NATIONAL UNIVERSITY OF SINGAPORE

PC5202 ADVANCED STATISTICAL MECHANICS
(Semester II: AY 2011-12)

Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES

1. This examination paper contains 5 questions and comprises 3 printed pages.
2. Answer all the questions.
3. Answers to the questions are to be written in the answer books.
4. This is a CLOSED BOOK examination.
5. Each question carries 20 marks.
6. Explain briefly the following concepts or terms:
a. Heat, according to thermodynamics
b. Ergodic hypothesis
c. Boltzmann's principle
d. Rushbrook's scaling law
e. White noise
a. The heat Q is defined by the first law of thermodynamics - heat absorbed $Q=\Delta U-$ W, where ΔU is the increase in internal energy and W is the work done to the system. It is the energy transferred by non-mechanical means. Alternatively, it can be related to entropy by $\delta Q=T d S$ in a reversible process.
b. Ergodic hypothesis assumes time average equals ensemble average, i.e.
$\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} A(t) d t=\int \rho(\Gamma) A(\Gamma) d \Gamma$.
c. Boltzmann's principle is $S=k_{B} \ln \Omega$ where Ω is the number of microscopic states consistent with given macroscopic (external) constraints.
d. Rushbrook's scaling law is $\alpha+2 \beta+\gamma=2$ (heat capacity, order parameter, and susceptibility exponents, for α, β, γ, respectively).
e. White noise is a stochastic (random) variable with $\langle R(t)\rangle=0$ and $\left\langle R(t) R\left(t^{\prime}\right)\right\rangle=C$ $\delta(t-t$ ').
7. Consider small vibrations of a one-dimensional chain of N atoms with the following Hamiltonian:

$$
H=\sum_{j=1}^{N} \frac{1}{2 m} p_{j}^{2}+\sum_{j=0}^{N} \frac{1}{2} k\left(x_{j}-x_{j+1}\right)^{2}, \quad x_{0}=x_{N+1}=0,
$$

where, x_{j} is the displacement away from equilibrium and p_{j} is associated conjugate momentum for site j, m is mass, and k is force constant. Note that site 0 and $N+1$ are fixed, and the dynamic equations apply only for the sites from 1 to N.
a. Compute the heat capacity of the classical system based on the equipartition theorem (in a canonical ensemble).
b. Assuming a solution of the form $x_{j}=A \sin (j q) \cos \left(\omega_{q} t\right)$, determine the possible vibrational angular frequencies ω_{q}.
c. Repeat the heat capacity calculation but for the corresponding quantum system.
a. Since the system is quadratic, we can always diagonalize the system using normal mode coordinates. Each quadratic form gives $(1 / 2) k_{B} T$ for energy, the total energy is $U=2 N(1 / 2) k T=N k_{B} T$, the heat capacity is thus $C=d U / d T=N k_{B}$.
b. Because $x_{N+1}=0$, we must have $\sin (q(N+1))=0$, or $(N+1) q=k \pi$, or $q=\frac{k \pi}{N+1}, \quad k=1,2, \cdots, N$.
The value k specifies the N linearly independent solutions of normal mode vibrations. Substituting the solution $x_{j}=A \sin (q j) \cos \left(\omega_{q} t\right)$ into the equation of motion

$$
\begin{aligned}
m \ddot{x}_{j} & =k\left(x_{j-1}-2 x_{j}+x_{j+1}\right), \\
m \ddot{x}_{j} & =-m \omega_{q}^{2} x_{j}=k A\left\{\sin (q(j+1))+\sin (q(j-1)-2 \sin (q j)\} \cos \left(\omega_{q} t\right)\right. \\
& =k \operatorname{Im}\left[e^{i q(j+1)}+e^{i q(j-1)}-2 e^{i q j}\right] A \cos \left(\omega_{q} t\right) \\
& =k \operatorname{Im}\left[\left(e^{i q}+e^{-i q}-2\right) e^{i q j}\right] A \cos \left(\omega_{q} t\right) \\
& =2 k(\cos (q)-1) \operatorname{Im}\left[e^{i q j}\right] A \cos \left(\omega_{q} t\right)=2 k(\cos (q)-1) A \sin (q j) \cos \left(\omega_{q} t\right) \\
& =2 k(\cos (q)-1) x_{j}
\end{aligned}
$$

we find
$\omega_{q}^{2}=\frac{2 k}{m}(1-\cos (q))$.
c. The energy of a set of quantum harmonic oscillators is
$U=\sum_{q}\left(f_{q}+\frac{1}{2}\right) \hbar \omega_{q}, \quad f_{q}=\frac{1}{e^{\beta \hbar \omega_{q}}-1}$. The heat capacity is obtained by taking
derivative with respect to temperature T,
$C=\frac{d U}{d T}=\sum_{q} \hbar \omega_{q} \frac{d f_{q}}{d T}=k_{B} \sum_{q} \frac{\left(\beta \hbar \omega_{q}\right)^{2} e^{\beta \hbar \omega_{q}}}{\left(e^{\beta \hbar \omega_{q}}-1\right)^{2}}$, where q takes the value $k \pi /(N+1)$ for k $=1,2, \ldots, N$.
3. Consider the ferromagnetic Ising model with 4 sites (left) and 3 sites (right) as shown below, with coupling constants J and J ' for the nearest neighbor interactions (without magnetic field) defined on a finite network of sites indicated by the lines.
a. Determine the high-temperature expansion of the partition function Z and Z^{\prime} ' in variable $x=\tanh (K), K=\beta J=J /\left(k_{\mathrm{B}} T\right)$, for the 4-site model, and similarly for the 3 sites with primed variable $x^{\prime}=\tanh \left(K^{\prime}\right)$.
b. If the center site in the 4 -site model is first summed, then it becomes a model identical to the 3 -sited model with a different coupling. Determine the relation between K and K ' such that the two models can be mapped into each other.

a. The partition function for the 4 sites can be expanded as

$$
Z=\cosh ^{3}(K) \sum_{\sigma_{0} \sigma_{1} \sigma_{2} \sigma_{3}}\left(1+\sigma_{0} \sigma_{1} x\right)\left(1+\sigma_{0} \sigma_{2} x\right)\left(1+\sigma_{0} \sigma_{3} x\right)=2^{4} \cosh ^{3}(K) .
$$

Similarly for the 3 sites,

$$
\begin{aligned}
Z^{\prime} & =\cosh ^{3}\left(K^{\prime}\right) \sum_{\sigma_{1} \sigma_{2} \sigma_{3}}\left(1+\sigma_{1} \sigma_{2} x^{\prime}\right)\left(1+\sigma_{2} \sigma_{3} x^{\prime}\right)\left(1+\sigma_{3} \sigma_{1} x^{\prime}\right) \\
& =\cosh ^{3}\left(K^{\prime}\right) \sum_{\sigma_{1} \sigma_{2} \sigma_{3}}\left[1+x^{\prime 3}+\left(x^{\prime}+x^{\prime 2}\right)\left(\sigma_{1} \sigma_{2}+\sigma_{2} \sigma_{3}+\sigma_{3} \sigma_{1}\right)\right] \\
& =\cosh ^{3}\left(K^{\prime}\right) 2^{3}\left(1+x^{\prime 3}\right)
\end{aligned}
$$

b. Sum over $\sigma_{0}=+1$ or -1 in Z, we get

$$
\begin{aligned}
Z & =\cosh ^{3}(K) \sum_{\sigma_{1} \sigma_{2} \sigma_{3}}\left[\left(1+\sigma_{1} x\right)\left(1+\sigma_{2} x\right)\left(1+\sigma_{3} x\right)+\left(1-\sigma_{1} x\right)\left(1-\sigma_{2} x\right)\left(1-\sigma_{3} x\right)\right] \\
& =\cosh ^{3}(K) \sum_{\sigma_{1} \sigma_{2} \sigma_{3}}\left[2+2 x^{2}\left(\sigma_{1} \sigma_{2}+\sigma_{2} \sigma_{3}+\sigma_{3} \sigma_{1}\right)\right]
\end{aligned}
$$

Compare with the second line of Z' in part a, we find
$1+x^{13}=2 A$
$x^{\prime}+x^{\prime 2}=2 x^{2} A$
Eliminating A, we can simplify the transformation x^{\prime} to x as $\exp \left(4 K^{\prime}\right)=2 \cosh (2 K)-1$.
4. Consider the standard one-dimensional Langevin equation

$$
\frac{d v(t)}{d t}=-\gamma v(t)+\frac{R(t)}{m},
$$

where $v(t)$ is velocity, γ is the damping constant, m is mass, and $R(t)$ is the random force with the usual white noise correlation.
a. Find the solution $v(t)$ of the stochastic differential equation in terms of the random force $R(t)$.
b. Compute the velocity random-force correlation, i.e., compute $\left\langle v(t) R\left(t^{\prime}\right)\right\rangle$ in the long-time limit. Pay attention to the case $t<t^{\prime}$ and $t>t^{\prime}$.
a. If $R=0$, the solution is $v=v_{0} \exp (-\gamma t)$. Let $v(t)=A(t) \exp (-\gamma t)$, substituting into the equation we can solve for A. Given solution, in the long time limit

$$
v(t)=\int_{-\infty}^{t} \frac{R(\tau)}{m} e^{\gamma(\tau-t)} d \tau
$$

b. The velocity-random force correlation is

$$
\begin{aligned}
\left\langle v(t) R\left(t^{\prime}\right)\right\rangle & =\left\langle\int_{-\infty}^{t} \frac{R(\tau)}{m} e^{\gamma(\tau-t)} R\left(t^{\prime}\right) d \tau\right\rangle \\
& =\frac{C}{m} \int_{-\infty}^{t} \delta\left(\tau-t^{\prime}\right) e^{\gamma(\tau-t)} d \tau=\left\{\begin{array}{lll}
0 & \text { if } & t<t^{\prime}, \\
\frac{C}{m} e^{-\gamma\left(t-t^{\prime}\right)} & \text { if } & t>t^{\prime} .
\end{array}\right.
\end{aligned}
$$

5. The time-dependent Boltzmann entropy for a gas is defined by the equation

$$
S_{B}(t)=-k_{B} \int f \ln f d^{3} \mathbf{r} d^{3} \mathbf{p},
$$

where $f=f(\mathbf{r}, \mathbf{p}, t)$ is the distribution function of molecules having position \mathbf{r} and momentum \mathbf{p} at time t, while the Gibbs entropy is defined by a similar formula with the full phase space variables $\Gamma=\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \cdots, \mathbf{r}_{\mathrm{N}}, \mathbf{p}_{1}, \mathbf{p}_{2}, \cdots, \mathbf{p}_{\mathrm{N}}\right)$ and the phase space probability distribution $\rho(\Gamma, t)$,

$$
S_{G}=-k_{B} \int \rho \ln \rho d \Gamma .
$$

a. Write down the relation between f and ρ.
b. Based on the fact that ρ satisfies the Liouville equation, show that S_{G} is a constant that does not change with time.
c. Explain qualitatively, why S_{B} increases with time as given by the Boltzmann's H theorem, while S_{G} does not.
a. fand ρ are related by integrating all variables except one particle, i.e.,

$$
f(\mathbf{r}, \mathbf{p}, t)=N \int \rho\left(\mathbf{r}, \mathbf{r}_{2}, \mathbf{r}_{3}, \cdots \mathbf{r}_{N}, \mathbf{p}, \mathbf{p}_{2}, \mathbf{p}_{3}, \cdots \mathbf{p}_{N}\right) d \mathbf{r}_{2} d \mathbf{r}_{3} \cdots d \mathbf{p}_{N} .
$$

b. Using Liouville's theorem,

$$
\frac{D \rho}{D t}=\frac{\partial \rho}{\partial t}+\sum_{j}\left(\dot{q}_{j} \frac{\partial \rho}{\partial q_{j}}+\dot{p}_{j} \frac{\partial \rho}{\partial p_{j}}\right)=0,
$$

we have

$$
\begin{aligned}
\frac{d S_{G}}{d t} & =-k_{B} \int \frac{\partial(\rho \ln \rho)}{\partial t} d \Gamma=-k_{B} \int(1+\ln \rho) \frac{\partial \rho}{\partial t} d \Gamma \\
& =k_{B} \int\left[\sum_{j} \dot{q}_{j} \frac{\partial \rho}{\partial q_{j}}(1+\ln \rho)+\sum_{j} \dot{p}_{j} \frac{\partial \rho}{\partial p_{j}}(1+\ln \rho)\right] d \Gamma \\
& =k_{B} \int\left[\sum_{j} \frac{\partial\left(\dot{q}_{j} \rho \ln \rho\right)}{\partial q_{j}}+\sum_{j} \frac{\partial\left(\dot{p}_{j} \rho \ln \rho\right)}{\partial p_{j}}\right] d \Gamma=0
\end{aligned}
$$

In the last step, we assumed that $d q / d t$ is a function p only and $d p / d t$ is a function of q only. Now the integrand is a divergence which can be converted into a surface integral using Gaussian theorem. We assume ρ is zero at far away surface, which give us 0 for $d S_{G} / d t$.
c. The equation for f is not time-reversal symmetric, while the Liouville's equation for ρ is time-reversal symmetric. fis a coarse grained description of the system, while ρ contains the full information of the system. Using f, information is lost, which can be interpreted as producing entropy.

