Quite generally, we have

BPV =log(Z(8,V,2)) and N =z <alOgZ>
0z sV

from lecture and also

S (0B " logZ)
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from Exercise 33. For log(Z(8,V,z)) = %h(z) with A = hn/278/m B%, these give
BPV = %h(z) and N = % 2h(2)
and 75]; = g%h(z) — Nlogz or N 222/2) —logz.

It follows that z is constant when S and N are, that is: when we consider isentropic
changes. Then, all terms on the right-hand side of
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are constant as well, so that P3V® = constant holds irrespective of the particular h(z).

Alternatively, we can use
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and identify (E) with the internal energy U. For isentropic changes (dS = 0 and dN = 0),
we have (dU)s ny = —P(dV)gs n, so that
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This implies that P o V~%/3 or P3V5 = constant for istentropic changes.
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Since
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with Ay = Ay (BEy, 5J) given in (4.2.36) in the lecture notes, we have
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We also have
S si) = (N4} = (N2) with (V) 4 (N_) = N
and 3 (sjsiea) = (NOY) — (NOY) with (VW) 4 (v

Accordingly, we obtain

1 N Olog A
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and, from (4.2.50),

where

(8log)\+> _eﬁ‘]sinh(%ﬂEo)

(a) Here we have a standard Ising chain, for which

F(K,0,N) = —]glog(Qcosh(K)) .

(b) Here we have %N isolated sites, and a chain with %N sites and next-neighbor inter-
action energy J/, so that

F(0,K',N) = F(0,0,5N) + F(K", 0, 3N)
N
=23 <log(2) + log (2 cosh(K')))

N ,
= —%log(élcosh(K ).
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(c) We look at one element of three sites with two .J links and one J link: 5@)5’

which contributes a factor

Z oKss" + Ks"s' + K'ss' _ ZCosh((S + sl)K)eKISS/ = My,
s'==+1

with the 2 x 2 matrix

M=o cosh(2K)eK/ oK
K cosh(2K)eK/ ’

and there are N (or N — 1) such matrices in

Q(K,K',N) = (1 1)M%N<1‘>.

MG) = <i>2<cosh(2K)eK’ LY.

Since

we obtain

N : ,
F(K,K',N) = —%log@ cosh(2K el + 2¢= K )

N
= 5o (4cosh(K)? cosh(K") + 4 sinh(K)? sinh(K') )

Special cases are
N N
F(K,0,N) = ~25 log(2 cosh(2K) + 2) = 3 log<2 cosh(K))

and

N
F(0,K',N) =~ log (2eK' + 2e—K'> = 5 lor(4cosh(K) .
They agree with the expressions in (a) and (b), as they should.
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(d) Asin (4.5.1) with (4.5.2), the heat capacity is

9? 92
C = TWkBTlog(Q(K, K',N)) = szﬁ2a—BQ log(Q(K,K',N)).

With
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this becomes
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For K/ = 0, we obtain
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K2 log(cosh(K)) = cosh(K)2
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For corrections of order K’/, we use
1 / ’ 1
B log(COSh(QK)eK +e K ) =3 log(4 cosh(K)? + 4sinh(K)2K’> +e-
1
= log(2 COSh(K)) + B log<1 + tanh(K)QK’) 4+

1
= log(2 cosh(K)) + itanh(K)QK’ SEP

where the ellipsis stands for terms of order K'? or higher. The first-order correction
to the heat capacity is thus given by
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