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Question 1

Part (A)
If we consider regions with no current, Ampere’s law says:

∇× ~B = 0.

This allows us to write ~B as a gradient of some scalar function,

~B = ∇V (~r, t).

For the magnetic vector potential, from the fact that there are no monopoles,

∇ · ~B = 0 ⇒ ~B = ∇× ~A.

Choose ∇ · ~A = 0, we have ∇2 ~A = µ0
~J , which are three Poisson’s equations, one for each

vector component.
For line currents, the solutin is analogous to the case of electrostatics: (note: ~r − ~r′ = r)

~A =
µ0

4π

∫ ~I

~r
dl′

In this case, the scalar potential does not exist.

Part (B)

Gauss’s Law in media: Given auxiliary fields: ~D = ε0
~E + ~P

∇ · ~D = ρf →
∮

~D · d~a = Qf,encl

~D =
Q

4πr2
r̂

Linear media, ~D = ε ~E. And inside the metal sphere, ~E = ~P = ~P = 0 (a conductor)

~E =

{ Q
4πεr2 r̂ for a < r < b
Q

4πε0r2 r̂ for r > b

V = −
∫ 0

∞

~E · d~l =

∫ b

∞

Q

4πε0r2
dr −

∫ b

a

Q

4πεr2
dr + 0

=
Q

4π

(
1

ε0b
+

1

εa
− 1

εb

)
, V (~r →∞) = 0
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At the inner surface, r = a,~n directed inside, so

σb = ~P · ~n = −ε0χeQ

4πεa2

Outer surface, r = b, ~n directed outside,

σb = ~P · ~n = +
ε0χeQ

4πεb2

Total energy:

U =
1

2
ε0

∫
E2dτ

E2 =


(

Q
4πε

)2 1
r4 , a < r < b(

Q
4πε0

)2
1
r4 , r > b

U1 =
1

2
ε0

∫ (
Q

4πε

)2
1

r4
r2 sin θdrdφdθ

=
1

2
ε0

Q2

4π2ε2

∫ 2π

0

dφ︸ ︷︷ ︸
s

∫ π

0

sin θ︸ ︷︷ ︸
2

∫ b

a

1

r2
dr︸ ︷︷ ︸

a−3−b−3

=
1

2
ε0

Q2

πε2

(
a−3 − b−3

)
Similarly, integrating the electric field for the region outside,

U2 =
1

2
ε0

Q2

πε2
0

1

b

So the total energy:

U =
1

2
ε0

[
Q2

πε2
0b

+
Q2

πε2

(
1

a3
− 1

b3

)]

Question 2

Part (A)
TE00 mode, Ez = 0, from Gauss’ Law:

∂Ex

∂x
+

∂Ey

∂y
= 0.
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Also, no monopoles: ∇ · ~B = 0
∂Bx

∂x
+

∂By

∂y
+

∂Bz

∂z
= 0

Faraday’s Law,

∇× ~E = −∂ ~B

∂t

But curl of ~E is zero, this implies that ∂ ~B/∂t = 0, ~B is constant.

Boundary conditions, ~B = 0 at the boundaries, so Bz is constant and zero - no field.

Part (B)

Bz = B0 cos
πx

a
cos

πy

b
∂Bz

∂y
= −B0 cos

πx

a
sin

πy

b

(π

b

)
−→ +ω

∂Bz

∂y
= −B0

(π

b
cos

πx

a
sin

πy

b

)
∂Bz

∂x
= −B0 sin

πx

a
cos

πy

b

(π

a

)
−→ −ω

∂Bz

∂x
= +B0

(π

a

)
B0 sin

πx

a
cos

πy

b

Substitute these expressions into the given formulas for Ex and Ey,

Ex = − i

ω2/c2 − k2

(π

b
B0 cos

πx

a
sin

πy

b

)
,

Ey = +
i

ω2/c2 − k2

(π

a
B0 cos

πx

a
sin

πy

b

)
,

ω = cπ

√
1

a2
+

1

b2

Question 3

Part (A)
Consider an object of length L moving at velocity v: The observer sees the object as having
the length L′. The time it takes for light from the back of the object to arrive at the observer
is

t =
L′ cos θ

c
=

~r · ~v
c

At the sametime the object has moved a distance L′ − L, so,

r̂ · ~v
c

=
L′ − L

v
, or, L′ =

L

1− r̂ · ~v/c
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Distances perpendicular to the motion is not affected, so the apparent volume measured by
the observer is:

τ ′ =
τ

1− r̂ · ~v/c

Since this formula does not take into account the size of the object, this applies equally well
to point particles. SO the potential introduces a factor of

1

1− r̂ · ~v/c

Part (B)
Based on the hints, the horizontal components can be shown to cancel by symmetry about
the y-axis. So only need to consider the y-components.

~E =
q

4πε0

1− v2

c2(
1− v2 sin2 θ

c2

)3/2

R̂

R2
sin θŷ

=
q

4πε0

(1− a2) sin θ

1− a2 sin2 θ

R̂

R2
ŷ, a =

v

c
(1)

Note that

x = d cot θ, −→ dx = −d cosec2θdθ

Therefore
q

dx
= λ = − q

d cosec2θdθ
. (2)

The small change in electric field:

d ~E =
1

4πε0d

qdθ

d cosec2θdθ

(1− a2) sin θ

(1− a2 sin2 θ)3/2
ŷ

=
1

4πε0d

λ

d

(1− a2)ŷ

(1− a2 sin2 θ)3/2
dθ

~E =

∫ π

0

1

4πε0

λ

d

(1− a2)ŷ

(1− a2 sin2 θ)3/2
dθ

Change variables, z = cos θ, limitss [0, π]→ [−1, 1], dz = − sin θdθ

~E = −
∫ −1

1

1

4πε0d

λ

d

(1− a2)dz)

(1− a2 + a2z2)3/2

=
1

4πε0d

λ

d
(1− a2)

∫ 1

−1

dz

(1− a2 + a2z2)3/2

=
1

4πε0d

λ

d
(1− a2)

[
z

a3(a−2 − 1)
√

a−2 − 1 + z2

]1

−1

=
1

4πε0d

λ

d
(1− a2)

1

a2(a−2 − 1)

=
1

2πε0d

λ

d
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Question 4

Part (i)
Retarded time,

tr = t− r

c
= t−

√
x2 + r2

c

= t− 1

c

(√
r2 + x2 + x− x

)
= t =

x

c
− 1

c

(√
r2 + x2 − x

)
= t− x

c
− u

du =
1

c

r√
r2 + x2

dr

The vector potential,

~A =
µ0

4π

∫ ~K√
x2 + r2

2πrdr

=
µ0

2

∫
~K(tr)

rdr

sqrtr2 + x2

=
µ0c

2
ẑ

∫
K(t− x

c
− u)du

Part (ii)
No charge,

~E = −∂ ~A

∂t

= −µ0c

2
ẑ

∫
K̇(t− x

c
− u)du

Magnetic field,

~B = ∇× ~A
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