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1. Answer TRUE or FALSE for the following statements: 
(a) Classical mechanics when combined with statistical-mechanical principles 

is consistent with first, second, and third laws of thermodynamics. 
(b) Mean-field critical exponents are correct when spatial dimensions d ≥ 4. 
(c) Thermodynamic limit means that temperature T approaches 0. 
(d) Different ensembles are not equivalent at the point of phase transitions.  
(e) The Fermi-Dirac distribution function, { , is valid even 

if the fermions have interactions. 
} 1exp[ ( )] 1β ε μ −− +

(f) The triple point of water has a unique temperature T and pressure P. 
(g) The Maxwell construction is not needed if the P-V curve is calculated 

exactly (for a macroscopically large system). 
(h) In Langevin equation, the frictional force and random force must be 

related. 
(i) Boltzmann equation is time-reversal symmetric.  
(j) Duality can be used to determine the critical temperature Tc of a triangular 

lattice Ising model. 
 
(a) false (e.g., entropy goes to negative infinity, inconsistent with 3rd law),  (b) 
true,  (c) false (system size approaches infinity), (d) true, (e) false, (f) true,  (g) 
true (van der Waals loop is an artifact of approximation), (h) true (related by 
fluctuation-dissipation theorem), (i) false (molecular chaos approximation breaks 
the symmetry), (j) false (triangular lattice is not self-dual).  

 
2. Consider the adsorption of atoms on a crystal surface in a column-like fashion 

such that if the site i adsorbed ni atoms the energy associated with the 
configuration is εni, ni = 0, 1, 2, 3, …, independent of the number of atoms 
adsorbed on other sites.    There are all together N such adsorbing sites.  Using 
grand-canonical ensemble, compute  

 (a)  The grand-canonical partition function Ξ; 
(b)  The entropy S; 
(c)  The average number of atoms adsorbed, 

as functions of temperature T and chemical potential μ. 
 
(a) Let 1/( )Bk Tβ = , the grand partition function is (discrete energy levels) 
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(b) Use the relation  and lnBk TΨ = − Ξ d SdT pdV N dμΨ = − − − , we get 
entropy 
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(c) similarly, the average numbers of particles adsorbed is 
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3. Consider a quasi-one-dimensional chain of the Ising model shown below.  The 
Ising spins σi=±1 are defined on the vertices of the triangles.   Each line signifies 
a term of the form i jJσ σ− . 

(a) Express the canonical partition function Z in terms of a transfer matrix 
P,  give the matrix elements.   
(b) Compute the eigenvalues λ of the transfer matrix, and give the free 
energy F in the thermodynamic limit. 
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(a) Consider one triangle, label the bottom two spins as 1 and 2, the top one as 3, 
then exponential factor is 1 2 1 3 2 3(Ke )σ σ σ σ σ σ+ + , where K =J/(kBT).  The spin 3 appears only 
in this factor which can be summed over, getting 

B

1 2
1 2 1 2( ; ) 2cosh[ ( )]KP e Kσ σσ σ σ= +σ

K

.  
Thus the transfer matrix is 

3
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. 

Partition function Z = Tr(PN).  
(b) The eigenvalues satisfy |P-λI|=0, which gives 3 3

1 23 ,K K Ke e e eλ λ K− −= + = − .  The 
free energy is 1lnF NkT λ= − . 
 
Alternatively, one can also use two spins as matrix indices.  The bottom two spins are 
called 1, and 2, the top two with a prime.  We get 
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Two of the eigenvalues are zero, the rest is identical as in (b) above.     A third 
possibility is to include the complete triangle as a repeating unit and not sharing the 
sides:   
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4. Consider the Landau theory for ferromagnetic phase transitions.  The Gibbs free 

energy as a function of temperature T and total magnetization M is assumed to be 
2 4( )cG T T aM bM= − + , 

 where a, b, and Tc are some positive constants.   
(a) Give the corresponding expression for the Helmholtz free energy F as 
a function of temperature T and magnetic field h.  
(b) Let T = Tc, show that  . 4 /3( , )cF T h h∝

(c) At h = 0, T < Tc, show that . 2( ,0) ( )cF T T T∝ −
(d)  Assuming a scaling form for the Helmholtz free energy  
 , 4( , ) ( , ),Y X

cF t h b F b t b h t T T−= = −
and using the information obtained in (b) and (c), determine the scaling 
exponents X and Y.  

 
(a) F(T,h) = G − hM where 3( )2 4c

Gh T T aMM bM∂= = − +∂ .  Formally, F will 

be a  function of T and h only, if we solve the above equation for M in terms of h. 
(b) at T = Tc, h = 4bM3, so .  4 4F bM hM h= − ∝ / 3

0(c ) at h = 0, we have 2( ) 2cT T a bM− + = , so .  
. 

1/ 2( )cM T T∝ −
2 4( ) ( )c cF G T T aM bM T T= = − + ∝ − 2

(d) set t = 0, bXh = 1, we have F(0,h)=h4/XF(0,1), compare with (b) 4/3 = 4/X, so 
X = 3.   Similarly, F(t,0) = t4/YF(1,0), compare with (c) 4/Y = 2, so Y = 2.  
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5. Consider the standard Langevin equation in one dimension 

( ),
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 Energy dissipated or work done in unit time is force times velocity.   
(a) Applying the equipartition theorem, express the average power 
dissipation P due to the frictional force in terms of the temperature T. 
(b)  Show that the average energy input per unit time due to random noise 
is I = C/(2m).  
(c) As a consequence of the Langevin equation, show that P = I. 
 

 (a)  2
BP m v v mv k Tγ γ γ= ⋅ = = .   

(b)  Using the solution for Langevin equation ( )

0

( )( ) (0)
t

t tRv t v e e d
m
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we get  ( )

0 0
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2

t t
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m m
γ ττ τ δ τ τ− −= = = − =∫ ∫ m

.  The 

<R(t)v(0)> term is zero assuming the random noise and initial condition are 
uncorrelated. The delta function is an idealization, integration exactly to the 
middle of a delta-function is ill-defined, but we imagine that it is a broad peak.   
(c)   Fluctuation-dissipation theorem gives C = 2mγkBT, thus P = I.  Alternatively, 
multiplying v to both side of the Langevin equation, and integrate (average) over 
time, we get 
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Taking the limit T →∞, assuming that the energy E(t) of the system is bounded, 
we get P=I.  We have assumed ergodicity, so that time average is equal to the 
ensemble average < … >.  

 
  
  
 
 

-- the end -- 
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