Position and Displacement

- The position of an object is described by its position vector, \(\mathbf{r} \).
- The displacement of the object is defined as the change in its position, \(\Delta \mathbf{r} = \mathbf{r}_f - \mathbf{r}_i \).
- In two- or three-dimensional kinematics, everything is the same as in one-dimensional motion except that we must now use full vector notation.

Average Velocity

- The average velocity is the ratio of the displacement to the time interval for the displacement: \(\mathbf{v} = \frac{\Delta \mathbf{r}}{\Delta t} \).
- The direction of the average velocity is the direction of the displacement vector, \(\Delta \mathbf{r} \).
- The average velocity between points is independent of the path taken. It is dependent on the displacement.
Instantaneous Velocity

- The instantaneous velocity is the limit of the average velocity as \(\Delta t \) approaches zero.

\[
v = \lim_{\Delta t \to 0} \frac{\Delta r}{\Delta t} = \frac{dr}{dt}
\]

The direction of small displacement (change in positions) tells the direction that the particle is heading at the moment.

Average Acceleration

- The average acceleration of a particle as it moves is defined as the change in the instantaneous velocity vector divided by the time interval during which that change occurs.

\[
\overline{a} = \frac{v_f - v_i}{t_f - t_i} = \frac{\Delta v}{\Delta t}
\]

Average Acceleration, cont

- As a particle moves, \(\Delta v \) can be found in different ways.
- The average acceleration is a vector quantity directed along \(\Delta v \).
Instantaneous Acceleration

The instantaneous acceleration is the limit of the average acceleration as Δt approaches zero:

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt}$$

The direction of small change in velocities tells the direction of **acceleration**.

Producing An Acceleration

Various changes in a particle’s motion may produce an acceleration, such as:

- The magnitude of the velocity vector may change
- The direction of the velocity vector may change
 - Even if the magnitude remains constant
 - Both may also change simultaneously

Kinematic Equations for Two-Dimensional Motion

When the two-dimensional motion has a constant acceleration, a series of equations can be developed that describe the motion.

- These equations will be similar to those of one-dimensional kinematics

Kinematic Equations, 2

- Position vector $r = x\mathbf{i} + y\mathbf{j}$
- Velocity $v = \frac{dr}{dt} = v_x\mathbf{i} + v_y\mathbf{j}$
 - Since acceleration is constant, we can also find an expression for the velocity as a function of time: $\mathbf{v}_f = \mathbf{v}_i + \mathbf{a}t$
The velocity vector \(\mathbf{v}_f \) can be represented by its components.

\(\mathbf{v}_f = \mathbf{v}_i + \mathbf{a}t \)

The position vector can also be expressed as a function of time:

\[\mathbf{r}_f = \mathbf{r}_i + \mathbf{v}_i t + \frac{1}{2} \mathbf{a} t^2 \]

This indicates that the position vector is the sum of three other vectors:

- The initial position vector \(\mathbf{r}_i \)
- The displacement resulting from \(\mathbf{v}_i t \)
- The displacement resulting from \(\frac{1}{2} \mathbf{a} t^2 \)

The vector representation of the position vector \(\mathbf{r}_f \) is generally not in the same direction as \(\mathbf{v}_i \) or as \(\mathbf{a}_i \).

\(\mathbf{r}_f = \mathbf{r}_i + \mathbf{v}_i t + \frac{1}{2} \mathbf{a} t^2 \)

The equations for final velocity and final position are vector equations, therefore they may also be written in component form.

This shows that two-dimensional motion at constant acceleration is equivalent to two independent motions:

- One motion in the \(x \)-direction and the other in the \(y \)-direction.
Kinematic Equations, Component Equations

- \(\mathbf{v}_f = \mathbf{v}_i + \mathbf{a} t \) becomes
 - \(v_{xf} = v_{xi} + a_x t \) and
 - \(v_{yf} = v_{yi} + a_y t \)
- \(\mathbf{r}_f = \mathbf{r}_i + \mathbf{v}_i t + \frac{1}{2} \mathbf{a} t^2 \) becomes
 - \(x_f = x_i + v_{xi} t + \frac{1}{2} a_x t^2 \) and
 - \(y_f = y_i + v_{yi} t + \frac{1}{2} a_y t^2 \)

Projectile Motion

- An object may move in both \(x \) and \(y \) directions simultaneously
- The form of two-dimensional motion we will deal with is called **projectile motion**

Assumptions of Projectile Motion

- The free-fall acceleration \(\mathbf{g} \) is constant over the range of motion
 - \(\mathbf{g} \) is directed downward
- The effect of air friction is negligible
- With these assumptions, an object in projectile motion will follow a parabolic path
 - This path is called the **trajectory**

Verifying the Parabolic Trajectory

- Reference frame chosen
 - \(y \) is vertical with upward positive
- Acceleration components
 - \(a_y = -g \) and \(a_x = 0 \)
- Initial velocity components
 - \(v_{xi} = v_i \cos \theta \) and \(v_{yi} = v_i \sin \theta \)
Verifying the Parabolic Trajectory, cont

- Displacements
 - \(x_f = v_{xi} t = (v_i \cos \theta) t \)
 - \(y_f = v_{yi} t + \frac{1}{2} a_y t^2 = (v_i \sin \theta) t - \frac{1}{2} gt^2 \)
- Combining the equations and removing \(t \) gives:
 \[
 y = (\tan \theta) x - \left(\frac{g}{2v_i^2 \cos^2 \theta} \right) x^2
 \]
- This is in the form of \(y = ax - bx^2 \) which is the standard form of a parabola

Range and Maximum Height of a Projectile

- When analyzing projectile motion, two characteristics are of special interest
- The range, \(R \), is the horizontal distance of the projectile
- The maximum height the projectile reaches is \(h \)

Height of a Projectile, equation

- The maximum height of the projectile can be found in terms of the initial velocity vector:
 \[
 h = \frac{v_i^2 \sin^2 \theta_i}{2g}
 \]
- This equation is valid only for symmetric motion

Range of a Projectile, equation

- The range of a projectile can be expressed in terms of the initial velocity vector:
 \[
 R = \frac{v_i^2 \sin 2\theta_i}{g}
 \]
- This is valid only for symmetric trajectory

We will derive them.
Projectile Formulation

Let the initial velocity be \(u \). Let the angle subscripted by \(u \) and \(x \)-axis be \(\theta \).

Along the \(x \)-direction,
\[
x = (u \cos \theta) \times t
\]

\[\Rightarrow t = \frac{x}{u \cos \theta} \quad (1)\]

Along the \(Y \)-direction,
\[
y = (u \sin \theta) \times t - \frac{1}{2} gt^2
\]

Substitute (1) into (2):
\[
y = (u \sin \theta) \times \frac{x}{u \cos \theta} - \frac{1}{2} g \left(\frac{x^2}{2u^2 \cos^2 \theta} \right)
\]
\[
y = (\tan \theta)x - \frac{gx^2}{2u^2 \cos^2 \theta}
\]

Maximum occurs when the \(y \)-component of the velocity is equal to 0, i.e., the object is at the moment of coming down.
\[
\Rightarrow v = u \sin \theta - gt = 0
\]
\[
\therefore u \sin \theta - gt = 0
\]
\[
\Rightarrow t = \frac{u \sin \theta}{g}
\]

Substitute (3) into (2):
\[
y = h = u \sin \theta \left(\frac{u \sin \theta}{g} \right) - \frac{1}{2} g \left(\frac{u \sin \theta}{g} \right)^2
\]
\[
y = \frac{u^2 \sin^2 \theta}{g} - \frac{u^2 \sin^2 \theta}{2g}
\]
\[
\Rightarrow h = \frac{u^2 \sin^2 \theta}{2g}
\]

\[\text{or} \quad v_f^2 \sin^2 \theta_i \]

What is the maximum value of \(R \), and the corresponding \(\theta \)?

Since \(|\sin 2\theta| \leq 1\), \(R \) is maximum when \(\sin 2\theta = 1 \), i.e., \(2\theta = 90^\circ \Rightarrow \theta = 45^\circ \)

When \(\theta = 45^\circ \),
\[
R = \frac{u^2}{g} \left(\sin(2 \times 45^\circ) \right)
\]
\[
R = \frac{u^2}{g} \left(\sin 90^\circ \right)
\]
\[
\therefore R = \frac{u^2}{g}
\]
Range of a Projectile, final

- The maximum range occurs at $\theta_i = 45^\circ$
- Complementary angles will produce the same range
 - But the maximum height will be different for the two angles
 - The times of the flight will be different for the two angles

Projectile Motion – Problem Solving Hints

- Select a coordinate system
- Resolve the initial velocity into x and y components
- Analyze the horizontal motion using constant velocity techniques
- Analyze the vertical motion using constant acceleration techniques
- Remember that both directions share the same time

Non-Symmetric Projectile Motion

- Follow the general rules for projectile motion
- Break the y-direction into parts
 - up and down or symmetrical back to initial height and then the rest of the height
- May be non-symmetric in other ways

Example. A firefighter, a distance d from a burning building, directs a stream of water from a fire hose at angle θ above the horizontal as in Figure. If the initial speed of the stream is v_i, at what height h does the water strike the building?
Uniform Circular Motion

- **Uniform circular motion** occurs when an object moves in a circular path with a constant speed.
- An acceleration exists since the direction of the motion is changing.
 - This change in velocity is related to an acceleration.
 - The velocity vector is always tangent to the path of the object.

Changing Velocity in Uniform Circular Motion

- The change in the velocity vector is due to the change in direction.
- The vector diagram shows $\Delta \mathbf{v} = \mathbf{v}_f - \mathbf{v}_i$.

Centripetal Acceleration

- The acceleration is always perpendicular to the path of the motion.
- The acceleration always points toward the center of the circle of motion.
- This acceleration is called the *centripetal acceleration*.
Centripetal Acceleration, cont

- The magnitude of the centripetal acceleration vector is given by
 \[a_c = \frac{v^2}{r} \]

- By the use of same ratio, this can be derived as follows:
 \[\frac{\Delta v}{\Delta r} = \frac{v}{r} \]
 \[\frac{\Delta v}{\Delta t} = \frac{v}{r} \times \frac{\Delta r}{\Delta t} \]
 \[a_c = \frac{v^2}{r} \]

Period

- The period, \(T \), is the time required for one complete revolution (one complete cycle)

- As one complete cycle is the distance of the circumference. The speed of the particle would be the circumference of the circle of motion divided by the period. Speed = distance/time, so time = distance/speed

- Therefore, the period is \(T = \frac{2\pi r}{v} \)

Example. The astronaut orbiting the Earth in Figure is preparing to dock with a Westar VI satellite. The satellite is in a circular orbit 600 km above the Earth's surface, where the free-fall acceleration is 8.21 m/s\(^2\). Take the radius of the Earth as 6400 km. Determine the speed of the satellite and the time interval required to complete one orbit around the Earth.
Tangential Acceleration

- The magnitude of the velocity could also be changing.
- In this case, there would be a **tangential acceleration**.
- Observe what happens at the center (my hand) when I make the ball to rotate faster.

Total Acceleration \(\mathbf{a} = \mathbf{a}_t + \mathbf{a}_r \)

- The tangential acceleration causes the change in the speed of the particle.
- The radial acceleration comes from a change in the direction of the velocity vector.

(In the textbook by Serway, the direction or radial acceleration is away from center – not important.)

Total Acceleration, equations

- The tangential acceleration: \(a_t = \frac{dv}{dt} \)

- The radial acceleration: \(a_r = \mathbf{a}_c = \frac{v^2}{r} \)

- The total acceleration:
 - Magnitude
 \[a = \sqrt{a_r^2 + a_t^2} \]

Why the string does not slack and the ball does not fly towards the center?

Example

A train slows down as it rounds a sharp horizontal turn, slowing from 90.0 km/h to 50.0 km/h in the 15.0 s that it takes to start to round the bend. The radius of the curve is 150 m. Compute the acceleration at the moment the train speed reaches 50.0 km/h. Assume it continues to slow down at this time at the same rate.
We assume the train is still slowing down at the instant in question.

\[
\alpha = \frac{v^2}{r} = \frac{(50 \times (1000/3600))^2}{150} = 1.29 \text{ m/s}^2
\]

This dent is symmetrical (the beautiful v shape). This situation **seldom** occurs because the total acceleration (which is the direction of the force) is usually not toward the center due to the existence of tangential acceleration.

The dent is caused by the force acted by the train on the rail. This dent is in the direction of the total acceleration (a). This situation usually occurs.

Relative Velocity

- Two observers moving relative to each other generally do not agree on the outcome of an experiment
- For example, observers A and B below see different paths for the ball

Relative Velocity, generalized

- Reference frame \(S \) is stationary
- Reference frame \(S' \) is moving at \(\mathbf{v}_0 \)
 - This also means that \(S \) moves at \(-\mathbf{v}_0\) relative to \(S' \)
- Define time \(t = 0 \) as that time when the origins coincide
Relative Velocity, equations

- The positions as seen from the two reference frames (\(r \) is the position seen from stationary frame, \(r' \) seen from moving frame) are related through the velocity
 \[r' = r - v_0 t \]
- The derivative of the position equation will give the velocity equation
 \[v' = v - v_0 \]
- These are called the **Galilean transformation equations**

![Example](image)

Example. How long does it take an automobile traveling in the left lane at 60.0 km/h to pull alongside a car traveling in the right lane at 40.0 km/h if the cars' front bumpers are initially 100 m apart? (Disk 2)

Answer: The bumpers are initially 100 m apart (0.1 km). After time \(t \) the bumper of the leading car travels 40.0 \(t \) hrs, while the bumper of the chasing car travels 60.0\(t \). Since the cars are side by side at time \(t \), we have

\[
0.1 + 40 t = 60 t \\
t = 0.1/20 = 0.005 \text{ hr} = 0.005 \times 3600 \text{ sec} = 18 \text{ s}
\]

Acceleration in Different Frames of Reference

- The derivative of the velocity equation will give the acceleration equation
 \[a' = a \]
- The acceleration of the particle measured by an observer in one frame of reference is the same as that measured by any other observer moving at a **constant velocity** relative to the first frame. Why?

\[
\begin{align*}
 r' &= r - v_0 t \\
v' &= v - v_0 \\
v_0 \text{ is a constant, so } v_0 \text{ has no effect on the change in velocity.}
\end{align*}
\]

Examples. \([d2-03, d2-04]\)

In this demonstration a small car will roll down a track at constant speed. When the car reaches this point, it will fire a ball straight up as it continues to move. After the ball is fired, will it come down ahead of, on top of, or behind the car?

(A) Horizontal Track

A small car with a ball-firing mechanism on the top runs down a tilted track so that it is constantly accelerating. When it reaches this point it will fire the ball straight out of the cannon and continue on.

After the ball is fired, will it land ahead of, on top of, or behind the car?

(B) Tilted Track
Examples. \(d2-03, d2-04\)

This time the car will be pulled along the horizontal track by a string and a weight hanging over a pulley, and will be accelerating constantly. The ball is fired at point X. Where will the ball land this time? (The horizontal track is long enough for the car not to fall off when the ball lands.)

(C) The car is pulled along by a string and a weight hanging over a pulley.