The Energy-Time Uncertainty Principle

The **objective** of this lecture is to derive the time-energy uncertainty principle.

The energy-time uncertainty principle

\[\Delta t \Delta E \geq \frac{\hbar}{2} \]

is fundamentally different from position-momentum.

Position, momentum, and energy are all dynamical variables. They are measurable characteristics of the system, at any given time.

On the other hand, time itself is *not* a dynamical variable. Time is the *independent* variable of which the dynamical quantities are *functions*. \(\Delta t \) in the energy-time uncertainty principle is not the standard deviation of a collection of time measurements.

It is the time it takes the system to change substantially.
The Energy-Time Uncertainty Principle

Consider the time derivative of the expectation value of some observable, $Q(x, p, t)$:

$$\frac{d}{dt}\langle Q \rangle = \frac{d}{dt} \langle \Psi | \hat{Q} | \Psi \rangle$$

$$= \langle \frac{\partial \Psi}{\partial t} | \hat{Q} | \Psi \rangle + \langle \Psi | \frac{\partial \hat{Q}}{\partial t} | \Psi \rangle + \langle \Psi | \hat{Q} \frac{\partial \Psi}{\partial t} \rangle$$

Using the Schrödinger equation

$$i\hbar \frac{\partial \Psi}{\partial t} = \hat{H} \Psi$$

$$\frac{d}{dt}\langle Q \rangle = -\frac{1}{i\hbar} \langle \Psi | \hat{H} | \hat{Q} | \Psi \rangle + \langle \frac{\partial \hat{Q}}{\partial t} \rangle + \frac{1}{i\hbar} \langle \Psi | \hat{Q} \hat{H} | \Psi \rangle$$

Since \hat{H} is Hermitian,

$$\langle \langle \Psi | \hat{H} | \hat{Q} | \Psi \rangle = \langle \Psi | \hat{H} \hat{Q} | \Psi \rangle$$

Thus

$$\frac{d}{dt}\langle Q \rangle = \frac{i}{\hbar} \langle [\hat{H}, \hat{Q}] \rangle + \langle \frac{\partial \hat{Q}}{\partial t} \rangle$$
The Energy-Time Uncertainty Principle

If \(\hat{Q} \) does not depend explicitly on \(t \),

\[
\frac{d}{dt} \langle Q \rangle = \frac{i}{\hbar} \langle [\hat{H}, \hat{Q}] \rangle
\]

That is, the rate of change of the expectation value is determined by the commutator of the operator with the Hamiltonian.

\(\langle Q \rangle \) would be a constant, or \(Q \) is a conserved quantity, if \(\hat{Q} \) commutes with \(\hat{H} \).

Let \(A = H \) and \(B = Q \) in the generalized uncertainty principle

\[
\sigma_A^2 \sigma_B^2 \geq \left(\frac{1}{2i} \langle [\hat{A}, \hat{B}] \rangle \right)^2,
\]

and assume that \(Q \) does not depend explicitly on \(t \), we get

\[
\sigma_H^2 \sigma_Q^2 \geq \left(\frac{1}{2i} \langle [\hat{H}, \hat{Q}] \rangle \right)^2 = \left(\frac{1}{2i} i \frac{d\langle Q \rangle}{dt} \right)^2
\]

\[
= \left(\frac{\hbar}{2} \right)^2 \left(\frac{d\langle Q \rangle}{dt} \right)^2
\]
Physical Interpretation of Δt

The above can be written as

$$\sigma_H \sigma_Q \geq \frac{\hbar}{2} \left| \frac{d\langle Q\rangle}{dt} \right|$$

Let

$$\Delta E = \sigma_H, \quad \text{and} \quad \Delta t = \frac{\sigma_Q}{|d\langle Q\rangle/dt|}.$$

Then

$$\Delta E \Delta t \geq \frac{\hbar}{2}$$

Since

$$\sigma_Q = \left| \frac{d\langle Q\rangle}{dt} \right| \Delta t,$$

Δt represents the amount of time it takes the expectation value of Q to change by one standard deviation.

Δt depends entirely on what observable (Q). The change can be rapid for one observable and slow of another. But if ΔE is small, then the rate of change of all observables must be very gradual, and conversely, if any observable changes rapidly, the “uncertainty” in the energy must be large.
Example: Stationary State

In the extreme case of a stationary state, the energy is uniquely determined, $\Delta E = 0$. All expectation values are constant in time, $\Delta t = \infty$.

To make something happen, you must take a linear combination of at least two stationary states, for example,

$$
\Psi(x, t) = a\psi_1(x)e^{-iE_1t/\hbar} + b\psi_2(x)e^{-iE_2t/\hbar}.
$$

If a, b, ψ_1, and ψ_2 are real,

$$
|\Psi(x, t)|^2 = a^2[\psi_1(x)]^2 + b^2[\psi_2(x)]^2 + 2ab\psi_1(x)\psi_2(x)\cos \left(\frac{E_2 - E_1}{\hbar}t \right)
$$

The period of oscillation is $\tau = 2\pi\hbar/(E_2 - E_1)$. Roughly, then, $\Delta E = E_2 - E_1$ and $\Delta t = \tau$, so

$$
\Delta E \Delta t = 2\pi\hbar > \frac{\hbar}{2}
$$
Application of Uncertainty Principles

The Δ particle lasts about 10^{-23} seconds before spontaneously disintegrating. If you make a histogram of all measurements of its mass, you get a kind of bell-shaped curve centered at 1232 MeV/c^2, with a width of about 115 MeV/c^2. Why does the rest energy (mc^2) sometimes come out higher than 1232, and sometimes lower?

\[\Delta E \Delta t \geq \frac{\hbar}{2} \]

For

\[\Delta t \approx 10^{-23} \text{s} \]

\[\Delta E \geq \frac{\hbar}{2 \Delta t} \approx 0.527 \times 10^{-11} \text{ J} \approx 33 \text{ MeV} \]

\[E = mc^2 \]

\[\Delta m = \Delta E / c^2 \geq 33 \text{ MeV}/c^2 \]
Application of Uncertainty Principles

Use the uncertainty relation to estimate the ground state energy of a harmonic oscillator.

The energy is given by

\[E = \frac{p^2}{2m} + \frac{1}{2} m\omega^2 x^2 \]

For a harmonic oscillator,

\[\langle x \rangle = 0, \quad \langle p \rangle = 0 \]

\[(\Delta x)^2 = \sigma_x^2 = \langle x^2 \rangle \]

\[(\Delta p)^2 = \sigma_p^2 = \langle p^2 \rangle \]

\[\langle H \rangle = \frac{\langle p^2 \rangle}{2m} + \frac{1}{2} m\omega^2 \langle x^2 \rangle = \frac{(\Delta p)^2}{2m} + \frac{1}{2} m\omega^2 (\Delta x)^2 \]

Using

\[a + b \geq 2\sqrt{ab} \]

\[\langle H \rangle \geq \sqrt{(\Delta p)^2 (\Delta x)^2} \omega = \Delta x \Delta p \omega \geq \frac{1}{2} \hbar \omega \]

\[\langle H \rangle_{\text{min}} = \frac{1}{2} \hbar \omega \]