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Question 1

Part (A)
If we consider regions with no current, Ampere’s law says:
V x B =0.
This allows us to write B as a gradient of some scalar function,
B =VV(71).

For the magnetic vector potential, from the fact that there are no monopoles,

V-B=0 = B=VxA
Choose V - A = 0, we have V24 = ,uof, which are three Poisson’s equations, one for each

vector component.
For line currents, the solutin is analogous to the case of electrostatics: (note: ¥ — 7 = t)
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In this case, the scalar potential does not exist.

Part (B)
Gauss’s Law in media: Given auxiliary fields: D = egE + P
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Linear media, D = eE. And inside the metal sphere, E = P = P = 0 (a conductor)
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At the inner surface, r = a,n directed inside, so
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Outer surface, r = b, i1 directed outside,
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Total energy:
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Similarly, integrating the electric field for the region outside,
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So the total energy:
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Question 2

Part (A)
TEg mode, E, = 0, from Gauss’ Law:
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Also, no monopoles: V - B =0
0B, n 0B, n 0B,
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Faraday’s Law,
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But curl of E is zero, this implies that OB /ot =0, B is constant.
Boundary conditions, B = 0 at the boundaries, so B, is constant and zero - no field.

Part (B)
B, = DBjcos ™ cos Ty
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Substitute these expressions into the given formulas for F, and F,,
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Question 3

Part (A)
Consider an object of length L moving at velocity v: The observer sees the object as having
the length L'. The time it takes for light from the back of the object to arrive at the observer

is
L'cos ©-0
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At the sametime the object has moved a distance L' — L, so,
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Distances perpendicular to the motion is not affected, so the apparent volume measured by

the observer is:
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Since this formula does not take into account the size of the object, this applies equally well
to point particles. SO the potential introduces a factor of
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Part (B)
Based on the hints, the horizontal components can be shown to cancel by symmetry about
the y-axis. So only need to consider the y-components.
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The small change in electric field:
. 1 1— a?)si
JB = qdf ( a.)zmé p
Amepd d cosec?6df (1 — a? sin® 6)3/2
1 A (1-d¥y 50
4regd d (1 — a? sin® 0)3/2
. 1A (1-ad)g
E = / A_U-d)y g
o 4megd (1 — a?sin® 6)3/2
Change variables, z = cos, limitss [0, 7] — [—1, 1], dz = —sin 0df
P _/_1 1 A (1-a®dz)
B L Amepd d (1 — a? + a?2?)3/2
1A ! d
— et [ d
dmend d 1 (1 —a? + a?22)3/2
1A !
- - -
dmed d adla?—-1)vVa?2—-1+22]
I A
= Z(1—a?
dmend d( ¢ )a?(a*2 —1)
B 1 A
 2med d



Question 4

Part (i)
Retarded time,
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The vector potential,
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Part (ii)
No charge,
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Magnetic field,



