PC1134 Lecture 1

Topic

• Review of differentiation

Objectives

To become familiar with

• ordinary differentiation

• basic techniques of differentiation

• derivatives of common functions

Relevance

• These concepts and techniques are important for the study of partial differentiation.
Function

what is a function?

In mathematics, especially in its applications to physical science, we are often interested in the relations and connections between different numbers or sets of numbers. A *function* is a way of expressing such a connection.

\[y = f(x) \]

\(x\) is referred as *independent variable*, \(y\) is the *dependent variable*.
Examples of function

- *Position* of an moving object can be a function of *time*.
 \[x(t) = x_0 + vt + \frac{1}{2}at^2 \]

- *Potential* of a point charge is a function of *r*, distance from the point charge.
 \[V(r) = \frac{1}{4\pi\varepsilon} \frac{Q}{r} \]

- The *temperature* of an ideal gas is a function of pressure for *constant* volume
 \[PV = nRT \]

 where \(n \) and \(R \) are referred as constants or parameters
Representing Function

A function can be represented by

• an analytic \textbf{equation}

\[V = \frac{1}{2} k x^2 \]

• a \textbf{table} (for discrete variable)

<table>
<thead>
<tr>
<th>Time</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00</td>
<td>25.0</td>
</tr>
<tr>
<td>9:00</td>
<td>26.2</td>
</tr>
<tr>
<td>10:00</td>
<td>27.5</td>
</tr>
<tr>
<td>11:00</td>
<td>28.7</td>
</tr>
<tr>
<td>12:00</td>
<td>30.0</td>
</tr>
<tr>
<td>13:00</td>
<td>31.4</td>
</tr>
<tr>
<td>14:00</td>
<td>32.6</td>
</tr>
<tr>
<td>15:00</td>
<td>32.0</td>
</tr>
<tr>
<td>16:00</td>
<td>31.3</td>
</tr>
<tr>
<td>17:00</td>
<td>30.8</td>
</tr>
</tbody>
</table>
Representing Function (cont.)

- or a graph
Derivative

Given $y = f(x)$, a change in x will cause a change in y.

$$x \rightarrow x + \Delta x$$
$$y \rightarrow y + \Delta y$$

How is Δy related to Δx?

$$y = f(x)$$

$$y + \Delta y = f(x + \Delta x)$$

$$\Delta y = f(x + \Delta x) - f(x)$$

"Rate" of change

$$\frac{\Delta y}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

When $\Delta x \rightarrow 0$

$$\lim_{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \rightarrow 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \frac{dy}{dx} = y'$$
Derivative

\[\frac{dy}{dx} \] is the rate of change of \(y \) with respect to \(x \).

Graphically, the value of \(\frac{dy}{dx} \) at any particular value of \(x \) is equal to the gradient of the tangent to the graph of \(y \) against \(x \) at that particular value of \(x \).
Higher Derivatives

In general, \(\frac{dy}{dx} \) is a function of \(x \) and can be written as \(y'(x) \), \(f'(x) \) or \(\frac{dy}{dx}(x) \).

Let

\[
z(x) = f'(x)
\]

Since \(z(x) \) is a function of \(x \), we can calculate its derivative

\[
\frac{dz}{dx} = \lim_{\Delta x \to 0} \frac{f'(x + \Delta x) - f'(x)}{\Delta x}
\]

This is called the second derivative of \(y \) with respect to \(x \) and is written as

\[
\frac{d^2y}{dx^2}, \text{ or } y'' \text{ or } f''(x)
\]

Higher derivatives can be defined similarly.
Rules

- If \(y = f(x) \pm g(x) \)
 then \(y' = f' \pm g' \)

- If \(y = f(x)g(x) \)
 then \(y' = fg' + f'g \)

- If \(y = \frac{f(x)}{g(x)} \)
 then \(y' = \frac{f'g - fg'}{g^2} \)
Chain Rule

Function of a function:

\[y = y(x) \]
\[x = x(t) \]

\[\frac{dy}{dt} = ? \]

\[\frac{\Delta y}{\Delta t} = \frac{\Delta y \Delta x}{\Delta x \Delta t} \]

\[\Rightarrow \]

\[\frac{dy}{dt} = \frac{dy}{dx} \frac{dx}{dt} \]
Inverse Function

\[y = f(x) \implies x = g(y) \]

\[\frac{\Delta x}{\Delta y} = \frac{1}{\frac{\Delta y}{\Delta x}} \]

\[\frac{dx}{dy} = \frac{1}{\frac{dy}{dx}} \]
Implicit Differentiation

Consider the function defined by the equation

\[x^3 - 3xy + y^3 = 2 \]

It cannot be represented explicitly in the form of

\[y = f(x) \]

We can differentiate term by term with respect to \(x \)

\[
\frac{d}{dx} (x^3) - \frac{d}{dx} (3xy) + \frac{d}{dx} (y^3) = \frac{d}{dx} (2)
\]

\[\Rightarrow 3x^2 - \left(3x \frac{dy}{dx} + 3y \right) + 3y^2 \frac{dy}{dx} = 0 \]

Rearranging terms gives

\[
\frac{dy}{dx} = \frac{y - x^2}{y^2 - x}
\]
Function Defined Parametrically

Given

\[y = y(t) \]
\[x = x(t) \]

What is \(\frac{dy}{dx} \)?

\[\frac{\Delta y}{\Delta x} = \frac{\Delta y}{\Delta t} \frac{\Delta t}{\Delta x} \]

\[\frac{dy}{dx} = \frac{dy}{dt} \left/ \frac{dx}{dt} \right. \]
Derivatives of Elementary Functions

Algebraic function

\[y = x^r \quad \frac{dy}{dx} = r x^{r-1} \]

Trigonometrical function

\[\frac{d}{dx} \sin x = \cos x \quad \frac{d}{dx} \cos x = -\sin x \]

\[\frac{d}{dx} \tan x = \frac{1}{\cos^2 x} \quad \frac{d}{dx} \cot x = -\frac{1}{\sin^2 x} \]

Inverse trigonometrical function

\[\frac{d}{dx} \sin^{-1} x = \frac{1}{\sqrt{1-x^2}} \quad \frac{d}{dx} \cos^{-1} x = -\frac{1}{\sqrt{1-x^2}} \]

\[\frac{d}{dx} \tan^{-1} x = \frac{1}{1+x^2} \quad \frac{d}{dx} \cot^{-1} x = -\frac{1}{1+x^2} \]
Derivatives of Elementary Functions

Exponential function

\[y = e^x \quad \frac{dy}{dx} = e^x = y \]

Logarithmic function

\[\frac{d}{dx} \ln x = \frac{1}{x} \quad \frac{d}{dx} \log_a x = \frac{1}{x \ln a} \]

Hyperbolic functions

\[\sinh x = \frac{1}{2} (e^x - e^{-x}) \quad \frac{d}{dx} \sinh x = \cosh x \]

\[\cosh x = \frac{1}{2} (e^x + e^{-x}) \quad \frac{d}{dx} \cosh x = \sinh x \]

\[\tanh x = \frac{\sinh x}{\cosh x} \quad \frac{d}{dx} \tanh x = \frac{1}{\cosh^2 x} \]

\[\coth x = \frac{\cosh x}{\sinh x} \quad \frac{d}{dx} \coth x = \frac{1}{\sinh^2 x} \]
Derivatives of Elementary Functions

Inverse hyperbolic functions

\[
\frac{d}{dx} \sinh^{-1} x = \frac{1}{\sqrt{1 + x^2}}
\]

\[
\frac{d}{dx} \cosh^{-1} x = \frac{1}{\sqrt{x^2 - 1}}
\]

\[
\frac{d}{dx} \tanh^{-1} x = \frac{1}{1 - x^2} = \frac{d}{dx} \coth^{-1} x
\]
Example 1

\[y = \sin^{-1} \left(2x \sqrt{1 - x^2} \right) \]

Let
\[y = \sin^{-1} z \text{ and } z = 2x \sqrt{1 - x^2} \]
then
\[\frac{dy}{dx} = \frac{dy}{dz} \frac{dz}{dx} \]

\[\frac{dy}{dz} = \frac{d}{dz} \sin^{-1} z = \frac{1}{\sqrt{1 - z^2}} \]

Treating \(2x \sqrt{1 - x^2} \) as the product of two function \(2x \) and \(\sqrt{1 - x^2} \)

\[\frac{dz}{dx} = \frac{d}{dx} (2x) \cdot \sqrt{1 - x^2} + 2x \frac{d}{dx} \sqrt{1 - x^2} \]
Example 1

The derivative of $\sqrt{1 - x^2}$ can be evaluated by apply the chain rule again. The result is

$$\frac{d}{dx} \sqrt{1 - x^2} = -\frac{x}{\sqrt{1 - x^2}}$$

Therefore,

$$\frac{dy}{dx} = \frac{1}{\sqrt{1 - z^2}} 2\sqrt{1 - x^2} + 2x \frac{-x}{\sqrt{1 - x^2}}$$

$$= \frac{1}{\sqrt{1 - 4x^2(1 - x^2)}} \frac{2(1 - 2x^2)}{\sqrt{1 - x^2}}$$

$$= \pm \frac{2}{\sqrt{1 - x^2}}$$

Where does the ± come from?
Example 2

If \(y = x^5 + x \), find \(\frac{d^2x}{dy^2} \).

\[
\frac{dy}{dx} = 5x^4 + 1
\]

\[
\frac{dx}{dy} = \frac{1}{5x^4 + 1}
\]

\[
\frac{d^2x}{dy^2} = \frac{d}{dy} \left(\frac{1}{5x^4 + 1} \right)
\]

\[
= \frac{d}{dx} \left(\frac{1}{5x^4 + 1} \right) \frac{dx}{dy}
\]

\[
= -\frac{20x^3}{(5x^4 + 1)^2} \cdot \frac{1}{5x^4 + 1}
\]

\[
= -\frac{20x^3}{(5x^4 + 1)^3}
\]
Example 3

\[x = a \cos^3 t, \quad y = a \sin^3 t \]

\[\frac{d^2y}{dx^2} = ? \]

\[\frac{dy}{dx} = \frac{dy}{dt} \left/ \frac{dx}{dt} = \frac{3a \sin^2 t \cos t}{-3a \cos^2 t \sin t} = -\tan t \right. \]

\[\frac{d^2y}{dx^2} = \frac{d}{dx}(-\tan t) = \frac{d}{dt}(-\tan t) \frac{dt}{dx} \]

\[= -\frac{1}{\cos^2 t} (3a \cos^2 t \sin t)^{-1} \]

\[= \frac{1}{3a \cos^4 t \sin t} \]