candidates for quantum memory.

CURRENT RESEARCH

Our lab focuses on the manipulation of molecules at the single-molecule, single-quantum-state level. To access this regime, we will develop methods to precisely control the motion, internal quantum states, and spatial arrangement of individual molecules. These molecular building blocks will be used to study few- to many-body physics and quantum chemistry, with an eye towards quantum simulation of new materials and quantum data storage.

SELECTED PUBLICATIONS

CURRENT RESEARCH

Associate Professor van der Maarel’s main interest is the dynamic assembly, complexity and emergence of complex fluids with a relevance for biology and/or nanobiotechnology. His methodology includes molecular and microbiology, nanofluidics, microrheology, light, neutron and x-ray scattering, nuclear magnetic resonance, optical, fluorescence, scanning probe and electron microscopy, and computer simulation.

SELECTED PUBLICATIONS

CURRENT RESEARCH
- Oxide Spintronics: Materials, physics and devices
- Magnetic and Resistive Non-volatile Memories
- Electron correlation effects in oxides
- Magnetocalorics, Thermoelectrics and Spincaloritronics
- Multiferroics and Relaxor Ferroelectrics
- High frequency magnetotransport
- Magnetization dynamics in nanostructures
- Magnetic Shape Memory alloys
- Giant Magnetoostrictive materials
- Ordered magnetic nanostructures
- Energy harvesting

SELECTED PUBLICATIONS
- P. Kumar, and R. Mahendiran, “Magnetothermopower, Magnetic entropy change and Magnetoresistance in ferromagnetic Cobaltites: R$_{0.7}$Sr$_{0.3}$CoO$_3$ (R = La, Gd)”, Appl. Phys. Lett. 106, 142401 (2015).
- R. Thiagarajan, S.E. Muthu, R. Mahendiran, and S. Arumugam, “Effect of hydrostatic pressure on magnetic and magnetocaloric properties of Mn-site doped perovskite manganites Pr$_{0.8}$Ca$_{0.2}$Mn$_{0.96}$B$_{0.04}$O$_3$ (B = Co, Cr)”, J. Appl. Phys. 115, 043905 (2014).
CURRENT RESEARCH

Our group uses single trapped ions to address problems in quantum information processing, quantum thermodynamics, and precision measurements. We build small heat machines that consist of only a few atoms and study their performance in the regime where quantum effects become important. We explore how control and manipulation of motional states can be used for quantum computing. We are also working on preparation, manipulation, and detection of internal states of molecular ions via “quantum logic” techniques.

SELECTED PUBLICATIONS

CURRENT RESEARCH
- Quantum Transport and Disorder
- Quantum Degenerate Gases
- Artificial Gauge Fields

SELECTED PUBLICATIONS
CURRENT RESEARCH
Our experimental group uses advanced nanofabrication and Electron Microscopy techniques to explore material and devices properties at nanoscale. Our main research directions are:

- Synthesis of new materials
- Discovery of new pathways in material synthesis
- Self-assembly of nanostructures
- Fabrication of nanoscale devices for next generation microelectronic devices
- Development of new in situ Electron Microscopy techniques.

SELECTED PUBLICATIONS

CURRENT RESEARCH
A single or few ions trapped in a linear radiofrequency ion trap and laser cooled to low temperatures provide a simple and clean quantum system. A linear chain of such ions is equivalent to a chain of quantum oscillators. We prepare such systems for different kind of studies including emulating condensed matter systems, understanding the inherent geometry of a quantum system and tests of fundamental physics. We are also interested in using trapped ions for quantum information processing and metrology. In parallel we are also developing surface based ion trap chips.

SELECTED PUBLICATIONS
• P. Mandal, A. Sen, and M. Mukherjee, “Radium ion: A candidate for measuring atomic parity violation”, Hyperfine Interact. 196, 261 (2010).
Joint confidence-level plot for the cosmographic parameters, using the data from various astrophysical observations

Image from the animation created to explain the formation of the Solar System

CURRENT RESEARCH
• Dark energy models: scalar field, quintessence, modified gravity theories, braneworld model, teleparallel gravity, \(f(T) \), \(f(R) \)
• Testing models with observational data: supernovae, baryon acoustic oscillation, CMB, etc.
• Cosmography
• Education: visualization tools

SELECTED PUBLICATIONS
CURRENT RESEARCH
• Theoretical and phenomenological high energy physics: Neutrino physics & Matter and Anti-matter asymmetry.
• Nonlinear quantum theory: Formalism and phenomenological applications.
• Quantum Theory: Foundations and symmetries & Generalised Uncertainty Principles.

SELECTED PUBLICATIONS
CURRENT RESEARCH
Ultracold strontium trapped in optical lattice potentials is the basis for the world’s best atomic clocks. Meanwhile ultracold atoms in Rydberg states have realized high-fidelity quantum gates. We aim to combine these two approaches to realize many-qubit quantum logic with high fidelity. With single-site spatial resolution, mHz-level spectroscopy, and tunable long-range interactions (achieved with Rydberg dressing), we can use degenerate strontium in optical lattices for quantum logic with minimal error. We are also interested in using Rydberg dressing to generate squeezed states that can beat the standard quantum limit to measurement precision.

SELECTED PUBLICATIONS
CURRENT RESEARCH
- Quantum information including quantum cryptography, entanglement, topological quantum computation, quantum simulation, cold atoms and quantum memory.

SELECTED PUBLICATIONS
ONG CHONG KIM
Adjunct Professor
PhD, University of Manitoba, Winnipeg, Manitoba, Canada (1973)

Office : S13-04-07
Tel : (65) 6516 2984
Email : phyongck@nus.edu.sg

www.csmm.nus.edu.sg/

CURRENT RESEARCH
• Superconductivity, magnetism and ferroelectricity
• Microwave measurements and materials characterization
• Electromagnetic materials and photonics
• Electronics and nanostructures of oxide thin films
• Microwave electronics

SELECTED PUBLICATIONS
• D.H. Wang, W.C. Goh, M. Ning, and C.K. Ong, “BiFeO3 film deposited on Si substrate buffered with La0.7Sr0.3MnO3 electrode”, Appl. Phys. Lett. 89, 212907 (2006).
CURRENT RESEARCH
• Application of ion beam based techniques to a wide range of problems in materials science and solid state physics.
• Development of Nuclear Microscopy and the various analytical and lithographic techniques associated with it, e.g. ERDA, IBIC, RBS, Proton Beam Writing.
• Proton beam writing, a true 3D micromachining process that was invented and developed at the Centre for Ion Beam Applications (CIBA) at the physics department, NUS.
• Development and applications of high resolution (magnet spectrometer) RBS and ERD, a quantitative technique for the analysis of ultrathin film systems.

SELECTED PUBLICATIONS
CURRENT RESEARCH

- Fundamental studies of spin, charge and phonon transport in graphene, phosphorene and 2D van der Waals heterostructures.
- Semiconductor device application of graphene and other 2D crystals, e.g. Ferroelectric-graphene non-volatile memory, Black phosphorus effect transistor.
- Graphene based biomedical applications: cellular force sensing, stem cell differentiation and growth.
- Energy storage applications of nanoporous graphene and its derivatives, e.g. Supercapacitors.

SELECTED PUBLICATIONS

CURRENT RESEARCH
• Photoemission technique development
• Surface nanostructure formation, characterization and applications
• Growth and characterization of thin films for microelectronic device fabrication
• Ion beam pattern of semiconductor surfaces
• Industry surface analysis and consulting service

SELECTED PUBLICATIONS
• T.L. Duan, J.S. Pan, and D.S. Ang, “Interfacial chemistry and band offsets between Al2O3 and GaN studied by X-ray photoelectron spectroscopy”, Appl. Phys. Lett. 102, 201604 (2013).
Professor Phua Kok Khoo is the Founding Director of the Institute of Advanced Studies at Nanyang Technological University (NTU), Adjunct Professor of Department of Physics at National University of Singapore (NUS) and Chairman and Editor-in-Chief of World Scientific Publishing Co Pte Ltd.

He obtained his BSc DIC from Imperial College, London University and Ph.D. in Mathematical Physics from Birmingham University, United Kingdom and as a theoretical high energy physicist he did some interesting and useful work in particle physics, particularly in the field of phenomenology in high energy collisions.

Professor Phua is the Founding President of the South East Asia Theoretical Physics Association (SEATPA). Together with Nobel Laureate Professor C. N. Yang and other senior physicist, he is one of the founding council members of the Association of Asia-Pacific Physical Society (AAPPS).

He is an Advisory Board Member of Singapore-China Association for Advanced Science & Technology. He was elected as a Fellow of the American Physical Society (APS) for his contributions to research and education in physics in 2009 and was also awarded the IPS President’s Award by the institute of Physics Singapore (IPS) Council, for his outstanding contributions to physics research and education in Singapore in 2006. He is an Honorary Professor at Nankai University and also holding a number of honorary professorships in China.
CURRENT RESEARCH
Assistant Professor Quek’s group uses first principles approaches to make predictions on the electronic structure, vibrational properties, and transport properties of materials. They use state-of-the-art methods to understand the physical mechanisms governing macroscopic observables. Based on these studies, simpler predictive models are often developed. They have recently focused on research involving emerging 2D materials and organics.

SELECTED PUBLICATIONS
CURRENT RESEARCH

• Study of interplay of spin, charge, orbital and lattice degrees of freedom at interface and surface of novel complex systems and nanostructured strongly correlated electron systems, such magnetic materials, high temperature superconductors, organic semiconductors, and molecular electronics materials.

• Develop and use in-situ synchrotron-based characterizations including resonant soft X-ray magnetic scattering, spectral generalized magneto-optical spectroscopic ellipsometry (from mid-infrared to vacuum-ultraviolet) and angular resolved photoemission spectroscopy, and in-situ (ultra) film growth (atomically layer-by-layer molecular beam epitaxy) at Singapore Synchrotron Light Source.

SELECTED PUBLICATIONS

CURRENT RESEARCH

• Device-independent certification of quantum devices.
• Quantum thermodynamics.
• Foundations of quantum physics, in particular Bell nonlocality.
• Description of light-matter interactions (atoms, nanomechanical systems), in collaboration with experimental groups.

SELECTED PUBLICATIONS

• A. Coladangelo, K.T. Goh, V. Scarani, “All pure bipartite entangled states can be self-tested”, Nat. Comm. 8, 15485 (2017)
CURRENT RESEARCH
• Materials synthesis and characterization
• Sol-gel method: Nano materials
• Li-ion batteries

SELECTED PUBLICATIONS
KULDIP SINGH
Associate Professor
PhD, National University of Singapore (1995)
Office: S15-03-02
Tel: (65) 6516 6756
Email: phyksi / cqtks@nus.edu.sg

CURRENT RESEARCH
• Geometrical Methods in Physics
• Quantum Algebras
• Quantum Theory

SELECTED PUBLICATIONS
SOUMYANARAYANAN, ANJAN
Assistant Professor
PhD in Physics, Massachusetts Institute of Technology (MIT), USA

Office : S12-03-14
Email : phyanja@nus.edu.sg

CURRENT RESEARCH
• Spin Technologies for Next-Gen Computing
• Nanomagnetism and Topology for GHz Electronics
• Tailoring Quantum Phases in Low-Dimensional Materials

SELECTED PUBLICATIONS
• A. Soumyanarayanan et al., Nature 539, 509 (2016).
• Y. He et al., Science 344, 608 (2014).
CURRENT RESEARCH

• Studies of hybrid nanostructured functional materials and their unique electrical, optical and mechanical properties.

• Investigation of potential applications of these nanostructured materials as field emitter, photo-sensor, transistor, etc.

SELECTED PUBLICATIONS

TAN MENG CHWAN
Associate Professor
PhD, National University of Singapore (2007)
Office : S12-02-02
Tel : (65) 6516 5376
Email : mctan@nus.edu.sg

• Assistant Dean (Outreach & Admissions)
• Head, NUS String Theory Group
www.physics.nus.edu.sg/~strings/

CURRENT RESEARCH
• M-theory, string theory, quantum field theory, and their deep implications for contemporary mathematics.
• Emergent spacetime in quantum theories of gravity.

SELECTED PUBLICATIONS
CURRENT RESEARCH
- Microwave applications of semiconductors and dielectrics.
- Digital musical sound analysis and synthesis.
- Psychoacoustics of time-delayed multiple sound sources.

SELECTED PUBLICATIONS
TAY SENG CHUAN
Associate Professor
PhD, National University of Singapore (1999)

University Hall Lee Kong Chian Wing, UHL #05-01D
Tel : (65) 6601 3160
Email : pvotaysc@nus.edu.sg

CURRENT RESEARCH
• Discrete-Event Systems
• Parallel Simulation
• Information Technology and Applications in Education

SELECTED PUBLICATIONS

Warden (Ridge View Residences)
www.physics.nus.edu.sg/~phytaysc/
CURRENT RESEARCH
Associate Professor Edward Teo’s research lies in the areas of General Relativity and Gravitation. He is very interested in exact solutions of general relativity, particularly those describing black holes. More recently, he has been focusing on black holes and black rings in higher dimensions.

SELECTED PUBLICATIONS
CURRENT RESEARCH
- Electronic Materials Growth and Interface Characterisation (εMaGIC)
- Materials Analysis and Reliability Science (MARS)
- Research Projects with Materials Growth and Interface Focus
- Research Projects with Industry Focus
- Analytical Techniques

RECENT PUBLICATIONS
CURRENT RESEARCH
• Superresolution
• Quantum Optics
• Quantum Measurement Theory

SELECTED PUBLICATIONS
The image is of an event-by-event Monte Carlo simulation of MeV protons (i.e. with millions of electron-volts of energy) plunging into a material. The protons lead to secondary electron (delta-ray) cascades (seen as fiery streaks) that are the predominant mode of energy deposition.
CURRENT RESEARCH
• Many body entanglement
• Geometrical phases and quantum computation
• Generalised entropies in information theory and physics
• Cluster state quantum computation

SELECTED PUBLICATIONS
THIRUMALAI VENKY VENKATESAN

Professor (Provost’s Chair)
PhD, University of New York and Bell Laboratories, USA

Office: T-Lab
Tel: (65) 6516 5187
Email: venky@nus.edu.sg

CURRENT RESEARCH
• Current Research
• Nanoscience
• Nanotechnology

SELECTED PUBLICATIONS
CURRENT RESEARCH
CURRENT RESEARCH

• Professor Wang’s research focus is on the problems of quantum thermal transport in nanostructures and the development of nonequilibrium Green’s function (NEGF) method for such problems. Most recently, he studies full counting statistics of heat transport in junctions. Other topics of current interests include molecular dynamics simulation with quantum baths, transport in oxides, quantum master equation approach to heat transport, Joule heating and electron-phonon interaction.

• His earlier research has been in Monte Carlo method and cluster algorithms for efficient computer simulations in statistical physics.

SELECTED PUBLICATIONS

CURRENT RESEARCH

• Non-Hermitian PT-symmetric quantum mechanics
• Quantum field theory
• Mathematical physics

SELECTED PUBLICATIONS

WANG SHIJIE
Adjunct Associate Professor
PhD, National University of Singapore (2002)

Tel : (65) 6874 8184
Email : phywangs@nus.edu.sg

CURRENT RESEARCH
• Nanoelectronics and nanophotonics
• Surface and interface physics: high-resolution transmission electron microscopy, in-situ x-ray photoemission spectroscopy and first-principles calculations.
• Functional oxide growth: Pulsed laser deposition and ultra-high vacuum sputtering.

SELECTED PUBLICATIONS
WANG XUESSEN
Associate Professor
PhD, University of Maryland, College Park, USA (1990)
Office: S13-03-09
Tel: (65) 6516 2961
Email: phywxs@nus.edu.sg

www.physics.nus.edu.sg/~phywxs/

Green Gold: Gold nanoparticles covered with PTCDA molecules. Their height and lateral size are about 2 nm and 3-5 nm, respectively. Their plasmonic resonance is strongly blue-shifted so they may appear green instead of golden. Additionally, they are effective catalyst for CO conversion to CO2.

CURRENT RESEARCH
• Scanning tunneling microscopy and spectroscopy (STM/STS) characterization of surfaces, thin films and nanostructures.
• Self-assembly of functional hybrid nanostructures from combination of semiconductor, metal, semimetal and organic materials, such as organic molecule-metal nanoparticle for molecular electronics, and semiconductor-metal hybrid for photocatalysis.
• Growth, STM/STS characterization and computational studies of Bi, Sb and P ultrathin films and nanostructures for novel electronic and spintronic applications.

SELECTED PUBLICATIONS
CURRENT RESEARCH
• Bioinspired artificial nanomotors
• Motor protein biophysics

SELECTED PUBLICATIONS
CURRENT RESEARCH

Professor Wee’s research interests are in the field of surface and interface science, and include scanning tunneling microscopy (STM) and synchrotron radiation studies of the molecule-substrate interface, organic-organic heterojunctions, graphene and 2D materials and devices.

SELECTED PUBLICATIONS

NIKOLAI YAKOVLEV
Adjunct Associate Professor
PhD, Ioffe Physico-Technical Institute, St. Petersburg, Russia (1987)
Email: niko-y@imre.a-star.edu.sg

CURRENT RESEARCH
• Technology in ultra high vacuum, deposition of thin films, study of their properties using electron and X-ray diffraction, optical spectroscopy, scanning probe microscopy, precision ellipsometry.
• Study of structural and magnetic properties of epitaxial films and atomic arrangement on surfaces and interfaces.
• Study of composition of surfaces and multilayer structures using secondary ion mass spectrometry.

SELECTED PUBLICATIONS
• N.L. Yakovlev, X. Xie, K.P. Loh, and H. Xu, “Reconstructions 3 x 3 and r3 x r3 on SiC(0001) studied using RHEED”, Surf. Sci. 603, 2263 (2009).
CURRENT RESEARCH
Our research is based on advanced single-molecule manipulation and imaging technologies. Current research interests include:

- Molecular mechanisms of mechanosensing of cells
- Interfering mechanosensing of cells using compounds
- DNA packaging, gene regulation and DNA damage repair
- Bacterial biofilm initiation and maintenance

SELECTED PUBLICATIONS

CURRENT RESEARCH
Galaxy Clustering, Large Scale Structure of the Universe, Astroinformatics and Astronomy Education.

SELECTED PUBLICATIONS
CURRENT RESEARCH
Dr. Yeo's current research interest is in quantum entanglement associated with many parties. It lies at the heart of quantum information processing. Entanglement is one of the most striking features of quantum mechanics, but it is also one of its most counterintuitive consequences of which we still have rather incomplete knowledge. Although the concentrated effort during the past decade has produced impressive progress, there is no general qualitative and quantitative theory of entanglement. It is hoped that we would be able to gain more understanding about the nature of multipartite entanglement by analyzing the roles of multipartite entangled states in various quantum information processes.

SELECTED PUBLICATIONS
CURRENT RESEARCH
Dr. Zhang Chun’s research is focused on the theoretical modeling and simulation of materials at nanoscale, such as molecules, nanowires and thin films. Related interests are nano electronics/spintronics and nanocatalysis.

SELECTED PUBLICATIONS
A
Adam, Shaffique 2
Ariando 3

B
Barrett, Murray Douglas 4
Bettiol, Andrew A. 5
Breese, B.H. Mark 6

C
Castro-Neto, Antonio Helio 7
Chan Aik Hui Phil 8
Chan Taw Kuei 9
Chen Wei 10
Chua Lay-Lay 11
Chung Keng Yeow 12

D
Dieckmann, Kai 13

E
Eda, Goki 14
Ekert, Artur Konrad 15
Englert, Berthold-Georg 16

F
Feng Ling 17
Feng Yuan Ping 18

G
Garaj, Slaven 19
Geim, Andre 20
Goh Kuan Eng Johnson 21
Gong Jiangbin 22
Gremaud, Benoit 23

H
Hänggi, Peter 24
Ho, Peter 25
Hong Chong Ming Kenneth 26

J
Ji Wei 27
van Kan, Jeroen Anton 28
Kaszlikowski, Dagomir 29
Koh Wee Shing 30
Kurtsiefer, Christian 31

Lai Choy Heng 32
Lee Cheow Lei James 33
Lee Ching Hua 34
Leggett, Anthony J. 35
Li Wenhui 36
Liew Soo Chin 37
Lim Hock 38
Lim Hock Siah Paul 39
Ling Euk Jin Alexander 40
Liu Xiang Yang 41
Loh, Duane 42
Loh Huanqian 43

van der Maarel, Johan R.C. 44
Mahendiran, Ramanathan 45
Matsukevich, Dzmitry 46
Miniatura, Christian 47
Mirsaidov, Utkur 48
Mukherjee, Manas 49

Ng Shao Chin Cindy 50
Ng Wei Khim 51
Nicholson, Travis Lee 52

Oh Choo Hiap 53
Ong Chong Kim 54
Osipowicz, Thomas 55
Özyilmaz, Barbaros 56

Pan Jisheng 57
Phua Kok Khoo 58

Quek Su Ying 59
R
Rusydi, Andrivo 60

S
Scarani, Valerio 61
Sharma, Nidhi 62
Singh, Kuldip 63
Soumyanarayanan, Anjan 64
Sow Chorng Haur 65

T
Tan Meng Chwan 66
Tan Tiong Gie Bernard 67
Tay Seng Chuan 68
Teo Ho Khoon Edward 69
Tok Eng Soon 70
Tsang Mankei 71

U
Udalagama, Chammika N.B. 72

V
Vedral, Vlatko 73
Venkatesan, Thirumalai Venky 74
Viana-Gomes, Jose Carlos 75

W
Wang Jian-Sheng 76
Wang Qinghai 77
Wang Shijie 78
Wang Xuesen 79
Wang Zhisong 80
Wee Thye Shen Andrew 81

Y
Yakovlev, Nikolai 82
Yan Jie 83
Yang Jiahui Abel 84
Yeo Ye 85

Z
Zhang Chun 86