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As E approaches Fermi energy level, the density of state approaches a constant 
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 Using Debye approximation, vk=ω   
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As a Debby solid, the density of states is a smooth curve (Fig a), however in reality, this 

is not true. Instead the density of states fluctuates above and below the curve denoted by 

the Debby solid (Fig b). However, this jagged curve can be approximated to the Debby 

solid as the total area under the curves is the same for both graphs as explained by Debby. 
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3. (a) nevEJ −==σ  
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Electrical resistivity of most metals at room temperature is higher than at liquid 

helium temperature. At room temperature, the movement of electrons is impeded 

by other electrons as well as the vibration of the ions within the crystal lattice. 

Therefore the relaxation time is very short. In contrast, the movement of 

conduction electrons at liquid helium temperature is also impeded by other 

electrons as well as the vibration of the ions within the crystal lattice. However, 

(a) (b) 



due to the low temperature, the probability of conduction electrons being liberated 

from the valence band is significantly lesser as governed by the Fermi probability 

function. Therefore, the relaxation time is longer than that at room temperature. 
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The real part represents the actual conductivity of the system while the imaginary 

part describes the attenuation of conductivity. 

 

(c) Lorentz force, )( BvE ×+−= eeF  
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 Let 0=yv , ( )
xy BvEe −−=0  
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From the formula derived, 
ne

RH

1
−== , we can see that the Hall coefficient is 

inversely proportional to the concentration of electrons. As metals have a very 

high concentration of electrons, n will be large. This would imply that the hall 

coefficient will be small thus it is very hard to measure Hall coefficient in metals. 
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(b) (i) 

 
Direct bandgap as illustrated by Fig a has the lowest conduction band directly 

above the peak of the valence band. This implies that momentum is conserved if it 

energy is to be imputed into a transiting electron. 

 

Indirect band gap occurs when the lowest value of the conduction band is not at 

the same wave vector as that of the peak of the valance band. This implies that if a 

transiting electron may not have enough momentum to transit between the bands 

if only a phonon of energy level equals to the energy gap is absorbed 
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the momentum required to transit from the valance band to the conduction band in 

an indirect band gap is 4 orders of magnitude more than the incoming photon can 

provide. Therefore such a transition will not occur if only a photon is there to 

supply the energy for transition. 

 

(c)  If direct band gap were to occur, experimental results will yield a clean curve as 

seen in the left Figure. 

 
If an indirect band gap were to happen, experimental results will yield a graph 

similar to that on the right. This is because, the photons are not absorbed directly, 

instead an additional absorption of a phonon is required for a transition between 

valance band and conduction band to occur. 
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