The Finite Square Well

Consider 1D motion of a particle. Assume the potential is given by

\[
U(x) = \begin{cases}
0 & |x| < L/2 \\
U_0 & |x| \geq L/2
\end{cases}
\]

(1)

where \(U_0\) is a positive constant. The behaviour of the particle depends on whether \(E < U_0\) or \(E > U_0\).
Bound State

Consider first the case of $E < U_0$.

In the region $x < -L/2$

$$-rac{\hbar^2}{2m} \frac{\partial^2 \psi}{\partial x^2} + U_0 \psi = E \psi$$

(2)

or

$$\frac{\partial^2 \psi}{\partial x^2} - \frac{2m(U_0 - E)}{\hbar^2} \psi = 0$$

(3)

Let

$$\kappa = \sqrt{\frac{2m(U_0 - E)}{\hbar^2}}$$

(4)

Eq.(3) becomes

$$\frac{\partial^2 \psi}{\partial x^2} - \kappa^2 \psi = 0$$

(5)

Solution of Eq.(5) is

$$\psi(x) = Ae^{\kappa x}$$

(6)

e$^{-\kappa x}$ is omitted since it diverges at $x \to -\infty$.
Bound State

Similarly, in the region $x > L/2$

$$\frac{-\hbar^2}{2m} \frac{\partial^2 \psi}{\partial x^2} + U_0 \psi = E \psi \quad (7)$$

or

$$\frac{\partial^2 \psi}{\partial x^2} - \kappa^2 \psi = 0 \quad (8)$$

where

$$\kappa = \sqrt{\frac{2m(U_0 - E')}{\hbar^2}} \quad (9)$$

Solution of Eq.(8) is

$$\psi(x) = Be^{-\kappa x} \quad (10)$$

$e^{\kappa x}$ is omitted since it diverges at $x \to \infty$.
Bound State

In the region \(-L/2 < x < L/2, \ U(x) = 0\)

\[-\frac{\hbar^2}{2m} \frac{\partial^2 \psi}{\partial x^2} = E\psi\] \hspace{1cm} (11)

or

\[\frac{\partial^2 \psi}{\partial x^2} + \frac{2mE}{\hbar^2} \psi = 0\] \hspace{1cm} (12)

Let

\[k = \sqrt{\frac{2mE}{\hbar^2}}\] \hspace{1cm} (13)

Eq.(3) becomes

\[\frac{\partial^2 \psi}{\partial x^2} + k^2 \psi = 0\] \hspace{1cm} (14)

Solution of Eq.(5) is

\[\psi(x) = Ce^{ikx} + De^{-ikx}\] \hspace{1cm} (15)
Boundary Conditions

1. \(\psi \) is continuous at \(x = L/2 \)

\[
Ce^{ikL/2} + De^{-ikL/2} = Be^{-\kappa L/2}
\]
(16)

2. \(\psi \) is continuous at \(x = -L/2 \)

\[
Ce^{-ikL/2} + De^{ikL/2} = Ae^{-\kappa L/2}
\]
(17)

3. \(d\psi/dx \) is continuous at \(x = L/2 \)

\[
ike^{ikL/2} - ike^{-ikL/2} = -\kappa Be^{-\kappa L/2}
\]
(18)

4. \(d\psi/dx \) is continuous at \(x = -L/2 \)

\[
ike^{-ikL/2} - ike^{ikL/2} = \kappa Ae^{-\kappa L/2}
\]
(19)

The constants \(A, B, C, D \) and the eigen states can be obtained by solving these equations.
Physical Consideration

1. The potential is symmetric \implies the wave function
 can be either an even or an odd function of x.
 Since
 \[
 \frac{\partial^2 \psi}{\partial x^2} + k^2 \psi = 0
 \]
 The solution must be either $\sin(kx)$ or $\cos(kx)$.

2. For an even wave function
 \[
 \psi(x) = \begin{cases}
 A e^{kx} & x < -L/2 \\
 C \cos(kx) & -L/2 \leq x \leq L/2 \\
 B e^{-kx} & x > L/2
 \end{cases}
 \]
 It is required for $A = B$. Furthermore, the boundary conditions at $x = L/2$ requires
 \[
 C \cos kL/2 = B e^{-\kappa L/2}
 \]
 \[
 -Ck \sin kL/2 = -\kappa B e^{-\kappa L/2}
 \]
 The boundary conditions at $x = -L/2$ are satisfied.
Divide these two equations, we get

\[k \tan \frac{kL}{2} = \kappa \] \hspace{1cm} (20)

and the wave function can be written as

\[\psi(x) = \begin{cases}
 Ce^{\kappa L/2} \cos(kL/2)e^{\kappa x} & x < -L/2 \\
 C \cos(kx) & -L/2 \leq x \leq L/2 \\
 Ce^{\kappa L/2} \cos(kL/2)e^{-\kappa x} & x > L/2
\end{cases} \]

Finally, \(C \) is determined by normalization of the wave function.

Eq.(20) determines the energy of the particle. Note that both \(k \) and \(\kappa \) are functions of energy. The equation can be solved numerically or graphically. Let

\[z = \frac{kL}{2} = \sqrt{\frac{mL^2E}{2\hbar^2}}, \quad z_0 = \frac{\kappa L}{2} = \sqrt{\frac{mL^2U_0}{2\hbar^2}} \]

Eq.(2) can be written as

\[\tan z = \sqrt{\left(\frac{z_0}{z}\right)} - 1 \]
Unnormalized wave functions.
3. For the odd wave function

\[\psi(x) = \begin{cases}
 Ae^{\kappa x} & x < -L/2 \\
 C \sin(kx) & -L/2 \leq x \leq L/2 \\
 Be^{-\kappa x} & x > L/2
\end{cases} \]

It is required that \(B = -A \). Furthermore, the boundary conditions at \(x = L/2 \) requires

\[C \sin kl/2 = Be^{-kL/2} \]

\[Ck \cos kl/2 = -\kappa Be^{-kL/2} \]

This gives

\[k \coth \frac{kL}{2} = -\kappa \] \hspace{1cm} (21)

or

\[\coth z = -\sqrt{\left(\frac{z_0}{z}\right)^2 - 1} \] \hspace{1cm} (22)

Wave function (unnormalized)

\[\psi(x) = \begin{cases}
 C e^{\kappa L/2} \sin(kL/2)e^{\kappa x} & x < -L/2 \\
 C \sin(kx) & -L/2 \leq x \leq L/2 \\
 -Ce^{\kappa L/2} \sin(kL/2)e^{-\kappa x} & x > L/2
\end{cases} \]
Unnormalized wave functions.

\[-\sqrt{\left(\frac{z_0}{z}\right)^2} - 1 \]