Development of Quantum Mechanics

Reference

- PC1133 Lectures 8 – 12
- Serway: Physics for Scientists and Engineers with Modern Physics
Development of Quantum Mechanics

Physics in late 19th century

Classical physics was nearly perfect.

- Mechanical motion — Newton mechanics
- Electricity & Magnetism — Maxwell’s theory
- Optics (EM wave) — Maxwell’s theory
- Thermal phenomena — Thermodynamics & Statistical physics

New Challenges

- Blackbody radiation
- Photoelectric effect
- Atomic spectrum
- Specific heat of solids at low temperature
-

⇒ Quantum Mechanics
Wave Property of Light

The wave property of light was established in the 17th century. This was demonstrated by the Young’s double slit experiment.

Experiment Setup

see diagram on next page

Intensity Analysis

Difference in paths

\[\delta = d \sin \theta \]

Phase difference

\[\phi = \frac{2\pi}{\lambda} \delta = \frac{2\pi}{\lambda} d \sin \theta \]

If

\[E_1 = E_0 \sin(\omega t) \]

then

\[E_2 = E_0 \sin(\omega t + \phi) \]
Geometric construction for describing Young’s double-slit experiment.
Wave Property of Light

Amplitude at P

$$E_p = E_1 + E_2 = E_0 \left[\sin(\omega t) + \sin(\omega t + \phi) \right]$$

Using

$$\sin \alpha + \sin \beta = 2 \sin \left(\frac{\alpha + \beta}{2} \right) \cos \left(\frac{\alpha - \beta}{2} \right)$$

$$E_p = 2E_0 \cos \left(\frac{\phi}{2} \right) \sin \left(\omega t + \frac{\phi}{2} \right)$$

Intensity at P

$$I \propto E_p^2 = 4E_0^2 \cos^2 \left(\frac{\phi}{2} \right) \sin^2 \left(\omega t + \frac{\phi}{2} \right)$$

Time average of $\sin^2(\omega t + \phi/2)$ is 1/2.

$$I_{av} = I_0 \cos^2 \left(\frac{\phi}{2} \right)$$
Wave Property of Light

\[I_{av} = I_0 \cos^2 \left(\frac{\pi d}{\lambda} \sin \theta \right) = I_0 \cos^2 \left(\frac{\pi d}{\lambda L} y \right) \]

Maximum intensity at

\[d \sin \theta = n\lambda, \quad (n : \text{integer}) \]

or

\[\frac{\pi d}{\lambda L} y = n\pi, \quad y_{max} = \frac{n\lambda L}{d} \]

Minimum intensity at

\[d \sin \theta = \left(n + \frac{1}{2} \right) \lambda \]

or

\[\frac{\pi d}{\lambda L} y = \left(n + \frac{1}{2} \right) \pi, \quad y_{max} = \left(n + \frac{1}{2} \right) \frac{\lambda L}{d} \]

\[\implies \text{Light is a wave!} \]
Intensity distribution versus $d \sin \theta$ or the double-slit pattern when the screen is far from the two slits.
Blackbody Radiation

Observation

- Radiation, reflection, absorption
- Blackbody
- Radiation spectrum
 - Shape and peak position
 - $\lambda_{\text{max}}T = \text{const.}$
 - Depends on T only

Classical theory (Rayleigh-Jeans)

$$I(\lambda, T) = \frac{2\pi c k_B T}{\lambda^4}$$
Intensity of blackbody radiation versus wavelength at three temperatures. Note that the amount of radiation emitted (the area under a curve) increases with increasing temperature.
Comparison of the experimental results with the curve predicted by the Rayleigh-Jeans classical model for the distribution of blackbody radiation.
Planck’s Theory

Assumptions

1. Energy is quantized

\[E_n = n h \nu \]

2. Light is emitted or absorbed in discrete packets called photons

\[E = h \nu \]

\(\nu \) is the frequency.

\[I(\lambda, T) = \frac{2\pi h c^2}{\lambda^5 \left(e^{hc/\lambda k_B T} - 1 \right)} \]

The concept of “quantum” was introduced for the first time: energy is quantized!