# NATIONAL UNIVERSITY OF SINGAPORE 

PC5202 Advanced Statistical Mechanics

(Semester II: AY 2007-08, 5 May 08)

Time Allowed: 2 Hours

## INSTRUCTIONS TO CANDIDATES

1. This is an OPEN BOOK examination.
2. This examination paper contains 5 questions and comprises 4 printed pages.
3. Answer ALL the questions.
4. Answers to the questions are to be written in the answer books.
5. Each question carries 20 marks.
6. Choose only one ( A , or B , or C ) among the alternatives that is the most accurate statement. Notations are those used in class.
(1). A typical time scale associated with atomic motions (e.g. vibration in solids) is of the order of,
A. $10^{-17} \mathrm{~s}$,
B. $10^{-14} \mathrm{~s}$,
C. $10^{-10} \mathrm{~s}$.
(2). Callen's second postulate says that entropy $S$ of a system is a maximum in comparison with the entropies of
A. other nonequilibrium states,
B. unconstrained states,
C. constrained equilibrium states.
(3). Which of the statements is incorrect: entropy is defined by,
A. $1 / T=\partial S / \partial U$,
B. $d S=d Q / T$,
C. $S=k_{\mathrm{B}} \ln \Omega$.
(4). Liouville's theorem states:
A. $\partial \rho / \partial \mathrm{t}=-(H, \rho)$,
B. $\mathrm{d} A / \mathrm{dt}=(A, H)$,
C. $\mathrm{d} \Gamma_{\mathrm{t}}=$ const.
(5). Single out the inaccurate statement: in a microcanonical ensemble, the system is distributed in phase space,
A. on a constant energy surface ( $H=$ const) with equal probability,
B. on an energy shell $E<H<E+\Delta$ with equal probability,
C. on a constant energy surface with probability proportional to d $\sigma /|\nabla H|$.
(6). Canonical ensemble is valid for a single particle
A. in contact with a heat bath,
B. in isolation,
C. in isothermal processes.
(7). The heat capacity $C$ of an Einstein solid
A. decreases with temperature $T$ linearly,
B. decreases with $T$ exponentially,
C. approaches a constant as $T \rightarrow 0$.
(8). The spontaneous magnetization of a ferromagnet is the
A. average magnetic moments when magnetic field is present,
B. average magnetic moments when temperature is low,
C. average magnetic moments when a magnetic field is absent.
(9). Which of the following is correct:
A. triangular lattice is self-dual,
B. rectangular lattice is self-dual,
C. face-centered cubic lattice is self-dual.
(10). Einstein relation in the theory of Brownian motion means that:
A. noise correlation is related to frictional force,
B. the viscous force is proportional to the velocity,
C. the diffusion constant is proportional to mobility.
(1) $B$, (2) $C$, (3) $A$, (4) $C$, (5) $A$, (6) $A$, (7) $B$, (8) $C$, (9) $B$, (10) $C$.
7. Consider $N$ non-interacting point particles moving between a fixed, permeable, and diathermal wall of two compartments of volumes $V_{1}$ and $V_{2}$ with $V_{1}=V_{2}=V$. The Hamiltonian of the combined system can be written as

$$
H=\sum_{i=1}^{N}\left(\frac{\mathbf{p}_{i}^{2}}{2 m}+u\left(\mathbf{r}_{i}\right)\right) .
$$

The single particle potential energy $u(\mathbf{r})$ is $+\infty$ for $\mathbf{r}$ outside the two compartments, and is 0 in the first compartment, but is a constant $u_{0}$ in the second compartment.
(a) Are the temperatures of the gas in the two compartments equal?
(b) Which of the ensembles among the microcanonical, canonical, and grand-canonical is most suited for this problem?
(c) Calculate the average number of particles $N_{1}$ and $N_{2}$ in each compartment, expressed in terms of the temperature $T$ of the compartment, the potential $u_{0}$, and the total number of particles $N$.
(d) Compute the pressure $P_{1}$ and $P_{2}$ in each compartment.
(a) Yes, $T_{1}=T_{2}=T$, since two compartments are separated by a diathermal wall (i.e. heat conducting wall).
(b) Canonical. Taking the system as a whole, volume $V_{1}+V_{2}$ and total number of particles $N$ are fixed.
(c) Consider only one particle, $\operatorname{Exp}\left[-\beta\left(p^{2} /(2 m)+u(\boldsymbol{r})\right)\right] d \boldsymbol{p} d \boldsymbol{r}$ gives the (unnormalized) probability that it has momentum $\boldsymbol{p}$ and position $\boldsymbol{r}$. Integrating over $\boldsymbol{p}$, we find that the probability of finding the particle at $\boldsymbol{r}$ is just proportional to $\operatorname{Exp}[-\beta u(\mathbf{r})]$ dr . Integration over the volume of $V_{1}$ or $V_{2}$, we find the ratio of probability for it in the $1^{\text {st }}$ to $2^{\text {nd }}$ volume is 1 to $\exp \left(-\beta u_{0}\right)$. Since particles are non-interacting, the ratio is the same as a whole, i.e.,

$$
N_{1}+N_{2}=N, \quad N_{1} / N_{2}=1 / \exp \left(-\beta u_{0}\right), \quad \beta=1 /\left(k_{B} T\right) .
$$

Solve the equations, we find $N_{1}=N /\left(1+\exp \left(-\beta u_{0}\right)\right), N_{2}=N /\left(1+\exp \left(\beta u_{0}\right)\right)$.
(d) Use ideal gas law, we find $P_{1}=N_{1} k T / V_{1}, P_{2}=N_{2} k T / V_{2}$. Alternatively, one can also find the partition function first, $Z=z^{N} / N!$.

$$
z=\left(2 \pi m k_{B} T / h^{2}\right)^{3 / 2}\left[V_{1}+V_{2} \exp \left(-\beta u_{0}\right)\right]
$$

$P_{1}$ or $P_{2}$ is obtained by taking partial derivative with respective to $V_{1}$ or $V_{2}$ of the free energy $F=-k_{B} T \ln Z$, then set $V_{1}=V_{2}=V$.
3. Consider a one-dimensional three-state Potts model with periodic boundary condition. The Hamiltonian of the system is given by

$$
H(s)=-J \sum_{i=1}^{N} \delta_{s_{i}, s_{i+1}}, \quad s_{i}=-1,0,1,
$$

where the spins take three different values, and $\delta$ is the Kronecker delta symbol, i.e., $\delta_{\mathrm{a}, \mathrm{b}}=0$ if $a \neq b$, and 1 if $a=b$. Use the transfer matrix method to solve this problem.
(a) Give the transfer matrix $P$ such that the partition function $Z=\operatorname{Tr}\left(P^{N}\right)$.
(b) Determine the equation for the eigenvalues $\lambda$, and find the eigenvalues of $P$ [hint: to solve the polynomial equation, use a new variable $\alpha=$ $\mathrm{e}^{K}-1-\lambda$, where $\left.K=J /\left(\mathrm{k}_{\mathrm{B}} T\right)\right]$.
(c) Compute the free energy per spin in the thermodynamic limit.
(a) The partition function is

$$
P=\exp \left(K \delta_{s_{1}, s_{2}}\right)=\left[\begin{array}{ccc}
e^{K} & 1 & 1 \\
1 & e^{K} & 1 \\
1 & 1 & e^{K}
\end{array}\right]
$$

(b) The eigenvalues are obtained from the secular equation $\operatorname{det}(P-\lambda I)=0$, which gives $(\alpha+1)^{3}-3 \alpha-1=0$. Expanding the cubic term, $\alpha^{3}+3 \alpha^{2}=0$, with solution $\alpha=0,0,-3$. Or $\lambda=e^{K}-1-\alpha=e^{K}-1, e^{K}-1$, or $e^{K}+2$. The last one is bigger.
(c) $f=-k_{B} T(\ln Z) / N=-k_{B} T \ln \left(e^{K}+2\right)$.
4. The magnetic susceptibility per spin is related to the two-point correlation function by

$$
\chi=\frac{\partial m}{\partial h}=\beta \int d^{d} \mathbf{r} G(r), \quad \beta=\frac{1}{k_{B} T} .
$$

The correlation function $G(r)$ takes the form

$$
G(r) \sim \frac{e^{-r / \xi}}{r^{d-2+\eta}}
$$

for an infinitely large lattice in $d$-dimensions.
(a) Show that, at the critical temperature $T_{\mathrm{c}}$, on a finite lattice of hypervolume $L^{\mathrm{d}}$, the susceptibility diverges with the linear size $L$ as $\chi \sim L^{2-\eta}$.
(b) The free energy of a finite system obeys a finite-size scaling near the critical point, $f(t, h, L)=b^{-d} f\left(b^{y} t, b^{x} h, b / L\right)$, where $b>0$ is an arbitrary scaling factor, $x$ and $y$ are some scaling exponents. Show
that at the critical point, $t=0, h=0$, the susceptibility $\chi$ diverges with size $L$. Find the corresponding exponent, i.e., the power $a$ in $\chi \sim L^{a}$.
(c) Based on the results of part (a) and (b), express the exponent $\eta$ in terms of $x, y$, and $d$.
(a) At $T_{c}$, correlation length $\xi \rightarrow \infty$, so $G(r) \sim 1 / r^{d-2+\eta}$. For a finite system of linear size $L$, the radius runs up to $L$, we get

$$
\chi \sim \int^{L} \frac{1}{r^{d-2+\eta}} r^{d-1} d r \approx L^{2-\eta} .
$$

(b) $\chi=\frac{\partial m}{\partial h}=-\frac{\partial^{2} f}{\partial h^{2}}$. Using the scaling relation for $f$, we find scaling for $\chi$, by differentiation with respective to $h$ twice, $\chi(t, h, L)=b^{2 x-d} \chi\left(b^{y} t\right.$, $\left.b^{x} h, b / L\right)$. setting $t=h=0, b=L$, we get $\chi(0,0, L)=L^{2 x-d} \chi(0,0,1)$, i.e., $\chi \sim$ $L^{2 x-d}, a=2 x-d$.
(c) $2 x-d=2-\eta$, so $\eta=2-2 x+d$.
5. Consider the Langevin equation in one dimension

$$
\begin{aligned}
& m \frac{d^{2} x}{d t^{2}}=-k x-m \gamma \frac{d x}{d t}+R(t) \\
& \langle R(t)\rangle=0 \\
& \left\langle R(t) R\left(t^{\prime}\right)\right\rangle=C \delta\left(t^{\prime}-t\right)
\end{aligned}
$$

This is a harmonic oscillator with mass $m$ and spring constant $k$, subjected to damping and a random force (white noise).
(a) Let the Fourier transform of the coordinate $x$ be

$$
\tilde{x}[\omega]=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} x(t) e^{-i \omega t} d t
$$

Derive the algebraic equation that the Fourier component $\tilde{X}[\omega]$ must satisfy; solve the equation in terms of the Fourier transform of the random noise.
(b) Find the expression, $\tilde{F}[\omega]$, in terms of the model parameters ( $m, k, \gamma, C$ ) and frequency $\omega$, which is the Fourier transform of the correlation function, $F(t)=\langle x(t) x(0)\rangle$, [Hint: you may use the Wiener-Khintchine theorem].
(a) The inverse Fourier transform is

$$
x(t)=\int_{-\infty}^{+\infty} \tilde{x}[\omega] e^{i \omega t} d \omega
$$

Substituting into the differential equation, we get
$(i \omega)^{2} m \tilde{x}=-k \tilde{x}-m \gamma(i \omega) \tilde{x}+\tilde{R}$, which can be solved to get

$$
\tilde{x}[\omega]=\frac{\tilde{R}[\omega]}{k+i m \gamma \omega-m \omega^{2}} .
$$

(b) The Fourier transform of the correlation $F(t)$ is given by the power spectrum of $x$. Applying the Wiener-Khinchine theorem, we found

$$
\tilde{F}[\omega]=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}\langle x(t) x(0)\rangle e^{-i \omega t} d t=\frac{C /(2 \pi)}{\left|k+i m \gamma \omega-m \omega^{2}\right|^{2}} .
$$

Note that the power spectrum of random noise $R$ is $C /(2 \pi)$ for white noise.
-- the end --
[WJS, 6 May 2008]

