1. Find the Fourier transform of the function \(f(t) = \exp(-|t|) \).

 (a) By applying Fourier’s inversion theorem prove that
 \[
 \frac{\pi}{2} \exp(-|t|) = \int_{0}^{\infty} \frac{\cos \omega t}{1 + \omega^2} d\omega.
 \]

 (b) By making the substitution \(\omega = \tan \theta \), demonstrate the validity of Parseval’s theorem for this function.

2. By taking the Fourier transform of the equation
 \[
 \frac{d^2 \phi}{dx^2} - K^2 \phi = f(x)
 \]
 show that its solution \(\phi(x) \) can be written as
 \[
 \phi(x) = -\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{e^{ikx} \tilde{f}(k)}{k^2 + K^2} dk,
 \]
 where \(\tilde{f}(k) \) is the Fourier transform of \(f(x) \).