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Suggested Solutions

Q1

(i)

Within the coaxial cable, drawing an Amperian loop of radius a < s < b coaxial
with the cable, ∫

~B · d~l = µ0

∫
~J · d~a

⇒ 2πsB = µ0I

⇒ ~B =
µ0I

2πs
φ̂

Drawing a cylindrical gaussian surface of radius a < s < b with its axis coinciding
with that of the coaxial cable, ∫

~E · d~a =
1

ε0

∫
ρdτ

⇒ (2πslE) =
λl

ε0

⇒ ~E =
λ

2πsε0

ŝ

Then,

~S =
1

µ0

~E × ~B

=
Iλ

4π2s2ε0

ẑ

(ii)

P =

∫
~S · d~a

=
Iλ

4πε0

∫ b

a

1

s2
(2πs) ds

=
Iλ

2ε0

ln
b

a
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(iii)

~pem = µ0ε0

∫
~Sdτ

=
µ0ε0IλL

4π

∫ b

a

1

s2ε0

(2πs) dsẑ

=
µ0λIL

2π
ln

(
b

a

)
ẑ

(iii)

Drawing a retangular Amperian loop with its normal in the φ̂ direction, one edge
of length l at the middle of the coaxial cable and the opposite edge at a < s < b,∫

~E · d~l = − ∂

∂t

∫
~B · d~a

⇒ El = −µ0

2π

dI

dt

∫ s

a

1

s
(lds)

⇒ ~E = −µ0

2π

dI

dt
ln

s

a
ẑ

(iv)

For the −λ at s = b,

~F = q ~E

= (−λL)

(
−µ0

2π

dI

dt
ln

b

a

)
ẑ

=
λµ0L

2π

dI

dt
ln

b

a
ẑ

For the λ at s = a, ~E = 0 and ~F = 0.

(v)

~P =

∫
~F dt

=

[
λLµ0

2π
ln

b

a

∫
dI

dt
dt

]
ẑ

=
λLµ0

2π
ln

b

a
(I − 0)ẑ

which is precisely the momentum that was originally stored in the fields.
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Q2

(A)

Consider 2 sets of potential:

~A′ = ~A + ~α

V ′ = V + β

such that ~A and ~A′ give the same ~B and ~E :

~B = ∇× ~A = ∇× ~A′

∇× ~α = 0.

Writing α as the gradient of a scalar λ,

α = ∇λ (∇×∇λ = 0)

~E = −∇V − ∂

∂t
~A

= −∇V ′ − ∂

∂t
~A′

hence

∇β +
∂

∂t
~α = 0

∇(β +
∂

∂t
λ) = 0

The term in parantheses is independent of position, but it could depend on
time :

β = − ∂

∂t
+ k(t)

We can absorb k(t) into λ, without affecting the gradient. Hence,

~A′ = ~A +∇λ,

V ′ = V − ∂

∂t
λ.

We can add ∇λ to ~A, provided we simulatenously subtract ~∂∂tλ from V .

(ii)

~E = −∇V − ∂

∂t
~A =

1

4πε0

q

r2
r̂

~B = ∇× ~A = 0
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This is a set of potentials for a stationary point charge q at the origin, more
usually

V =
1

4πε0

q

r
~A = 0.

(iii)

Gauge transforming by λ, we have

V ′ = V − ∂

∂t
λ = 0−

(
− 1

4πε0

q

r

)
=

1

4πε0

q

r

~A′ = ~A +∇λ = − 1

4πε0

qt

r2
r̂ +

−1

4πε0

qt
−1

r2
r̂ = 0

as in ‘usual’ potentials of a point charge.

(B)

For convenience, let’s say the particle passes through the origin at time t = 0, so
that

~w(t) = ~vt

. We first compute the retarded time :

|~r − ~vtr| = c(t− tr)

, or squaring:
r2 − 2~r · ~vtr + v2t2r = c2(t2 − 2ttr + t2r)

Solving for tr, we find that

tr =
(c2t− ~r · ~v ±

√
(c2t− ~r · ~v)+(c2 − v2)(r2 − c2t2)

c2 − v2

To fix the sign, consider the limit v = 0:

tr = t± r

c
.

In this case the charge is at rest at the origin, and the retarded time should be
(t− r/c); evidently we want the minus sign. Now,

r = c(t− tr)

~r =
~r − ~vtr
c(t− tr)
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, so

r(1− r̂ · ~v/c) = c(t− tr)

[
1− ~v

c
· (~r − ~vtr)

c(t− tr)

]
= c(t− tr)−

~v · ~r
c
− v2

c
tr

=
1

c
[(c2t− ~r · ~v)− (c2 − v2)tr]

=
1

c

√
(c2t− ~r · ~v) + (c2 − v2)(r2 − c2t2)

Therefore,

V (~r, t) =
1

4πε0

qc√
(c2t− ~r · ~v)2 + (c2 − v2)(r2 − c2t2)

and
~A(~r, t) =

µ0

4πε0

qc~v√
(c2t− ~r · ~v)2 + (c2 − v2)(r2 − c2t2)

.
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Q3

(i)

∇V =
∂V

∂r
r̂ +

1

r

∂V

∂θ
θ̂

= − p0ω

4πε0c

{
cos θ[− 1

r2
sin ω(t− r/c)− ω

rc
cos ω(t− r/c)]− sin θ

r2
sin ω(t− r/c)θ̂

}
≈ p0ω

2

4πε0c2

(
cos θ

r

)
cos ω(t− r/c)r̂,

∂

∂t
~A = −µ0p0ω

2

4πr
cos[ω(t− r/c)](cos θr̂ − sin θθ̂),

so

~E = −∇V − ∂ ~A

∂t

= −µ0p0ω
2

4π

(
sin θ

r

)
cos ω(t− r/c)θ̂.

Meanwhile,

~B = ∇× ~A

=
1

r

[
∂

∂r
(rAθ)−

∂Ar

∂θ

]
φ̂

=
−µ0q0ω

4πr

{
ω

c
sin θ cos ω(t− r/c) +

sin θ

r
sin ω(t− r/c)]

}
φ̂

≈ −µ0p0ω
2

4πc

(
sin θ

r

)
cos[ω(t− r

c
]φ̂.

(ii)

< ~S > =
1

µ0

(< ~E × ~B >)

=
µ0

c

{
p0ω

2

4π

(
sin θ

r

)
< cos ω(t− r/c) >

}2

r̂

=

(
µ0p

4
0ω

4

32π2c

)
sin2 θ

r2
r̂.

6



(iv)

< P > =

∫
< ~S > ·d~a

=
µ0p

2
0ω

4

32π2c

∫
sin2 θ

r2
r2 sin θdθdφ

=
µ0p

2
0ω

4

12πc

(v)

P = I2R = q2
0ω

2 sin2 ωtR

Average power,

< P >=
1

2
q2
0ω

2R

Equating this to the power of a dipole,

< P >=
µ0q

2
0ω

4d2

12πc

,

R =
µ0d

2

6πc
ω2 =

µ0d
2

6πc

4π2c

λ2
=

2

3
πµ0c

(
d

λ

)2
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Q4

Inside the sphere, the potential can have no 1
rl+1 terms, or else it will blow up

and die at r = 0, so

Vin =
∞∑
0

(Alr
l)Pl(cos θ)

Outside the sphere, there can be no rl term, or else it will blow up at r = ∞, so

Vout =
∞∑
0

Bl

r(l + 1)
Pl(cos θ)

.
Let the polarisation of the sphere be in the z direction, so that the bound

charge σb = ~P · n̂ = P cos θ.

The fact that the normal components of E suffer a discontinuity of σ
ε

at the
boundary between the inside and outside of the sphere means that(

∂Vout

∂r
− ∂Vin

∂r

)
r=R

= −σb

ε0

⇒
∑

(l + 1)
Bl

rl+1
Pl(cos θ)− lAlR

l−1Pl(cos θ) = −P cos θ

ε0

.

Since there is only a cos θ = P1(cos θ) term on the right hand side of the equal sign,
by the orthogonality of the Legendre polynomials, there can only be P1 terms on
the left hand side of the equal sign as well, so l = 1 is the only admissable value.
This leads to the simplification that

Vout =
B

r2
cos θ

Vin = Ar cos θ

, and the boundary condition about the discontinuty of the normal component
of ~E implies that

∂

∂r
(
B

r2
− Ar)|r=R cos θ = −P cos θ

ε0

⇒
(
−2B

R3
− A

)
= −P

ε0

Meanwhile, the continuity of the potential across the boundary implies that

AR =
B

R2

A =
B

R3

8



so (
2B

R3

)
=

P

ε0

⇒ 3B

R3
=

P

ε0

⇒ B =
PR3

3ε0

⇒ A =
P

3ε0

and

Vin =
Pr

3ε0

cos θ,

Vout =
PR3

3ε0r2
cos θ.

Inside the sphere,

~Ein = −∇Vin

= − P

3ε0

(
∂

∂r
(r cos θ)r̂ +

1

r

∂

∂θ
(r cos θ)θ̂)

= − P

3ε0

(cos θr̂ − sin θθ̂)

= −P ẑ

3ε0

= −
~P

3ε0

When the sphere is placed in the field in the external field ~E0, the resultant
field

~E = ~E0 −
1

3ε0

~P

Now,

~D = ~P + ε0
~E

⇒ ε0εr
~E = ~P + ε0

~E

⇒ ~P = ε0(εr − 1) ~E
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Substituing inside,

~E = ~E0 −
1

3ε0

~P

⇒ ~E = ~E0 −
εr − 1

3
~E

⇒ ~E =
3

εr + 2
~E0
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