1 We recall the Gibbs-Duhem relation, $S \mathrm{~d} T-V \mathrm{~d} P+n \mathrm{~d} \mu=0$, divide by n, and consider constant T to arrive at $-v(\mathrm{~d} P)_{T}+(\mathrm{d} \mu)_{T}=0$ or $v(\mathrm{~d} P)_{T}=(\mathrm{d} \mu)_{T}$. The changes associated with $(\mathrm{d} v)_{T}$ are, therefore, related to each other by $v\left(\frac{\partial P}{\partial v}\right)_{T}=\left(\frac{\partial \mu}{\partial v}\right)_{T}$, indeed.

2
(a) With the Maxwell-Boltzmann weight $\mathrm{e}^{-\beta E}$ and the single-particle energy $E=$ $\frac{1}{2 m} \boldsymbol{p}^{2}$, we have $\langle f(\boldsymbol{p})\rangle=\frac{\int(\mathrm{d} \boldsymbol{p}) \mathrm{e}^{-\frac{\beta}{2 m} \boldsymbol{p}^{2}} f(\boldsymbol{p})}{\int(\mathrm{d} \boldsymbol{p}) \mathrm{e}^{-\frac{\beta}{2 m} \boldsymbol{p}^{2}}}$ for the expected value of a function of momentum \boldsymbol{p}. For $f(\boldsymbol{p})=|\boldsymbol{v}|=|\boldsymbol{p} / m|$ and $f(\boldsymbol{p})=|\boldsymbol{v}|^{-1}$ this gives

$$
\langle | \boldsymbol{v}\left\rangle=\frac{\frac{1}{m} \int_{0}^{\infty} \mathrm{d} p p^{3} \mathrm{e}^{-\frac{\beta}{2 m} p^{2}}}{\int_{0}^{\infty} \mathrm{d} p p^{2} \mathrm{e}^{-\frac{\beta}{2 m} p^{2}}}=\frac{\frac{1}{2 m}(2 m / \beta)^{2}}{\frac{1}{4} \sqrt{\pi}(2 m / \beta)^{3 / 2}}=\sqrt{\frac{8}{\pi m \beta}}\right.
$$

and

$$
\left.\left.\langle | \boldsymbol{v}\right|^{-1}\right\rangle=\frac{m \int_{0}^{\infty} \mathrm{d} p p \mathrm{e}^{-\frac{\beta}{2 m} p^{2}}}{\int_{0}^{\infty} \mathrm{d} p p^{2} \mathrm{e}^{-\frac{\beta}{2 m} p^{2}}}=\frac{\frac{m}{2}(2 m / \beta)}{\frac{1}{4} \sqrt{\pi}(2 m / \beta)^{3 / 2}}=\sqrt{\frac{2 m \beta}{\pi}} .
$$

We confirm that $\left.\langle | \boldsymbol{v}\rangle\langle | \boldsymbol{v}|^{-1}\right\rangle=4 / \pi>1$.
(b) We have

$$
\begin{aligned}
0 & \leq\left\langle\left(\lambda X^{\frac{1}{2}}-X^{-\frac{1}{2}}\right)^{2}\right\rangle=\lambda^{2}\langle X\rangle-2 \lambda+\left\langle X^{-1}\right\rangle \\
& =\left(\lambda\langle X\rangle^{\frac{1}{2}}-\langle X\rangle^{-\frac{1}{2}}\right)^{2}+\left\langle X^{-1}\right\rangle-\langle X\rangle^{-1}
\end{aligned}
$$

where the inequality holds for all values of λ, including in particular $\lambda=\langle X\rangle^{-1}$ for which the final expression is smallest. It follows that $\left\langle X^{-1}\right\rangle-\langle X\rangle^{-1} \geq 0$ or $\langle X\rangle\left\langle X^{-1}\right\rangle \geq 1$.

3

(a) We have $Q(K, N)=\left\{M^{N}\right\}$ with $M=\left(\begin{array}{ccc}\mathrm{e}^{K} & 1 & \mathrm{e}^{-K} \\ 1 & 1 & 1 \\ \mathrm{e}^{-K} & 1 & \mathrm{e}^{K}\end{array}\right)$. According to the hint, one eigenvalue of M is $\lambda_{0}=2 \sinh (K)$, and we find the other two eigenvalues from $M\left(\begin{array}{l}x \\ y \\ x\end{array}\right)=\left(\begin{array}{c}2 x \cosh (K)+y \\ 2 x+y \\ 2 x \cosh (K)+y\end{array}\right)$ or $\binom{x}{y} \rightarrow\left(\begin{array}{cc}2 \cosh (K) & 1 \\ 2 & 1\end{array}\right)\binom{x}{y}=\lambda\binom{x}{y}$.
This gives $\lambda_{ \pm}=\cosh (K)+\frac{1}{2} \pm \sqrt{\left(\cosh (K)-\frac{1}{2}\right)^{2}+2}$.

The largest one of the three eigenvalues is λ_{+}and, therefore, it is the only one that matters in $Q=\lambda_{+}^{N}+\lambda_{0}^{N}+\lambda_{-}^{N}=\lambda_{+}^{N}\left[1+\left(\lambda_{0} / \lambda_{+}\right)^{N}+\left(\lambda_{-} / \lambda_{+}\right)^{N}\right]$ since N is a very large integer. It follows that

$$
Q(K, N)=\lambda_{+}^{N}=\left(\cosh (K)+\frac{1}{2}+\sqrt{\left[\cosh (K)-\frac{1}{2}\right]^{2}+2}\right)^{N}
$$

(b) We have $\frac{F}{N}=-\frac{1}{N \beta} \log Q=-\frac{1}{\beta} \log \lambda_{+}$.
(c) We recall that $C=T \frac{\partial S}{\partial T}=-\beta \frac{\partial S}{\partial \beta}=-\beta \frac{\partial}{\partial \beta}\left(-\frac{\partial F}{\partial T}\right)=-\beta \frac{\partial}{\partial \beta}\left(k_{\mathrm{B}} \beta^{2} \frac{\partial F}{\partial \beta}\right)$, so that $\frac{C}{N k_{\mathrm{B}}}=\beta \frac{\partial}{\partial \beta} \beta^{2} \frac{\partial}{\partial \beta} \frac{\log \lambda_{+}}{\beta}=\beta^{2} \frac{\partial^{2}}{\partial \beta^{2}} \log \lambda_{+}=K^{2} \frac{\partial^{2}}{\partial K^{2}} \log \lambda_{+}$.
For $K \ll 1$, we have $\lambda_{+}=3+\frac{2}{3} K^{2}+O\left(K^{4}\right) \cong 3\left(1+\frac{2}{9} K^{2}\right)$ and $\log \lambda_{+} \cong$ $\log (3)+\frac{2}{9} K^{2}$.
For $K \gg 1$, we have $\lambda_{+}=2 \cosh (K)+\cosh (K)^{-1}+O\left(\cosh (K)^{-2}\right)=\mathrm{e}^{K}+$ $3 \mathrm{e}^{-K}+O\left(\mathrm{e}^{-2 K}\right) \cong \mathrm{e}^{K}\left(1+3 \mathrm{e}^{-2 K}\right)$ and $\log \lambda_{+} \cong K+3 \mathrm{e}^{-2 K}$.
Accordingly, we find

$$
\frac{C}{N k_{\mathrm{B}}} \cong\left\{\begin{array}{cc}
\frac{4}{9} K^{2} \quad \text { for } K \ll 1 \\
12 K^{2} \mathrm{e}^{-2 K} & \text { for } K \gg 1
\end{array}\right.
$$

(d) Yes, in the limit $T \rightarrow 0$, that is $\beta \rightarrow \infty$ or $K \rightarrow \infty$, we have $C \rightarrow 0$.

4 We need to remember that v is the volume per particle in the virial expansion $\beta P v=$ $\sum_{l=1} a_{l}(\beta)\left(\lambda^{3} / v\right)^{l-1}$, whereas v stands for the molar volume in the equation of state of the Berthelot gas. The two symbols v differ by Avogadro's number $N_{\mathrm{A}}=R / k_{\mathrm{B}}$, so that we have

$$
\beta P v=\frac{N_{\mathrm{A}} v}{N_{\mathrm{A}} v-b}-\frac{a \beta v}{\left(N_{\mathrm{A}} v\right)^{2} N_{\mathrm{A}} / \beta}=\sum_{l=1}\left(\frac{b}{N_{\mathrm{A}} v}\right)^{l-1}-\frac{a \beta^{2}}{N_{\mathrm{A}}^{3} v}
$$

after consistently expressing all volumes in terms of $v=$ volume per particle. We read off that

$$
a_{l}(\beta)=\left(\frac{b}{N_{\mathrm{A}} \lambda^{3}}\right)^{l-1} \quad \text { for } l=1,3,4,5 \ldots, \text { and } \quad a_{2}(\beta)=\frac{b}{N_{\mathrm{A}} \lambda^{3}}-\frac{a \beta^{2}}{N_{\mathrm{A}}^{3} \lambda^{3}}
$$

