
1 We recall that the internal energy is a function of the form U(S, V, n) =
nU(S/n, V/n, 1) and the free energy is of the form F (T, V, n) = nF (T, V/n, 1),
and the pressure is the negative V derivative of both U and F .

(a) Accordingly, the isothermal equation tells us that

P = −
(
∂F

∂V

)
T,n

=
b(T )√
V/n

with b(T ) to be determined, and the adiabatic (= isentropic) equation tells us
that

P = −
(
∂U

∂V

)
S,n

=
a(S/n)

(V/n)2

with a(s) to be determined. We conclude that

F (T, V, n) = −2
√
V n b(T ) + nf0(T )

with some function f0(T ), and that

U(S, V, n) =
a(S/n)

V/n2
+ nu0(S/n)

with some function u0(S/n). It follows that temperature and entropy are related
to one another by

S = −
(
∂F

∂T

)
V,n

= 2
√
V n b′(T )− nf ′0(T )

and also by

T =

(
∂U

∂S

)
V,n

=
a′(S/n)

V/n
+ u′0(S/n) .

Consistency requires that

a(s) = (V/n)
3
2 b((V/n)−1a′(s) + u′0(s)

)
and also that

b(T ) = (V/n)−
3
2a
(
2(V/n)

1
2 b′(T )− f ′0(T )

)
.

We infer that u′0(s) = 0 and f ′0(T ) = 0, and that a(s) = cas
3 and b(T ) = cbT

3
2

with proportionality constant ca and cb. They are such that 27cac
2
b = 1, so that

ca = 1
3w

and cb = 1
3

√
w is a convenient parameterization.



(b) The SI unit of w is that of S3/(PV 2) or of P 2V/T 3, that is J2 K−3 m−3 or
J2 K−3 m−3 mol−1, depending on whether we think of n as just a number or as
a count of moles. Since

(PV )3 = P 2V PV 2 =
wn

9
T 3 1

3wn
S3 =

1

27
(TS)3 ,

we have TS = 3PV .

(c) The ingredients of (1.10.11) are provided by the isothermal equation,

CP − CV = T

(
∂V

∂T

)
P,n

(
∂P

∂T

)
V,n

= T
3V

T

3P

2T
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.

Both the isothermal and the isentropic equation provide the ingredients of
(1.10.22),

CP

CV

=

(
∂P

∂V

)
S,n

(
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)
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=
−2P

V
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P
= 4 .
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(a) Here, too, we exploit (1.10.11), but now with

0 =
nR

V − nb
−
[

nRT

(v − nb)2
− 2an2

V 3

](
∂V

∂T

)
P,n

and

(
∂P

∂T

)
V,n

=
nR

V − nb
,

so that

CP − CV = nR

[
1− 2an

RT

(V − nb)2

V 3

]−1
.

(b) At the critical point, we have V = 3nb and RT =
8a

27b
, so that

2an

RT

(V − nb)2

V 3
= 2an

27b

8a

(2b)2

(3b)3
= 1

and CP − CV =∞.

(c) Inside the coexistence region, there is no dT 6= 0 when dP = 0 and, therefore,

there is no meaning to CP = T

(
∂S

∂T

)
P,n

.

3 Since

〈E〉 = −
(
∂ logQ

∂β

)
V,n

=

(
∂(βF )

∂β

)
V,n



= F + β

(
∂F

∂β

)
V,n

= F − T
(
∂F

∂T

)
V,n

= F + TS = U ,

the inference is an immediate consequence of the Legendre transformation between
U and F .

4 With n1 and n2 constituents in the two ground states, and n3 constituents in
the excited state, the energy is E = n3ε.

(a) For given energy E, there are n3 = E/ε constituent in the excited state and
n1 + n2 = N − n3 constituents in the two ground states. Accordingly, we have

Ω(E,N) =
N !

n3! (N − n3)!
2N−n3

∣∣∣∣∣
n3 = E/ε

microstates, where the power of 2 is the count of the different ways of assigning
the two ground states to N − n3 constituents, and obtain

S(E,N) = kB log
(
Ω(E,N)

)
= kBN

[(
1− E

Nε

)
log

(
2

1− E
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)
− E

Nε
log

E
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]
.

after using Stirling’s approximation for the log-factorials. Then,

kBβ =
1

T
=

(
∂S

∂E

)
N

=
kB
ε

log
Nε− E

2E
,

which gives

E =
Nε

2eβε + 1
.

(b) For the canonical ensemble, we have Q(β,N) = q(β)N with

q(β) =
∑

E=0,0,ε

e−βE = 2 + e−βε

and get

F (β,N) = − 1

β
logQ = −N

β
log
(
2 + e−βε

)
as well as

〈E〉 = −
(
∂ logQ

∂β

)
N

=
Nε

2eβε + 1
.



(c) Consistent with the general argument of Problem 3, we observe that

〈E〉
∣∣∣
canonical

= E
∣∣∣
microcanonical

.

(d) In accordance with (2.5.17), we have

〈δE2〉 = 〈E2〉 − 〈E〉2 = −
(
∂〈E〉
∂β

)
N

=
2Nε2eβε

(2eβε + 1)2
=

2eβε

N
〈E〉2

for the variance and √
〈δE2〉
〈E〉

=
√

2eβε/N ∝ 1√
N

for the relative size of the fluctuations.

(e) Following Exercise 25, we have

Z(β, z) =
∞∑

N=0

zNQ(β,N) =
1

1− zq(β)
=

1

1− 2z − ze−βε
.


