
1 We recall the Gibbs–Duhem relation, S dT − V dP + n dµ = 0, divide by n, and
consider constant T to arrive at −v(dP )T + (dµ)T = 0 or v(dP )T = (dµ)T . The changes

associated with (dv)T are, therefore, related to each other by v

(
∂P

∂v

)
T
=

(
∂µ

∂v

)
T

, indeed.
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(a) With the Maxwell–Boltzmann weight e−βE and the single-particle energy E =

1

2m
p2, we have 〈f(p)〉 =

∫
(dp) e−

β
2mp2

f(p)∫
(dp) e−

β
2mp2

for the expected value of a function

of momentum p. For f(p) = |v | = |p/m| and f(p) = |v |−1 this gives

〈 |v | 〉 =

1

m

∫ ∞
0

dp p3 e−
β
2mp

2

∫ ∞
0

dp p2 e−
β
2mp

2
=

1

2m
(2m/β)2

1

4

√
π(2m/β)3/2

=

√
8

πmβ

and

〈 |v |−1 〉 =
m

∫ ∞
0

dp p e−
β
2mp

2

∫ ∞
0

dp p2 e−
β
2mp

2
=

m

2
(2m/β)

1

4

√
π(2m/β)3/2

=

√
2mβ

π
.

We confirm that 〈 |v | 〉〈 |v |−1 〉 = 4/π > 1 .

(b) We have

0 ≤
〈(
λX

1
2 −X−

1
2

)2〉
= λ2〈X〉 − 2λ+ 〈X−1〉

=
(
λ〈X〉

1
2 − 〈X〉−

1
2

)2
+ 〈X−1〉 − 〈X〉−1

where the inequality holds for all values of λ, including in particular λ = 〈X〉−1

for which the final expression is smallest. It follows that 〈X−1〉 − 〈X〉−1 ≥ 0 or
〈X〉〈X−1〉 ≥ 1 .

3

(a) We have Q(K,N) = {MN} with M =

 eK 1 e−K

1 1 1

e−K 1 eK

. According to the hint,

one eigenvalue of M is λ0 = 2 sinh(K), and we find the other two eigenvalues from

M

 xy
x

 =

 2x cosh(K) + y
2x+ y

2x cosh(K) + y

 or

(
x
y

)
→
(
2 cosh(K) 1

2 1

)(
x
y

)
= λ

(
x
y

)
.

This gives λ± = cosh(K) + 1
2 ±

√
(cosh(K)− 1

2)
2 + 2.



The largest one of the three eigenvalues is λ+ and, therefore, it is the only one

that matters in Q = λN+ + λN0 + λN− = λN+

[
1 + (λ0/λ+)

N + (λ−/λ+)
N
]

since N

is a very large integer. It follows that

Q(K,N) = λN+ =

(
cosh(K) + 1

2 +
√
[cosh(K)− 1

2 ]
2 + 2

)N

.

(b) We have
F

N
= − 1

Nβ
logQ = − 1

β
log λ+ .

(c) We recall that C = T
∂S

∂T
= −β∂S

∂β
= −β ∂

∂β

(
−∂F
∂T

)
= −β ∂

∂β

(
kbβ

2∂F

∂β

)
, so

that
C

Nkb
= β

∂

∂β
β2

∂

∂β

log λ+
β

= β2
∂2

∂β2
log λ+ = K2 ∂2

∂K2
log λ+ .

For K � 1, we have λ+ = 3 + 2
3K

2 + O(K4) ∼= 3
(
1 + 2

9K
2
)

and log λ+ ∼=
log(3) + 2

9K
2 .

For K � 1, we have λ+ = 2 cosh(K) + cosh(K)−1 + O(cosh(K)−2) = eK +

3e−K +O(e−2K) ∼= eK
(
1 + 3e−2K

)
and log λ+ ∼= K + 3e−2K .

Accordingly, we find

C

Nkb

∼=


4

9
K2 for K � 1 ,

12K2e−2K for K � 1 .

(d) Yes, in the limit T → 0, that is β →∞ or K →∞, we have C → 0.

4 We need to remember that v is the volume per particle in the virial expansion βPv =∑
l=1

al(β)(λ
3/v)l−1, whereas v stands for the molar volume in the equation of state of the

Berthelot gas. The two symbols v differ by Avogadro’s number Na = R/kb, so that we
have

βPv =
Nav

Nav − b
− aβv

(Nav)
2Na/β

=
∑
l=1

(
b

Nav

)l−1
− aβ2

N3
av

after consistently expressing all volumes in terms of v = volume per particle. We read off
that

al(β) =

(
b

Naλ
3

)l−1
for l = 1, 3, 4, 5 . . ., and a2(β) =

b

Naλ
3
− aβ2

N3
aλ

3
.


