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1. Answer briefly the following questions: 

a. State the Callen postulate II about entropy.  

b. In a micro-canonical distribution, the probability density ρ is a constant when 𝐸 ≤ 𝐻 <

𝐸 + Δ, and 0 outside the energy interval.   In the limit Δ → 0, the system can only stay 

on the energy surface 𝐻 = 𝐸.  Explain why the distribution is not uniform on surface, 

but proportional to 𝑑𝜎/|∇𝐻|, where 𝑑𝜎 is surface element. 

c. State the scaling assumption for the singular part of the free energy per spin, 𝑓(𝑇, ℎ), 

using the Ising model as an example here.  Also, give the Widom scaling law. 

d. Explain the Jarzynski equality, and also elaborate in what way it is consistent with the 

Clausius inequality 𝑇𝑑𝑆 ≥ 𝛿𝑄 in thermodynamics. 

e. State the H-theorem of Boltzmann. 

 

A.there exits a function called entropy of the extensive parameters of any composite system, 

defined for all equilibrium states and having the following property: the value assumed by the 

extensive parameters in the absence of an internal constraint are these that maximize the 

entropy over the manifold of constrained equilibrium states.  B. even when Δ goes to 0, it is the 

volume that is invariant due to Liouville theorem.  So the area times height is invariant.  The 

weight per area is different at different locations in phase space.  C. the scaling assumption for 

free energy per spin is 𝑓(𝑡, ℎ) = 𝑏−𝑑𝑓(𝑏𝑌𝑡, 𝑏𝑋ℎ), and the Widom scaling law is 𝛽(𝛿 − 1) = 𝛾. 

D. The Jarzynski equality is  < 𝑒−𝛽𝑊 > = 𝑒−𝛽Δ𝐹. Using convexity, this implies < 𝑊 > ≥ Δ𝐹, 

consistent with Clausius inequality.  E: 
𝑑𝐻

𝑑𝑡
≤ 0, 𝐻 = ∫ 𝑓 𝑙𝑛 𝑓 𝑑𝒓 𝑑𝒑.  The entropy is 𝑆 = −𝑘𝐵𝐻. 

 

 

2. Consider the equation of state of a classical monoatomic gas slightly modified from the ideal gas 

law.  We assume a pair-wise interaction potential 𝑣(𝑟) between two particles with the distance 

r = |r| dependence as  

𝑣(𝑟) =  {
∞, 𝑟 < 𝑎,
−𝜀, 𝑎 ≤ 𝑟 < 𝑏,
0, 𝑟 ≥ 𝑏.

 

a. Write down the partition function ZN of N particles in canonical ensemble and express it 

as a product of two factors, a temperature dependent part and a configurational 

partition function, 𝑍𝑁 = 𝑃𝑁𝑄𝑁.  Evaluate the temperature dependent part, 𝑃𝑁. 

b. Give the expression for the grand partition function Θ of the grand-canonical ensemble, 

using the result in Part a.   Evaluate the configurational partition functions in a box of 

volume V much larger than 𝑎3 and 𝑏3 for zero particle 𝑄0, one particle 𝑄1 , and two 

particles 𝑄2.  

c. Determine the equation of state (pressure 𝑃 as a function of volume 𝑉 and temperature 

𝑇), using the results in Part b above, based on 𝑄0, 𝑄1, 𝑄2, ignoring the higher order 

terms 𝑄𝑁 for 𝑁 > 2 for the grand partition function Θ.   
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A:The temperature part is the momentum integrals, configuration partition function is the 

position integrals, so if 𝑍𝑁 = 𝑃𝑁𝑄𝑁, 𝑃𝑁 = (
2𝜋𝑚

𝛽ℎ2 )
3𝑁/2 1

𝑁!
.  B.  Θ=∑ 𝑒𝛽𝜇𝑁𝑍𝑁

∞
𝑁=0 = 𝑄0 + 𝛼𝑄1 +

𝛼2𝑄2

2
+ ⋯, where 𝛼 = 𝑒𝛽𝜇 (

2𝜋𝑚

𝛽ℎ2 )
3/2

.  𝑄0 = 1, 𝑄1 = 𝑉, 𝑄2 = 𝑉 [𝑒𝛽𝜖 4𝜋

3
(𝑏3 − 𝑎3) + 𝑉 −

4𝜋

3
𝑏3].  

C.  In grand canonical ensemble, 
𝑃𝑉

𝑘𝐵𝑇
= 𝑙𝑛 𝛩, and 𝑁 =

1

𝛽

𝜕 𝑙𝑛 𝛩

𝜕𝜇
.  Equation of state is obtained after 

eliminating 𝛼 from these two equations.  

 

3. Consider a quasi-one-dimensional chain of Ising spins formed by connected rhombuses as 

shown below.  Each site has a spin without a magnetic field, with a ferromagnetic coupling 

constant 𝐽 between the sites connected by a line. We assume the units are repeated exactly 𝑁 

times with the periodic boundary condition. Determine the partition function 𝑍 in two ways: 

a. Use the transfer matrix method. 

b. Based on high-temperature expansion. 

 

                       

A.Sum over the two spins at the outer vertices of the square, we can write the transfer matrix as 

𝑃𝑄, here 𝑃 = (
𝑧4 +

1

𝑧4 + 2 4

4 𝑧4 +
1

𝑧4 + 2
) and 𝑄 = (

𝑧 1/𝑧
1/𝑧 𝑧

), where 𝑧 = 𝑒𝐾 = 𝑒𝛽𝐽. B. 

There are two types of loops, loop over the squares with various combinatorial choices; the 

zigzag pathes going from 1 to N and back to 1 again.  This gives  𝑍 = 24𝑁 cosh5𝑁(𝐾) [(1 +

𝑥4)𝑁 + (2𝑥3)𝑁], where 𝑥 = tanh(𝐾). 

 

 

4. A particle moving under gravity in a fluid (sedimentation) or a charged particle in a field follows 

the Langevin equation with a constant force f, as 

              𝑚
𝑑𝑣

𝑑𝑡
= −𝑚𝛾𝑣 + 𝑓 + 𝑅(𝑡),          

𝑑𝑥

𝑑𝑡
= 𝑣,  

where 𝑅(𝑡) is the random white noise with zero mean and the correlation 〈𝑅(𝑡)𝑅(𝑡′)〉 =

2𝑚𝛾𝑘𝐵𝑇𝛿(𝑡 − 𝑡′).   

a. Determine the mobility 𝜇 of the particle, which is defined as the proportionality 

constant of the average velocity to the force, 〈𝑣〉 = 𝜇𝑓. 

b. Present the associated Fokker-Planck equation for the Langevin equation for the joint 

probability density 𝑃(𝑣, 𝑥, 𝑡) of velocity 𝑣 and position 𝑥.   You may use without a proof 

the more general result: if the Langevin equation is 𝑋̇ = 𝐺(𝑋) + 𝜉, then the associated 
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Fokker-Planck equation is 
𝜕𝑃

𝜕𝑡
= − (

𝜕

𝜕𝑋
)

𝑇
𝐺𝑃 + (

𝜕

𝜕𝑋
)

𝑇
𝐷

𝜕

𝜕𝑋
𝑃,  where 〈𝜉(𝑡)𝜉(𝑡′)𝑇〉 =

2𝐷𝛿(𝑡 − 𝑡′). 
c. What is the steady state distribution of the velocity and position, 𝑃(𝑣, 𝑥)? 

 

A.𝜇 = 1/(𝑚𝛾), B. 
𝜕𝑃

𝜕𝑡
= −

𝜕

𝜕𝑣
[(−𝛾𝑣 +

𝑓

𝑚
) 𝑃] −

𝜕(𝑣𝑃)

𝜕𝑥
+

𝛾𝑘𝐵𝑇

𝑚

𝜕2𝑃

𝜕𝑣2.  𝑃 = 𝑃(𝑡, 𝑥, 𝑣) is a function of 

three variables, t, x, v.  C.  set left hand side to 0, we can solve the (ordinary) different equation, 

given 𝑃(𝑥, 𝑣) ∝ 𝑒−𝛽(
1

2
𝑚𝑣2−𝑥𝑓).  Proportionality constant is fixed by normalization. 

 

   --- END ---                                                                                   [WJS] 


