
CME5232Lab2

SINGAPORE-MIT ALLIANCE

COMPUTATIONAL ENGINEERING PROGRAMME

CME5232: Cluster and Grid Computing Technologies for Scientific Computing

COMPUTATIONAL LAB No.2

10th July, 2009

GETTING STARTED ON PARALLEL PROGRAMMING USING MPI AND

ESTIMATING PARALLEL PERFORMANCE METRICS

Objectives

To experiment with MPI library functions for parallelizing sample codes, use MPI functions for
point-to-point and collective communications and estimate parallel performance metricss.

Background Knowledge

C/C++ languages, Basis MPI Functions and codes from Computational Lab 1.

Parallelization Using MPI

There are a number of parallel software environments that allow users to use the networked comput-
ers as a unified computing resource, e.g. PVM (Parallel Virtual Machine), MPI (Message Passing
Interface) and so on. MPI is a set of specifications that has become a de-factor standard in mes-
sage passing protocols. MPI has been implemented through PVM, P4, CHIMP MPICH and LAM.
MPI is designed to be language independent (it can work with c/c++ or fortran) and of computer
architecture. It is designed to resolve all heterogeneities encountered in distributed computing in a
transparent manner. MPI is flexible and offers users a variety of binding functions to write efficient
parallel codes. There are many MPI functions that implement many aspects of parallelization but
only about a dozen or so are really needed frequently. the focus of this lab is on exploiting these bare
minimum MPI functions to help you get started on writing parallel code using MPI. The MPICH,
an implementation of MPI, is available on SMA Hydra Linux Cluster for all your parallelizeation
works.

Exercises (Due date: 16th July, 2009)

Please submit a short format report recording your observations based on the assigned exercises and
programming assignment in a week’s time. The report should be short, complete and clearly written
to show that you have done and what you have observed and interpreted from these exercises. All
equations, symbols etc. if any must be explained clearly.

1. Play Ping-Pong using 2 processors on the SMA Hydra Cluster

Write a program using simple send and receive MPI functions in which 2 processors are sending
their process ranks to each other and at the end they print the values of what they sent and received.

1



As sample skeleton source source code pingpong.c or pingpong.cpp is provided for your reference.

2. Estimate bandwidth and message latency on the SMA Hydra Cluster

Write a short program to estimate the message latency ts and reciprocal of the bandwidth tc for
SMA Hydra Cluster. In this problem, we are using two (02) processors to send and receive re-
peatedly the fixed-size messages varying from 102Bytes to 104 Bytes (you can choose step = 100
Bytes) among them. In order to get the correct timing, we repeat sending and receiving 10 times
for each fixed size message. You are then required to record the average time corresponding with
the different size of each message, then construct a least-square-fit line to the resulting (message
size, time) pair. The intercept on the time versus message size curve should give an estimate of
the startup cost ts while the gradient of the slope will give an estimate for tc. Discuss on the
observations.

3. Exercises based on the sample codes

(a) Given a parallel code integral.c (Note: download from ..Home\CME5232\Clab2\question3).
You are required to compile and run that parallel integration code using different number of pro-
cessors varying (n = 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20)., record the timing for each case, and then
plot the timing versus number of processor. Use the Jumpshot facility in MPICH to display the
space time status of your parallel computation (Show only the jumpshot graph for the case with 10
processors). What happens if you try to run with it just one processor? Run the sequential code
ori-integral.c on one processor. What are the different between running a sequential code and
parallelized code using one processor.
(b) A more accurate alternative to trapezoidal rule is Simpson’s rule. It takes the following form
in the interval of the integration [a,b] which is divided in to even intervals;

∫ b

a
f(x)dx =

(h

3

)[
f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + ... + 2f(xn−2) + 4f(xn−1) + f(xn)

]
. (1)

Assume that you integrate using even number of processor p so that the ratio of n/p is even. Mod-
ify the programs ori-integral.c and integral.c to estimate the value of the integral. State clearly
how you have implemented message passing function and compare the results with those from the
trapezoidal rule (Show the only Jumpshot graph for the case with largest number of processors).

4. Parallel your code for calculating the value of PI using Monte Carlo Method

from Computational Lab1.
This question will focus on the parallelization of the sequential code what you have written in the
computational lab1 to evaluate PI number using Monte Carlo method.
(a) Write your own code using (i) only MPI − SEND and MPI − RECV (point to point op-
eration). (ii) MPI-Reduce (Collecting operations). Choose a fixed total number needle drops like
3.2× 108. Then run the code by varying the number of processors, p = 2, 4, 8, 16 and 32. Record
the communication time and the value of your PI. Use the Jumpshot facility in MPICH to display

2



the space time status of your parallel computation. Note: show only the case with 16 processors.
(b) Compare the value of PI and accuracy between both your parallel codes (point-to-point and
collective) and serial code. Plot the convergence rate of parallel code and serial code versus
number of varying needle drop (N = 102, 103, 104, 105, 106, 107, 108), where the relative error
of parallel code is εp = (PI25DT − PIp)/PI25DT , and the relative accuracy of serial code is
εs = (PI25DT − PIs)/PI25DT and
PI25DT = 3.141592653587932384262643 is the true π with 25 digits of accuracy.
(c) Calculate the speedups and efficiencies for your own parallel code. Plot the curves (α) of predict
and actual speedup, and (β) predict and actual efficiency for your parallel version. Discuss on your
observation.
(d) Discuss your observation and make the statement about the ratio of computational time to
communication time. Explain clearly how you have estimated communication can computational
time for this problem. That means show clearly where you insert MPI − Wtime() function to
measure the running time.

3


