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Suggested Solutions

Q1
(i)

Within the coaxial cable, drawing an Amperian loop of radius a < s < b coaxial

with the cable,
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Drawing a cylindrical gaussian surface of radius a < s < b with its axis coinciding
with that of the coaxial cable,
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(iii)
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(iif)
Drawing a retangular Amperian loop with its normal in the gg direction, one edge
of length [ at the middle of the coaxial cable and the opposite edge at a < s < b,
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For the —\ at s = b,
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which is precisely the momentum that was originally stored in the fields.



Q2
(A)
Consider 2 sets of potential:

A = A+a
Vi = V43

such that A and A’ give the same Band E :
B = VxA=VxA
V xa=0.

Writing « as the gradient of a scalar A,
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The term in parantheses is independent of position, but it could depend on
time :
5=-2 k)
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We can absorb k(t) into A, without affecting the gradient. Hence,
A=A+ V),
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We can add VA to /T, provided we simulatenously subtract DO\ from V.
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This is a set of potentials for a stationary point charge g at the origin, more
usually

1 q
vV = =
dmeg T
A = 0.
(iii)
Gauge transforming by A, we have
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as in ‘usual’ potentials of a point charge.

(B)
For convenience, let’s say the particle passes through the origin at time ¢ = 0, so

that
w(t) = vt

. We first compute the retarded time :
|77 — Ut,| = c(t —t,)

, Or squaring;:
72— 27 Ut + V2 = A(t* — 2tt, +t2)

Solving for t,, we find that
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To fix the sign, consider the limit v = 0:
r
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In this case the charge is at rest at the origin, and the retarded time should be
(t — r/c); evidently we want the minus sign. Now,
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r(l—7-7/c) =

Therefore,
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Q3
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(iv)
<P> = /<§>-dc‘i
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(v)
P=1I°R= quQ sin® wtR
Average power,
<P>= %qngR
Equating this to the power of a dipole,

ot

< P>
127e

A

= 3THoC

R u0d2w2 _ pod? 4m%c 2 d\’
67c 6me A2 3



Q4

Inside the sphere, the potential can have no rl% terms, or else it will blow up

and die at r =0, so

Vin = Z(Alrl)Pl(cos 0)
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Outside the sphere, there can be no 7! term, or else it will blow up at r = oo, so
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Let the polarisation of the sphere be in the z direction, so that the bound
charge o, = P-n = P cos#.

The fact that the normal components of E suffer a discontinuity of Z at the
boundary between the inside and outside of the sphere means that
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Since there is only a cos § = P1(cos @) term on the right hand side of the equal sign,
by the orthogonality of the Legendre polynomials, there can only be P; terms on
the left hand side of the equal sign as well, so [ = 1 is the only admissable value.
This leads to the simplification that

Vouwr = 2 cos 6

Vi, = Arcos@

, and the boundary condition about the discontinuty of the normal component
of E implies that
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Meanwhile, the continuity of the potential across the boundary implies that
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When the sphere is placed in the field in the external field EO, the resultant
field

Now,



Substituing inside,
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