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PC5202 Advanced Statistical Mechanics 
 

Assignment 4 (due Thursday 19 Mar 2020) 

 

 

1. For an Ising paramagnetic model with the energy  
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show that the entropy can be expressed as  
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where 
im   is the magnetization per spin. 

 

2.  (Plischke & Bergersen, Chap 3.8) Consider a Landau theory with an assumption of the 

Gibbs free energy as  
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where a, c, and d are some positive constants.   

(a) Show that the order parameter M is discontinuous at some transition point Tc.  

Determine Tc. Draw a qualitatively correct curve M  vs. temperature T.  Pay 

attention to the stability of the solutions.  The stable solution should be a global 

minimum of G with respect to M. 

(b) Find the latent heat Q of the first-order phase transition across cT .  

 

3.  (From question 4.4 of J M Yeomans, page 64) The mean-field equations for the three-

state Potts model, 
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can be derived as follows using the result obtained for vector spin model.  

(a) Show that the Potts model is equivalent to 
,
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 are two-dimensional unit vectors. 

(b) Putting 
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 show that the mean-field equations become 
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where the subscript 0 denotes an average in the ensemble defined by 

0 0 i

i

H B s   , N is the number of spins, and z is the coordination number of 

each spin. 

(c) Expand MFF in 
0

s  and show that it contains a cubic term.  By sketching the 

mean-field free energy for suitable values of the coefficients in the expansion 

show that the transition is first-order. 

(d) Verify that the transition is at 3 /(8ln 2)B Ck T zJ and that the jump in the 

magnetization is 1/ 2 . 

 

 

 

 

 

Tutorial 4 
 

 

4. Consider an Ising model defined on a ladder (i.e., a 2N lattice) without the magnetic 

field: 

 i j

ij

E J     , 

where the site i runs over the 2 by N lattice; the summation is over the nearest neighbor 

only, and each site has three neighbors.   (a)  Give the 44 transfer matrix P such that the 

partition function Z = Tr(PN).  (b) Diagonalize P to find an analytic expression for the 

maximum eigenvalue  of P.  (c) Show that the free energy lnBF Nk T    in the 

thermodynamic limit. 
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5.  Consider the Ising model defined on a d-dimensional hyper-cubic lattice with 

 i j i

ij i

E J h      . 

(a) Show that the magnetic susceptibility in the limit of h→0 is given by 
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(b) Compute the first two nonzero terms in a high-temperature expansion of the 

susceptibility in the variable tanh( )x J ,  1/( )Bk T  .  


