PC3130/3201 - Quantum Mechanics

Tutorial 1

1.
Find the eigenfunction and the energy spectrum of a particle in the potential well given by 
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2.
A one-dimensional harmonic oscillator is in a state such that at t = 0,
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If the wave function  

 is normalised, find : -


(a) 



(b) AA



(c) the expectation value  

 of the position operator 



(d) 
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 where x is the position operator.


(e) the expectation value of momentum, 
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(f) 
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, where 
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is the momentum operator.


(g) the expectation value of the potential energy.


Is 
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 [Heisenberg’s uncertainty principle] satisfied?

3.
At time t = 0, the normalised wave function for the electron in a hydrogen atom is 




[image: image9.wmf]=

)

,

,

(

3

2

1

x

x

x

y

 A exp 
[image: image10.wmf]]

/

)

(

[

2

/

1

2

3

2

2

2

1

a

x

x

x

+

+

-



Find :
A,      
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4.
Show that the differential operator




[image: image15.wmf]dx

d

i

P

h

=

,


is Hermitian in the space of all differentiable wavefunctions 

, say, which vanish at both ends of an interval [a, b].

5.
Let 
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 form a set of orthonormalised base vectors. A vector 
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is given by
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Is 
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 normalised? If not, find the normalised 
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. Consider a different set of orthonormalised base vectors 
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 which are related to the base vectors 
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 as follows:-
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     for    i = 1,2.


Express  
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in terms of the base 
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. If a system is in the state 
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, what is the probability amplitude of observing the system in the state 
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 and what is the corresponding probability?

6(a).
Consider an operator 
[image: image30.wmf]3

s

 in a Hilbert space and two complete base vectors 
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Using the 
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 as a base, find the matrix representing the operator 
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 is the Pauli  matrix. 

  (b).
Suppose the matrix elements of an operator A with respect to the base 
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. Consider another complete set of base vectors 
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 which are related to the original base 
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where 
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 are known coefficients. Find the matrix elements of A with respect to the base  
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7. 
 In the abstract Hilbert space H, the energy eigenvectors of a particle in an infinite square well of width L are designated by 
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for the ground state, the first excited state, the second excited state, and so on. Suppose that at a given time a particle is in the state
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a) Express this state in the coordinate x representation.

b) Express this state in the momentum p representation.

c) Express this state in the energy representation.

d) Write down the energy operator in each of these three representations.

e) Calculate the expectation value of the energy. Do this calculation three times, once in each of the representations.

f) Using whichever representation you like best, find the rms deviation of the energy from the mean.
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