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INSTRUCTIONS TO CANDIDATES 

 

1. This examination paper contains 5 questions and comprises 4 printed pages. 

2. Answer all the questions. 
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1. Answer briefly: 
a. What is the Gibbs phase rule and how is it derived? 
b. State the equipartition theorem for classical systems and from this, derive the 

Dulong-Petit law for solids. 
c. Give the mathematical equation that states the global concavity property of the 

entropy S as a function of internal energy U.  
d. State the continuity equation (for probability, particle number, or electric charge).  

State the Fick’s law.  Combine the two to derive the diffusion equation. 
 

a) f = r – M + 2, where r is the number of components (i.e., different types of 
molecules), M is the number of phases, and f is the number of intensive variables that 
can be varied and still is in that phase.  It is derived by considering the Gibbs-Duhem 
relation in each phase. 

b) In classical systems, each quadratic form of the term in the Hamiltonian gets a 
canonical average of (1/2)kBT.  In a solid lattice of N atoms, each atom has three 
kinetic energy terms and three potential energy terms and total average internal 
energy is 3NkBT.   Thus the heat capacity is 3NkB: this is Dulong-Petit law. 

c) S(λU1 + (1-λ)U2) ≥ λS(U1) + (1-λ)S(U2),  0 ≤λ≤1. 

d) 20, ,n nD n D n
t t

∂ ∂
+∇ ⋅ = = − ∇ = ∇

∂ ∂
j j . 

  

 
 

2. Consider one single particle of mass m moving in the one-dimensional domain 0 ≤ x ≤ L.  
Except when the particle collides elastically with the boundaries, the particle moves 
freely with kinetic energy p2/(2m) and no potential energy.  

a. Compute the partition function Z at temperature T in a canonical ensemble. From 
this, determine the average kinetic energy 2 /(2 )p m , heat capacity C, and the 

force f  the particle exerts on one of the confining boundaries (walls).  
b. Calculate the phase-space volume Γ(U) corresponding to the energies of the 

particle less than a given U.  Assuming the Boltzmann entropy formula 
( )( ) lnB
US U k
h

Γ
= , where Bk  is the Boltzmann constant and h is the Planck 

constant, determine the system temperature T, heat capacity C, as well as force f 
exerted on the boundary by the particle.  

c. Discuss if the results in part a (canonical ensemble) and part b (micro-canonical 
ensemble) above are equivalent for the one particle problem.  Explain why. 
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a) The partition function is 
2 /(2 )

0

1 2
L

p m
B

LZ dx dpe mk T
h h

β π
+∞

−

−∞

= =∫ ∫ . β=1/(kBT).  From Z 

we obtain
2 ln 1 1

2 2 2 B
p ZU k T
m β β

∂
= = − = =

∂
. C=dU/dT = kB/2.  Bk TFf

L L
∂

= − =
∂

  (F 

= -kBT ln Z). 

b) 
20

2

( ) 2 2
L

p U
m

U dx dp L mU
<

Γ = =∫ ∫ . From this, S=kB ln(Γ(U)/h),  1/T=∂S/∂U=kB(2U), or 

U=(1/2)kBT, and C = dU/dT = (1/2) kB.   f = -∂F/∂L=kBT/L  (from F=U-TS).   
c) Internal energy U, heat capacity C, and force f are the same, but the entropy S, free 

energy F are not.  The two ensembles are not completely equivalent (since we are not 
in the thermodynamic limit).  I think the fact U, C, f, are the same is accidental. 
   

 
 
 

3. Consider an Ising model defined on the graphs shown below in the next page, known as 
Cayley trees.  The first three generations of the trees are shown.  We assume that  each 
site denoted by an open circle has an Ising spin σi = ±1 and each link has a nearest 
neighbor interaction, –J σiσj.  For example, the first generation of the graph is associated 
with the energy E = – J σ0σ1 – J σ0σ2 – J σ0σ3.  

 

 

 

a. Determine the canonical partition function Z1 and Z2 of the Ising model on the 
first and second generation Cayley trees. 

b. Derive a general formula for ZN for the N-th generation Cayley tree. 
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c. Discuss if the system has a phase transition at a finite temperature T > 0 when N 
approaches infinity.  
 

a) Sum over the out spins 1,2,3 first, we find ( K=βJ=J/(kBT) )

( )0 1 0 2 0 3 0 0

0 1 2 3 0

3 3
1 2( )K K K K K K KZ e e e e e e eσ σ σ σ σ σ σ σ

σ σ σ σ σ

− − 
= = + = +  

 
∑ ∑ ∑ ∑ ∑ .  For Z2 we 

also sum over the outer spins first, we find ( )9

2 2 K KZ e e−= + . 

b) For the general case, we use high-temperature expansion.  Since the tree graphs 
cannot have loops, all the tanh(x) parts are 0, and we only have the first term.  
ZN=2ScoshL(K) where S = L +1 is the number of sites, and L is number of links, 
L=3(2N-1). 

c) No phase transition as the partition function is the same, upto a constant factor, as 
the one-dimensional Ising model. 
 

 

 
 

4. Aristotelian physics says that the velocity of a particle is proportional to the force applied 
to it.  We consider such a particle connected to a spring to form an oscillator experiencing 
a random force (white noise) with the equation  

( ),

( ) 0, ( ) ( ') 2 ( '),B

dxm k x R t
dt

R t R t R t m k T t t

γ

γ δ

= − +

= = −
 

where γ  is the damping parameter, m is mass, k is force constant, x is the position of the 
particle which is a function of time t.  The random force R(t) is the standard white noise. 

a. Derive a formal solution x(t) expressed in terms of the random force R(t). 
b. Derive the associated Fokker-Planck equation for the average probability 

distribution ( , )P x t  of the position variable x. 

c. Show that in the long-time limit when equilibrium is reached, the distribution is 
given by the Gibbs distribution proportional to 2exp[ (1/ 2) /( )]Bkx k T− . 

 
a) The solution x(t) is obtained by the method of variation of a constant, where we first 

let R(t)=0, then x(t)=Ae-ct where c = k/(mγ).  Then we let A -> A(t) and substitute 
back into the equation to obtain equation for A(t).  After integration we get  

( )
0

0

( )( )
t

ct c t sR sx t A e e ds
mγ

− − −= + ∫ . 
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b) We can follow the standard derivation of Zwanzig, but the equation is identical to the 
standard one treated in class if we identify x as velocity v, and some change of 
variables.   So the Fokker-Planck equation is the same (skip the derivation) 

( ) 2

2
B

x PP Pk Tk
t m x m xγ γ

∂∂ ∂
= +

∂ ∂ ∂
. 

c) We can do it in two ways, either to verify that exp(-(1/2)kx2/(kBT)) satisfies the 
Fokker-Planck equation with ∂<P>/∂t = 0, or solve the equation kx<P> + kBT 

∂<P>/∂x = const = 0 (the constant has to be 0 in order for ( )x P x dx
+∞

−∞
∫  finite.) 

 
 
 
 

5. A quantum harmonic oscillator in thermal equilibrium with the Hamiltonian,
2

2
0

p 1 x
2 2

H k
m

= + , is driven by an external time-dependent force f(t) when t > 0, so that 

the total Hamiltonian is explicitly time-dependent, H(t) = H0 – f(t) x.  Note that p and x 
are operators satisfying the canonical commutation relation, [x, p] = iħ, and the mass m, 
the force constant k, and the external force f(t) are c-numbers. 

a. Give the definitions of the pI(t) and xI(t), the interaction picture momentum and 
position operator with respect to H0, and find explicitly the time-dependence in 
terms of the original Schrödinger picture operator p and x. 

b. State the equation that the interaction picture density matrix ρI(t) must satisfy.  
Solve this equation perturbatively to the lowest order (i.e. first order) in f(t). 

c. Based on the result of  part b, derive the quantum expectation value of the 
position x( )t  as   

I

0

x( ) Tr ( )x ( ) ( , ') ( ').
t

It t t G t t f tρ = = −  ∫    

Give the explicit form of the Green’s function ( , ')G t t .  

a) The interaction picture operators are 0 0( ) p
i iH t H tIp t e e

−
=   , and 0 0( ) x

i iH t H tIx t e e
−

=   . 

The associated Heisenberg equations are 0
( ) 1 ( )[ ( ), ]

I I
Idx t p tx t H

dt i m
= =


, and

0
( ) 1 [ ( ), ] ( )

I
I Idp t p t H kx t

dt i
= = −


. We have used the fact H0=H0
I(t).  Since the 

equations are identical to the classical version of a harmonic oscillator, we have the 

solution (explicit time dependences) as p( ) x cos( ) sin( )Ix t t t
m

ω ω
ω

= + , and 



6 
 

( ) x cos( ) pcos( )Ip t m t tω ω ω= − + , where x and p are Schrödinger operators 
satisfying [x,p]=iħ. 

b) The density matrix in interaction picture satisfies ( ) [ ( ), ( )]
I

I Id ti V t t
dt
ρ ρ= .  The 

lowest order solution is 2

0

( ) (0) [ ( '), (0)] ' ( )
t

I I I Iit V t dt O Vρ ρ ρ= − +∫


where 

( ) ( ) ( )I IV t f t x t= − .   
c) Compute the average of x(t) using the result of part c and part a in the interaction 

picture, using the cyclic property of trace, we get 
[ ]sin ( ')

( , ') ( ') [ ( ), ( ')]I I t tiG t t t t x t x t
m

ω
θ

ω
−

= − − = −


.  

 

 

-- End of Paper -- 
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