First-order ordinary differential equations
First-degree first-order equations

First-degree first-order ODEs contain only dy/dx equated to some function of x and y, and can be written in either of two equivalent standard forms

$$\frac{dy}{dx} = F(x, y),$$

or

$$A(x, y) \, dx + B(x, y) \, dy = 0,$$

where $F(xmy) = -A(x, y)/B(x, y)$, and $F(x, y)$, $A(x, y)$ and $B(x, y)$ are in general functions of both x and y.
Separable-variable equations

A separable-variable equation is one which may be written in the conventional form

\[\frac{dy}{dx} = f(x)g(y), \tag{1} \]

where \(f(x) \) and \(g(y) \) are functions of \(x \) and \(y \) respectively. Rearranging this equation, we obtain

\[\int \frac{dy}{g(y)} = \int f(x) \, dx. \]

Finding the solution \(y(x) \) that satisfies Eq. (1) then depends only on the ease with which the integrals in the above equation can be evaluated.
Example

Solve

\[\frac{dy}{dx} = x + xy. \]

Answer

Since the RHS of this equation can be factorized to give \(x(1 + y) \), the equation becomes separable and we obtain

\[\int \frac{dy}{1 + y} = \int x \, dx \]

Now integrating both sides, we find

\[\ln(1 + y) = \frac{x^2}{2} + c, \]

and so

\[1 + y = \exp \left(\frac{x^2}{2} + c \right) = A \exp \left(\frac{x^2}{2} \right), \]

where \(c \) and hence \(A \) is an arbitrary constant.
 Exact equation

An exact first-degree first-order ODE is one of the form

\[A(x, y) \, dx + B(x, y) \, dy = 0 \quad \text{and for which} \quad \frac{\partial A}{\partial y} = \frac{\partial B}{\partial x}. \tag{2} \]

In this case, \(A(x, y) \, dx + B(x, y) \, dy \) is an exact differential, \(dU(x, y) \) say. That is,

\[A \, dx + B \, dy = dU = \frac{\partial U}{\partial x} \, dx + \frac{\partial U}{\partial y} \, dy, \]

from which we obtain

\[A(x, y) = \frac{\partial U}{\partial x}, \tag{3} \]

\[B(x, y) = \frac{\partial U}{\partial y}. \tag{4} \]
Since $\partial^2 U/\partial x \partial y = \partial^2 U/\partial y \partial x$, we therefore require

$$\frac{\partial A}{\partial y} = \frac{\partial B}{\partial x}. \quad (5)$$

If Eq. (5) holds then Eq. (2) can be written

$$dU(x, y) = 0,$$

which has the solution $U(x, y) = c$, where c is a constant and from Eq. (3), $U(x, y)$ is given by

$$U(x, y) = \int A(x, y) \, dx + F(y). \quad (6)$$

The function $F(y)$ can be found from Eq. (4) by differentiating Eq. (6) with respect to y and equating to $B(x, y)$.
Example

Solve

\[x \frac{dy}{dx} + 3x + y = 0. \]

Answer

Rearranging into the form Eq. (2), we have

\[(3x + y) \, dx + x \, dy = 0, \]

i.e. \(A(x, y) = 3x + y \) and \(B(x, y) = x \). Since \(\frac{\partial A}{\partial y} = 1 = \frac{\partial B}{\partial x} \), the equation is exact, and by Eq. (6), the solution is given by

\[U(x, y) = \int (3x + y) \, dx + F(y) = c_1 \]

\[\Rightarrow \frac{3x^2}{2} + xy + F(y) = c_1. \]
Differentiating \(U(x, y) \) with respect to \(y \) and equating it to \(B(x, y) = x \), we obtain \(dF/dy = 0 \), which integrates to give \(F(y) = c_2 \). Therefore, letting \(c = c_1 - c_2 \), the solution to the original ODE is

\[
\frac{3x^2}{2} + xy = c.
\]
Inexact equations: integrating factors

Equations that may be written in the form

\[A(x, y) \, dx + B(x, y) \, dy = 0 \]
but for which \(\frac{\partial A}{\partial y} \neq \frac{\partial B}{\partial x} \) \hspace{1cm} (7)

are known as inexact equations. However the differential \(A \, dx + B \, dy \) can always be made exact by multiplying by an integrating factor \(\mu(x, y) \) that obeys

\[\frac{\partial (\mu A)}{\partial y} = \frac{\partial (\mu B)}{\partial x} . \] \hspace{1cm} (8)

For an integrating factor that is a function of both \(x \) and \(y \), there exists no general method for finding it. If, however, an integrating factor exists that is a function of either \(x \) or \(y \) alone, then Eq. (8) can be solved to find it.
For example, if we assume that the integrating factor is a function of x alone, $\mu = \mu(x)$, then from Eq. (8),

$$\mu \frac{\partial A}{\partial y} = \mu \frac{\partial B}{\partial x} + B \frac{d\mu}{dx}.$$

Rearranging this expression we find

$$\frac{d\mu}{\mu} = \frac{1}{B} \left(\frac{\partial A}{\partial y} - \frac{\partial B}{\partial x} \right) dx = f(x) \, dx,$$

where we require $f(x)$ also to be a function of x only. The integrating factor is then given by

$$\mu(x) = \exp \left\{ \int f(x) \, dx \right\} \text{ where } f(x) = \frac{1}{B} \left(\frac{\partial A}{\partial y} - \frac{\partial B}{\partial x} \right).$$ \hspace{1cm} (9)

Similarly, if $\mu = \mu(y)$, then

$$\mu(y) = \exp \left\{ \int g(y) \, dy \right\} \text{ where } g(y) = \frac{1}{A} \left(\frac{\partial B}{\partial x} - \frac{\partial A}{\partial y} \right).$$ \hspace{1cm} (10)
Example

Solve

\[\frac{dy}{dx} = -\frac{2}{y} - \frac{3y^2}{2x}. \]

Answer

Rearranging into the form Eq. (7), we have

\[(4x + 3y^2)\, dx + 2xy\, dy = 0, \]
\[(11)\]
i.e. \(A(x, y) = 4x + 3y^2 \) and \(B(x, y) = 2xy. \)

Therefore,

\[\frac{\partial A}{\partial y} = 6y, \quad \frac{\partial B}{\partial x} = 2y, \]
so the ODE is not exact in its present form.

However, we see that

\[\frac{1}{B} \left(\frac{\partial A}{\partial y} - \frac{\partial B}{\partial x} \right) = \frac{2}{x}, \]

a function of \(x \) alone.
Therefore an integrating factor exists that is also a function of \(x \) alone and, ignoring the arbitrary constant, is given by

\[
\mu(x) = \exp \left\{ 2 \int \frac{dx}{x} \right\} = \exp(2 \ln x) = x^2.
\]

Multiplying Eq. (11) through by \(\mu(x) = x^2 \), we obtain

\[
(4x^3 + 3x^2y^2) \, dx + 2x^3y \, dy = 0.
\]

By inspection, this integrates to give the solution

\[
x^4 + y^2x^3 = c,
\]

where \(c \) is a constant.
Linear equations

Linear first-order ODEs are a special case of inexact ODEs and can be written in the conventional form

\[\frac{dy}{dx} + P(x)y = Q(x). \] (12)

Such equations can be made exact by multiplying through by an appropriate integrating factor which is always a function of \(x \) alone. An integrating factor \(\mu(x) \) must be such that

\[\mu(x)\frac{dy}{dx} + \mu(x)P(x)y = \frac{d}{dx}[\mu(x)y] = \mu(x)Q(x), \] (13)

which may then be integrated directly to give

\[\mu(x)y = \int \mu(x)Q(x) \, dx. \] (14)
The required integrating factor $\mu(x)$ is determined by the first equality in Eq. (13),

$$\frac{d}{dx}(\mu y) = \mu \frac{dy}{dx} + \frac{d\mu}{dx} y = \mu \frac{dy}{dx} + \mu P y,$$

which gives the simple relation

$$\frac{d\mu}{dx} = \mu(x)P(x) \Rightarrow \mu(x) = \exp \left\{ \int P(x) \, dx \right\}.$$

(15)
Example

Solve

\[\frac{dy}{dx} + 2xy = 4x. \]

Answer

The integrating factor is given by

\[\mu(x) = \exp\left\{ \int 2x \, dx \right\} = \exp x^2. \]

Multiplying through the ODE by \(\mu(x) = \exp x^2 \), and integrating, we have

\[y \exp x^2 = 4 \int x \exp x^2 \, dx = 2 \exp x^2 + c. \]

The solution to the ODE is therefore given by \(y = 2 + c \exp(-x^2) \).
Homogeneous equations

Homogeneous equations are ODEs that may be written in the form

$$\frac{dy}{dx} = \frac{A(x, y)}{B(x, y)} = F \left(\frac{y}{x} \right),$$

(16)

where $A(x, y)$ and $B(x, y)$ are homogeneous functions of the same degree. A function $f(x, y)$ is homogeneous of degree n if, for any λ, it obeys

$$f(\lambda x, \lambda y) = \lambda^n f(x, y).$$

For example, if $A = x^2y - xy^2$ and $B = x^3 + y^3$ then we see that A and B are both homogeneous functions of degree 3.
The RHS of a homogeneous ODE can be written as a function of y/x. The equation can then be solved by making the substitution $y = vx$ so that

$$\frac{dy}{dx} = v + x \frac{dv}{dx} = F(v).$$

This is now a separable equation and can be integrated to give

$$\int \frac{dv}{F(v) - v} = \int \frac{dx}{x}. \quad (17)$$
Example

Solve
\[
\frac{dy}{dx} = \frac{y}{x} + \tan \left(\frac{y}{x} \right).
\]

Answer

Substituting \(y = vx \), we obtain

\[
v + x \frac{dv}{dx} = v + \tan v.
\]

Cancelling \(v \) on both sides, rearranging and integrating gives

\[
\int \cot v \, dv = \int \frac{dx}{x} = \ln x + c_1.
\]

But

\[
\int \cot v \, dv = \int \frac{\cos v}{\sin v} \, dv = \ln(\sin v) + c_2,
\]

so the solution to the ODE is \(y = x \sin^{-1} Ax \), where \(A \) is a constant.
Isobaric equations

An isobaric ODE is a generalization of the homogeneous ODE and is of the form

\[\frac{dy}{dx} = \frac{A(x, y)}{B(x, y)}, \]

(18)

where the RHS is dimensionally consistent if \(y \) and \(dy \) are each given a weight \(m \) relative to \(x \) and \(dx \), i.e. if the substitution \(y = vx^m \) makes the equation separable.
Example

Solve

\[\frac{dy}{dx} = -\frac{1}{2yx} \left(y^2 + \frac{2}{x} \right). \]

Answer

Rearranging we have

\[\left(y^2 + \frac{2}{x} \right) dx + 2yx dy = 0, \]

Giving \(y \) and \(dy \) the weight \(m \) and \(x \) and \(dx \) the weight 1, the sums of the powers in each term on the LHS are \(2m + 1 \), \(0 \) and \(2m + 1 \) respectively. These are equal if \(2m + 1 = 0 \), i.e. if \(m = -\frac{1}{2} \).

Substituting \(y = vx^m = vx^{-1/2} \), with the result that \(dy = x^{-1/2} dv - \frac{1}{2}vx^{-3/2} dx \), we obtain

\[v \, dv + \frac{dx}{x} = 0, \]

which is separable and integrated to give

\[\frac{1}{2}v^2 + \ln x = c. \]

Replacing \(v \) by \(y\sqrt{x} \), we obtain the solution

\[\frac{1}{2}y^2x + \ln x = c. \]
Bernoulli’s equation

Bernoulli’s equation has the form

\[\frac{dy}{dx} + P(x)y = Q(x)y^n \quad \text{where } n \neq 0 \text{ or } 1 \] (19)

This equation is non-linear but can be made linear by substitution \(v = y^{1-n} \), so that

\[\frac{dy}{dx} = \left(\frac{y^n}{1-n} \right) \frac{dv}{dx}. \]

Substituting this into Eq. (19) and dividing through by \(y^n \), we find

\[\frac{dv}{dx} + (1-n)P(x)v = (1-n)Q(x), \]

which is a linear equation, and may be solved.
Example

Solve
\[\frac{dy}{dx} + \frac{y}{x} = 2x^3 y^4. \]

Answer

If we let \(v = y^{1-4} = y^{-3} \), then
\[\frac{dy}{dx} = -\frac{y^4}{3} \frac{dv}{dx}. \]

Substituting this into the ODE and rearranging, we obtain
\[\frac{dv}{dx} - \frac{3v}{x} = -6x^3. \]

Multiplying through by the following integrating factor
\[\exp \left\{ -3 \int \frac{dx}{x} \right\} = \exp(-3 \ln x) = \frac{1}{x^3}, \]
the solution is then given by
\[\frac{v}{x^3} = -6x + c. \]

Since \(v = y^{-3} \), we obtain \(y^{-3} = -6x^4 + cx^3. \)
Miscellaneous equations

\[\frac{dy}{dx} = F(ax + by + c), \quad (20) \]

where \(a, b\) and \(c\) are constants, i.e. \(x\) and \(y\) appear on the RHS in the particular combination \(ax + by + c\) and not in any other combination or by themselves. This equation can be solved by making the substitution \(v = ax + by + c\), in which case

\[\frac{dv}{dx} = a + b \frac{dy}{dx} = a + bF(v), \quad (21) \]

which is separable and may be integrated directly.
Example

Solve

\[\frac{dy}{dx} = (x + y + 1)^2. \]

Answer

Making the substitution \(v = x + y + 1 \), from Eq. (21), we obtain

\[\frac{dv}{dx} = v^2 + 1, \]

which is separable and integrates to give

\[\int \frac{dv}{1 + v^2} = \int dx \implies \tan^{-1} v = x + c_1. \]

So the solution to the original ODE is

\[\tan^{-1}(x + y + 1) = x + c_1, \]

where \(c_1 \) is a constant of integration.
Miscellaneous equations (continued)

We now consider

\[
\frac{dy}{dx} = \frac{ax + by + c}{ex + fy + g},
\]

(22)

where \(a, b, c, e, f\) and \(g\) are all constants. This equation may be solved by letting \(x = X + \alpha\) and \(y = Y + \beta\), where \(\alpha\) and \(\beta\) are constants found from

\[
a\alpha + b\beta + c = 0 \tag{23}
\]

\[
e\alpha + f\beta + g = 0. \tag{24}
\]

Then Eq. (22) can be written as

\[
\frac{dY}{dX} = \frac{aX + bY}{eX + fY'},
\]

which is homogeneous and may be solved.
Example

Solve

\[
\frac{dy}{dx} = \frac{2x - 5y + 3}{2x + 4y - 6}.
\]

Answer

Let \(x = X + \alpha \) and \(y = Y + \beta \), where \(\alpha \) and \(\beta \) obey the relations

\[
2\alpha - 5\beta + 3 = 0
\]

\[
2\alpha + 4\beta - 6 = 0,
\]

which solve to give \(\alpha = \beta = 1 \). Making these substitutions we find

\[
\frac{dY}{dX} = \frac{2X - 5Y}{2X + 4Y},
\]

which is a homogeneous ODE and can be solved by substituting \(Y = vX \) to obtain

\[
\frac{dv}{dX} = \frac{2 - 7v - 4v^2}{X(2 + 4v)}.
\]
This equation is separable, and using partial fractions, we find

\[
\int \frac{2 + 4v}{2 - 7v - 4v^2} \, dv = -\frac{4}{3} \int \frac{dv}{4v - 1} - \frac{2}{3} \int \frac{dv}{v + 2}
\]

\[= \int \frac{dX}{X},\]

which integrates to give

\[
\ln X + \frac{1}{3} \ln(4v - 1) + \frac{2}{3} \ln(v + 2) = c_1,
\]

or

\[
X^3(4v - 1)(v + 2)^2 = 3c_1.
\]

Since \(Y = vX, x = X + 1 \) and \(y = Y + 1 \), the solution to the original ODE is given by

\[
(4y - x - 3)(y + 2x - 3)^2 = c_2, \text{ where } c_2 = 3c_1.
\]
Higher-degree first-order equations

Higher-degree first-order equations can be written as $F(x, y, dy/dx) = 0$. The most general standard form is

$$p^n + a_{n-1}(x, y)p^{n-2} + \cdots + a_1(x, y)p + a_0(x, y) = 0,$$

(25)

where $p = dy/dx$.

Equations soluble for p

Sometime the LHS of Eq. (25) can be factorized into

$$(p - F_1)(p - F_2) \cdots (p - F_n) = 0,$$ \hspace{1cm} (26)

where $F_i = F_i(x, y)$. We are then left with solving the n first-degree equations $p = F_i(x, y)$. Writing the solutions to these first-degree equations as $G_i(x, y) = 0$, the general solution to Eq. (26) is given by the product

$$G_1(x, y)G_2(x, y) \cdots G_n(x, y) = 0.$$ \hspace{1cm} (27)
Example

Solve

\((x^3 + x^2 + x + 1)p^2 - (3x^2 + 2x + 1)yp + 2xy^2 = 0.\) \hspace{1cm} (28)

Answer

This equation may be factorized to give

\[\left[(x + 1)p - y\right]\left[(x^2 + 1)p - 2xy\right] = 0. \]

Taking each bracket in turn we have

\[(x + 1)\frac{dy}{dx} - y = 0,\]

\[(x^2 + 1)\frac{dy}{dx} - 2xy = 0,\]

which have the solutions \(y - c(x + 1) = 0\) and \(y - c(x^2 + 1) = 0\) respectively. The general solution to Eq. (28) is then given by

\[[y - c(x + 1)][y - c(x^2 + 1)] = 0. \]
Equations soluble for x

Equations that can be solved for x, i.e. such that they may be written in the form

$$x = F(y, p),$$

(29)

can be reduced to first-degree equations in p by differentiating both sides with respect to y, so that

$$\frac{dx}{dy} = \frac{1}{p} = \frac{\partial F}{\partial y} + \frac{\partial F}{\partial p} \frac{dp}{dy}.$$

This results in an equation of the form $G(y, p) = 0$, which can be used together with Eq. (29) to eliminate p and give the general solution.
Example

Solve

\[6y^2 p^2 + 3xp - y = 0. \] \hfill (30)

Answer

This equation can be solved for \(x \) explicitly to give \(3x = y/p - 6y^2p \). Differentiating both sides with respect to \(y \), we find

\[3 \frac{dx}{dy} = \frac{3}{p} = \frac{1}{p} - \frac{y}{p^2} \frac{dp}{dy} - 6y^2 \frac{dp}{dy} - 12yp, \]

which factorizes to give

\[(1 + 6yp^2) \left(2p + y \frac{dp}{dy} \right) = 0. \] \hfill (31)

Setting the factor containing \(dp/dy \) equal to zero gives a first-degree first-order equation in \(p \), which may be solved to give \(py^2 = c \). Substituting for \(p \) in Eq. (30) then yields the general solution of Eq. (30):

\[y^3 = 3cx + 6c^2. \] \hfill (32)
If we now consider the first factor in Eq. (31), we find $6p^2 y = -1$ as a possible solution. Substituting for p in Eq. (30) we find the singular solution

$$8y^3 + 3x^2 = 0.$$

Note that the singular solution contains no arbitrary constants and cannot be found from the general solution (32) by any choice of the constant c.
Equations soluble for y

Equations that can be solved for y, i.e. such that they may be written in the form

$$y = F(x, p), \quad (33)$$

can be reduced to first-degree first-order equations in p by differentiating both sides with respect to y, so that

$$\frac{dy}{dx} = p = \frac{\partial F}{\partial x} + \frac{\partial F}{\partial p} \frac{dp}{dx}.$$

This results in an equation of the form $G(x, y) = 0$, which can be used together with Eq. (33) to eliminate p and give the general solution.
Example

Solve

\[xp^2 + 2xp - y = 0. \] (34)

Answer

This equation can be solved for \(y \) explicitly to give \(y = xp^2 + 2xp \). Differentiating both sides with respect to \(x \), we find

\[
\frac{dy}{dx} = p = 2xp \frac{dp}{dx} + p^2 + 2x \frac{dp}{dx} + 2p,
\]

which after factorizing gives

\[
(p + 1) \left(p + 2x \frac{dp}{dx} \right) = 0. \] (35)
To obtain the general solution of Eq. (34), we first consider the factor containing \(\frac{dp}{dx} \). This first-degree first-order equation in \(p \) has the solution \(xp^2 = c \), which we then use to eliminate \(p \) from Eq. (34). We therefore find that the general solution to Eq. (34) is

\[
(y - c)^2 = 4cx. \tag{36}
\]

If we now consider the first factor in Eq. (35), we find this has the simple solution \(p = -1 \). Substituting this into Eq. (34) then gives

\[
x + y = 0,
\]

which is a singular solution to Eq. (34).
Clairaut’s equation

The Clairaut’s equation has the form

$$y = px + F(p),$$ \hspace{1cm} (37)

and is therefore a special case of equations soluble for y, Eq. (33).

Differentiating Eq. (37) with respect to x, we find

$$\frac{dy}{dx} = p = p + x \frac{dp}{dx} + \frac{dF}{dp} \frac{dp}{dx},$$

$$\Rightarrow \frac{dp}{dx} \left(\frac{dF}{dp} + x \right) = 0. \hspace{1cm} (38)$$

Considering first the factor containing dp/dx, we find

$$\frac{dp}{dx} = \frac{d^2y}{dx^2} = 0 \Rightarrow y = c_1x + c_2. \hspace{1cm} (39)$$

Since $p = dy/dx = c_1$, if we substitute Eq. (39) into Eq. (37), we find $c_1x + c_2 = c_1x + F(c_1)$.

Therefore the constant c_2 is given by $F(c_1)$, and the general solution to Eq. (37)

$$y = c_1 x + F(c_1), \quad (40)$$

e.i. the general solution to Clairaut’s equation can be obtained by replacing p in the ODE by the arbitrary constant c_1. Now considering the second factor in Eq. (38), also have

$$\frac{dF}{dp} + x = 0, \quad (41)$$

which has the form $G(x, p) = 0$. This relation may be used to eliminate p from Eq. (37) to give a singular solution.
Example

Solve

\[y = px + p^2. \] \hfill (42)

Answer

From Eq. (40), the general solution is \(y = cx + c^2 \).
But from Eq. (41), we also have
\[2p + x = 0 \Rightarrow p = -x/2. \] Substituting this into
Eq. (42) we find the singular solution \(x^2 + 4y = 0 \).