1. Find the force between a square loop of side s and an infinite wire at distance s (fig. 1), each carrying current I. Evaluate for 1 A and 1 cm.

![FIG. 1](image1)

2. A copper wire oriented East-West carries current density J sufficient to levitate the wire in the earth’s magnetic field, which is 0.5×10^{-4} T directed North, and gravitational field $g = 9.8$ m/s$^{-2}$ downward. Find J. Is it reasonable? Does J point East or West?

3. Find B at distance z on the axis of a square loop of side s, lying in the xy plane, carrying current I (Fig. 2). Evaluate at $z = 0$ for $I = 1$ A and $s = 1$ cm.

![FIG. 2](image2)
4. Find B at the center of the semicircle in Fig. 3. Evaluate for $I = 1$ A and $r = 1$ cm.

![FIG. 3](image)

5. Find B at the center of the semicircle in Fig. 4. Evaluate for $I = 1$ A and $r = 1$ cm.

![FIG. 4](image)

6. A charge of -2 nC moves East with speed 2000 m/s, in a magnetic field of 5×10^{-5} T directed Northward. Find the force.

7. Find B inside and outside of an infinite cylinder of radius R and current density $J(r) = K/r$, where K is a constant (Fig. 5); then reexpress in terms of current I

![FIG. 5](image)

8. Find the B field between parallel planes (Fig. 6), separated by s, carrying opposite surface current densities of K. Evaluate for $K = 1000$ A/m.
9. Superposition: An infinite cylinder of uniform (axial) current density \mathbf{J} and radius R contains a cylindrical cavity of radius $R/2$ (Fig. 7). Find the \mathbf{B} field at point p on the surface.

10. Find \mathbf{B} inside the cavity of Fig. 7