1 We recall that the internal energy is a function of the form $U(S, V, n)=$ $n U(S / n, V / n, 1)$ and the free energy is of the form $F(T, V, n)=n F(T, V / n, 1)$, and the pressure is the negative V derivative of both U and F.
(a) Accordingly, the isothermal equation tells us that

$$
P=-\left(\frac{\partial F}{\partial V}\right)_{T, n}=\frac{b(T)}{\sqrt{V / n}}
$$

with $b(T)$ to be determined, and the adiabatic ($=$ isentropic) equation tells us that

$$
P=-\left(\frac{\partial U}{\partial V}\right)_{S, n}=\frac{a(S / n)}{(V / n)^{2}}
$$

with $a(s)$ to be determined. We conclude that

$$
F(T, V, n)=-2 \sqrt{V n} b(T)+n f_{0}(T)
$$

with some function $f_{0}(T)$, and that

$$
U(S, V, n)=\frac{a(S / n)}{V / n^{2}}+n u_{0}(S / n)
$$

with some function $u_{0}(S / n)$. It follows that temperature and entropy are related to one another by

$$
S=-\left(\frac{\partial F}{\partial T}\right)_{V, n}=2 \sqrt{V n} b^{\prime}(T)-n f_{0}^{\prime}(T)
$$

and also by

$$
T=\left(\frac{\partial U}{\partial S}\right)_{V, n}=\frac{a^{\prime}(S / n)}{V / n}+u_{0}^{\prime}(S / n)
$$

Consistency requires that

$$
a(s)=(V / n)^{\frac{3}{2}} b\left((V / n)^{-1} a^{\prime}(s)+u_{0}^{\prime}(s)\right)
$$

and also that

$$
b(T)=(V / n)^{-\frac{3}{2}} a\left(2(V / n)^{\frac{1}{2}} b^{\prime}(T)-f_{0}^{\prime}(T)\right) .
$$

We infer that $u_{0}^{\prime}(s)=0$ and $f_{0}^{\prime}(T)=0$, and that $a(s)=c_{a} s^{3}$ and $b(T)=c_{b} T^{\frac{3}{2}}$ with proportionality constant c_{a} and c_{b}. They are such that $27 c_{a} c_{b}^{2}=1$, so that $c_{a}=\frac{1}{3 w}$ and $c_{b}=\frac{1}{3} \sqrt{w}$ is a convenient parameterization.
(b) The SI unit of w is that of $S^{3} /\left(P V^{2}\right)$ or of $P^{2} V / T^{3}$, that is $\mathrm{J}^{2} \mathrm{~K}^{-3} \mathrm{~m}^{-3}$ or $\mathrm{J}^{2} \mathrm{~K}^{-3} \mathrm{~m}^{-3} \mathrm{~mol}^{-1}$, depending on whether we think of n as just a number or as a count of moles. Since

$$
(P V)^{3}=P^{2} V P V^{2}=\frac{w n}{9} T^{3} \frac{1}{3 w n} S^{3}=\frac{1}{27}(T S)^{3},
$$

we have $T S=3 P V$.
(c) The ingredients of (1.10.11) are provided by the isothermal equation,

$$
C_{P}-C_{V}=T\left(\frac{\partial V}{\partial T}\right)_{P, n}\left(\frac{\partial P}{\partial T}\right)_{V, n}=T \frac{3 V}{T} \frac{3 P}{2 T}=\frac{9}{2} \frac{P V}{T} .
$$

Both the isothermal and the isentropic equation provide the ingredients of (1.10.22),

$$
\frac{C_{P}}{C_{V}}=\left(\frac{\partial P}{\partial V}\right)_{S, n}\left(\frac{\partial V}{\partial P}\right)_{T, n}=\frac{-2 P}{V} \frac{-2 V}{P}=4
$$

2
(a) Here, too, we exploit (1.10.11), but now with

$$
0=\frac{n R}{V-n b}-\left[\frac{n R T}{(v-n b)^{2}}-\frac{2 a n^{2}}{V^{3}}\right]\left(\frac{\partial V}{\partial T}\right)_{P, n} \quad \text { and } \quad\left(\frac{\partial P}{\partial T}\right)_{V, n}=\frac{n R}{V-n b}
$$

so that

$$
C_{P}-C_{V}=n R\left[1-\frac{2 a n}{R T} \frac{(V-n b)^{2}}{V^{3}}\right]^{-1} .
$$

(b) At the critical point, we have $V=3 n b$ and $R T=\frac{8 a}{27 b}$, so that

$$
\frac{2 a n}{R T} \frac{(V-n b)^{2}}{V^{3}}=2 a n \frac{27 b}{8 a} \frac{(2 b)^{2}}{(3 b)^{3}}=1
$$

and $C_{P}-C_{V}=\infty$.
(c) Inside the coexistence region, there is no $\mathrm{d} T \neq 0$ when $\mathrm{d} P=0$ and, therefore, there is no meaning to $C_{P}=T\left(\frac{\partial S}{\partial T}\right)_{P, n}$.

3 Since

$$
\langle E\rangle=-\left(\frac{\partial \log Q}{\partial \beta}\right)_{V, n}=\left(\frac{\partial(\beta F)}{\partial \beta}\right)_{V, n}
$$

$$
=F+\beta\left(\frac{\partial F}{\partial \beta}\right)_{V, n}=F-T\left(\frac{\partial F}{\partial T}\right)_{V, n}=F+T S=U
$$

the inference is an immediate consequence of the Legendre transformation between U and F.

4 With n_{1} and n_{2} constituents in the two ground states, and n_{3} constituents in the excited state, the energy is $E=n_{3} \varepsilon$.
(a) For given energy E, there are $n_{3}=E / \varepsilon$ constituent in the excited state and $n_{1}+n_{2}=N-n_{3}$ constituents in the two ground states. Accordingly, we have

$$
\Omega(E, N)=\left.\frac{N!}{n_{3}!\left(N-n_{3}\right)!} 2^{N-n_{3}}\right|_{n_{3}=E / \varepsilon}
$$

microstates, where the power of 2 is the count of the different ways of assigning the two ground states to $N-n_{3}$ constituents, and obtain

$$
\begin{aligned}
S(E, N) & =k_{\mathrm{B}} \log (\Omega(E, N)) \\
& =k_{\mathrm{B}} N\left[\left(1-\frac{E}{N \varepsilon}\right) \log \left(\frac{2}{1-\frac{E}{N \varepsilon}}\right)-\frac{E}{N \varepsilon} \log \frac{E}{N \varepsilon}\right] .
\end{aligned}
$$

after using Stirling's approximation for the log-factorials. Then,

$$
k_{\mathrm{B}} \beta=\frac{1}{T}=\left(\frac{\partial S}{\partial E}\right)_{N}=\frac{k_{\mathrm{B}}}{\varepsilon} \log \frac{N \varepsilon-E}{2 E},
$$

which gives

$$
E=\frac{N \varepsilon}{2 \mathrm{e}^{\beta \varepsilon}+1} .
$$

(b) For the canonical ensemble, we have $Q(\beta, N)=q(\beta)^{N}$ with

$$
q(\beta)=\sum_{E=0,0, \varepsilon} \mathrm{e}^{-\beta E}=2+\mathrm{e}^{-\beta \varepsilon}
$$

and get

$$
F(\beta, N)=-\frac{1}{\beta} \log Q=-\frac{N}{\beta} \log \left(2+\mathrm{e}^{-\beta \varepsilon}\right)
$$

as well as

$$
\langle E\rangle=-\left(\frac{\partial \log Q}{\partial \beta}\right)_{N}=\frac{N \varepsilon}{2 \mathrm{e}^{\beta \varepsilon}+1} .
$$

(c) Consistent with the general argument of Problem 3, we observe that

$$
\left.\langle E\rangle\right|_{\text {canonical }}=\left.E\right|_{\text {microcanonical }} .
$$

(d) In accordance with (2.5.17), we have

$$
\left\langle\delta E^{2}\right\rangle=\left\langle E^{2}\right\rangle-\langle E\rangle^{2}=-\left(\frac{\partial\langle E\rangle}{\partial \beta}\right)_{N}=\frac{2 N \varepsilon^{2} \mathrm{e}^{\beta \varepsilon}}{\left(2 \mathrm{e}^{\beta \varepsilon}+1\right)^{2}}=\frac{2 \mathrm{e}^{\beta \varepsilon}}{N}\langle E\rangle^{2}
$$

for the variance and

$$
\frac{\sqrt{\left\langle\delta E^{2}\right\rangle}}{\langle E\rangle}=\sqrt{2 \mathrm{e}^{\beta \varepsilon} / N} \propto \frac{1}{\sqrt{N}}
$$

for the relative size of the fluctuations.
(e) Following Exercise 25, we have

$$
Z(\beta, z)=\sum_{N=0}^{\infty} z^{N} Q(\beta, N)=\frac{1}{1-z q(\beta)}=\frac{1}{1-2 z-z \mathrm{e}^{-\beta \varepsilon}}
$$

