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1. (a)  Consider the triple point of water where three phases coexist – liquid water, water vapor, 

and ice.  Give the Gibbs-Duhem relation and use it to argue that at the triple point, it has unique 

values of temperature T and pressure p.  

(b)  State the concavity condition for entropy S as a function of energy E (ignore possible 

dependence of the entropy on other variables).   Use the concavity condition to show that heat 

capacity at constant volume, Cv , must be non-negative.  

(c)  Continue from (b), draw a schematic plot of S vs E to show a first order phase transition 

situation when temperature changes. 

 

(a) The Gibbs-Duhem relation can be derived from the Euler equation and the fundamental 

thermodynamic equation.  The derivations are not necessary; the required equation is S dT – 

V dP + N d = 0.   This equation applies to the homogeneous phases of liquid, gas, and solid, 

respectively.  At the triple point, since the three phases coexist, in order to be 

thermodynamically stable, the three phases must have the same T, P, and .  Since we have 

three equations, one for each phase, and S, V, N are different in each phase, the only 

solutions to these equations are dT = dP = d = 0, i.e., the temperature and pressure are 

fixed.  Alternatively, one can argue with the Gibbs phase rule. 

(b) Concavity: 𝜆𝑆(𝐸1) + (1 − 𝜆)𝑆(𝐸2) ≤ 𝑆(𝜆𝐸1 + (1 − 𝜆)𝐸2), where 0 < 𝜆 < 1.  If S is smooth, 

this is equivalent to  
𝜕2𝑆

𝜕𝐸2 < 0.  C=Q/T = T dS/dT = dE/dT  (fixing volume).  So  
𝜕2𝑆

𝜕𝐸2 =
𝜕

𝜕𝐸

1

𝑇
=

 − 
1

𝑇2𝐶
< 0.   This implies C > 0.   Note that only in constant volume, C = dE/dT.   We need to 

relate C to the second derivative of S. 

(c) S vs E need to be concave.  A straight line segment in an otherwise parabolic-like curve 

indicate a first order phase transition.   At the transition, temperature stays constant with a 

jump in energy. 

 

 

 

2. Consider the benzene molecule simplified as 6 point masses, each with mass m located on a 

circle of radius R, with a potential energy between two neighboring pair of points i and i+1 as 

(
𝑘

2
) (𝜃𝑖 − 𝜃𝑖+1)2, where 𝜃𝑖 is a small deviation from equilibrium of equally spaced angles of 

𝜋

3
, 

and k is coupling constant. 

(a) Give the Lagrangian L and Hamiltonian H of the system. 

(b) Compute the eigenmodes of the system, thus determine the normal mode coordinates. 

(c) Compute the (classical) partition function Z of the system in the canonical ensemble. 

 

(a) Lagrangian 𝐿 =
1

2
𝑚𝑅2 ∑ �̇�𝑖

26
𝑖=1 −

𝑘

2
∑ (𝜃𝑖 − 𝜃𝑖+1)26

𝑖=1 = 𝐾 − 𝑉, Hamiltonian 𝐻 =
1

2𝑚𝑅2
∑ 𝑝𝜃𝑖

26
𝑖=1 +

𝑘

2
∑ (𝜃𝑖 − 𝜃𝑖+1)2 = 𝐾 + 𝑉6

𝑖=1 , where 𝜃7 = 𝜃1.  𝑝𝜃𝑖
= 𝑚𝑅2�̇�𝑖 . 

(b) The equation of motion can be written as  �̈�𝑖 +
𝑘

𝑚𝑅2
(2𝜃𝑖 − 𝜃𝑖−1 − 𝜃𝑖+1) = 0.   To solve this 

equation, we try wave-like solution: 𝜃𝑗 = 𝐴𝜆𝑗𝑒−𝑖𝜔𝑡.   Putting into the equation, we find the 

dispersion relation, 𝜔2 =
𝑘

𝑚𝑅2
(2 − 𝜆 − 1/𝜆).  We can fix 𝜆 by periodic boundary condition, 

i.e., 𝜃7 = 𝜃1, or 𝜆6 = 1, this implies that 𝜆 = 𝑒
𝑖2𝜋𝑘

6 ,  for k = 0, 1, 2, … 5, given the 6 normal 
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modes.  This is very much like a one-dimensional chain of atoms (phonons) with periodic 

boundary conditions as studied in solid state physics. 

(c) We compute the contribution of each mode separately, then 𝑍 = ∏ 𝑍𝑘
5
𝑘=0 .  However, there 

are two problems here.  First, the mode with k=0 has 0 as the frequency; this corresponds to 

pure translation (in fact rotation), not vibration.   This term has to be treated separately.  

Second the angle 𝜃 is in a compact domain of [0,2𝜋].  If we integrate from −∞ to +∞ it is 

not quite correct.  But I have no better solution to offer, as the expression in the bounded 

domain does not have closed form.  Within small oscillation approximation, we do the usual 

Gaussian integrals, and results are standard, i.e., 𝑍𝑘 =
𝑘𝐵𝑇

ℏ𝜔𝑘
 . 

 

3. Consider a magnetic system near critical point.  The equation of state has the following form 

𝐻 ≈ 𝑎 𝑀(𝑡 + 𝑏𝑀2)𝜃, where H is magnetic field, M is magnetization, 𝑡 = (𝑇 − 𝑇𝑐)/𝑇𝑐,  1 < 𝜃 <

2, and 𝑎, 𝑏 > 0.    

(a) Find the critical exponents 𝛽, 𝛾, and 𝛿,  where 𝛽 is the order parameter (magnetization) 

exponent, and 𝛾 is associated with the magnetic susceptibility, and 𝛿 determines the 

isothermal curve near the critical point. 

(b) Show that the exponents satisfy 𝛾 = 𝛽(𝛿 − 1). 

 

We need the basic definitions of critical exponents, 𝑀~(−𝑡)𝛽, 𝜒~𝑡−𝛾, 𝐻~𝑀𝛿.  To get 𝛽, we set 

H=0, and solve for M in terms of t, we find M=(-t/b)1/2, so 𝛽 = 1/2.   Take derivative with respect 

to H for fixed t on both sides of the equation of states, consider the high temperature side so 

M=0, we found 1 = 𝑎𝜒𝑡𝜃, so 𝛾 = 𝜃.   Lastly, to find 𝛿, we set t=0 in the equation of states, we 

identify 𝛿 = 1 + 2𝜃.  Part (b) is easily verified. 

 

Note that this problem has nothing to do with Landau theory or mean-field free energy.  The 

important point is that 𝛽 and 𝛾 are defined at H=0, and 𝛿 is defined at t=0. 

 

 

 

4. Consider a diatomic molecule moving in a one-dimensional space immersed in an environment 

modelled as white noises.  The equations of motion of the diatomic molecule are given as 

𝑚
𝑑2𝑥1

𝑑𝑡2 = −𝑘(𝑥1 − 𝑥2) − 𝛾
𝑑𝑥1

𝑑𝑡
− 𝑅1(𝑡),   𝑚

𝑑2𝑥2

𝑑𝑡2 = +𝑘(𝑥1 − 𝑥2) − 𝛾
𝑑𝑥2

𝑑𝑡
− 𝑅2(𝑡),  where 𝑅1(𝑡) 

and 𝑅2(𝑡) are independent noises,  〈𝑅𝑖(𝑡) 𝑅𝑗(𝑡′)〉 = 𝐶𝛿𝑖𝑗𝛿(𝑡 − 𝑡′). 

(a) Determine the rate of change of the total energy of the molecule, 𝐸(𝑡) =

𝑚

2
((

𝑑𝑥1

𝑑𝑡
)

2
+ (

𝑑𝑥2

𝑑𝑡
)

2
) + 

𝑘

2
(𝑥1 − 𝑥2)2, with time.  Compute the long-time average of  

𝑑𝐸(𝑡)

𝑑𝑡
. 

(b) Consider the overly-damped case, i.e., 𝛾 is much larger than the mass m so that we can set 

m = 0 in the equations of motion.  Solve formally 𝑥1(𝑡) and 𝑥2(𝑡), in terms of random noises 

𝑅1(𝑡) and 𝑅2(𝑡). 

(c) For the overly-damped case in part (b), determine the associated Fokker-Planck equation for 

the probability distribution of the positions 〈𝑃(𝑥1, 𝑥2)〉.  
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(a) We take the derivation and use the equations of motion, find: 
𝑑𝐸

𝑑𝑡
= −𝛾�̇�1

2 − 𝛾�̇�2
2 − �̇�1𝑅1 −

�̇�2𝑅2.    The average is  〈
𝑑𝐸

𝑑𝑡
〉 = 0.  This is because the energy is bounded.  Or the dissipation 

energy proportional to the velocity squared gets cancelled by the work done by the random 

force.  Since we have thermal noise, the energy of the particles does not go to zero, but stay 

at a constant.  The rate of change is 0.   In particular, 〈�̇�1𝑅1〉 is not 0, as x1 is not independent 

of R1 and average cannot be factored. 

(b) The equations because particularly simple if we take the sum X = x1 + x2, and difference x = 

x1-x2.  They are 𝛾�̇� = 𝑅1 + 𝑅2, and 𝛾�̇� = −2𝑘𝑥 + 𝑅1 − 𝑅2.  Although X and x are decoupled 

and look independent, but they are not, as they depend on the same random noises.  The 

solutions are 𝑋(𝑡) = 𝑋(0) +  
1

𝛾
∫ (𝑅1(𝑠) +  𝑅2(𝑠))𝑑𝑠

𝑡

0
,  and 𝑥(𝑡) = 𝑥(0)𝑒

−2(
𝑘

𝛾
)𝑡

+

1

𝛾
∫ (𝑅1(𝑠) −  𝑅2(𝑠))𝑒

−2(
𝑘

𝛾
)(𝑡−𝑠)

𝑑𝑠
𝑡

0
.    We can rewrite back in x1 =(X+x)/2, and x2=(X-x)/2. 

(c) Since equation is simpler in X and x, we can work in P(X,x).  Skip the detail derivation, the 

final equation is  
𝜕𝑃

𝜕𝑡
=

𝜕

𝜕𝑥
(

2𝑘𝑥

𝛾
𝑃) +

𝐶

𝛾2 (
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑋2) 𝑃. 

 

 

--- End ---                                                                            [WJS] 


