1 We need to eliminate the fugacity z from

$$
\rho \lambda^{3}=g_{\frac{3}{2}}(z)=z+2^{-3 / 2} z^{2}+\cdots \quad \text { and } \quad \beta P \lambda^{3}=g_{\frac{5}{2}}(z)=z+2^{-5 / 2} z^{2}+\cdots
$$

for $0<z \ll 1$. This gives first $z \cong \rho \lambda^{3}-2^{-3 / 2}\left(\rho \lambda^{3}\right)^{2}$, and then $\beta P \lambda^{3} \cong \rho \lambda^{3}-$ $2^{-3 / 2}\left(\rho \lambda^{3}\right)^{2}+2^{-5 / 2}\left(\rho \lambda^{3}\right)^{2}$ or, finally,

$$
\beta P \cong \rho-2^{-5 / 2} \rho^{2} \lambda^{3} .
$$

2 The canonical partition function is

$$
Q(\beta, V, N)=\frac{1}{N!}\left[\frac{V}{(2 \pi \hbar)^{3}} \int(\mathrm{~d} \boldsymbol{p}) \mathrm{e}^{-\beta c|\boldsymbol{p}|}\right]^{N}=\frac{1}{N!}\left[\frac{V}{(2 \pi \hbar)^{3}} \frac{8 \pi}{(\beta c)^{3}}\right]^{N}
$$

and the free energy is

$$
F(\beta, V, N)=-\frac{1}{\beta} \log Q=-\frac{N}{\beta}+\frac{N}{\beta} \log \frac{\pi^{2}(\beta \hbar c)^{3}}{V / N}
$$

This yields

$$
P=-\frac{\partial F}{\partial V}=\frac{N}{\beta V} \quad \text { and } \quad U=F+T S=F+\beta \frac{\partial F}{\partial \beta}=\frac{\partial(\beta F)}{\partial \beta}=\frac{3 N}{\beta},
$$

so that $u=\frac{U}{V}=3 P$. This is as expected, since we have a state density $\propto p^{2} \mathrm{~d} p \propto$ $\varepsilon^{2} \mathrm{~d} \varepsilon$ with $\kappa=3$ in (3.9.3) and (3.9.6).

3 We consider $E_{\mathrm{TF}}[\rho]-E_{\mathrm{TF}}\left[\rho_{\mathrm{TF}}\right]=\left(E_{\mathrm{TF}}\left[\rho_{\mathrm{TF}}+x\left(\rho-\rho_{\mathrm{TF}}\right)\right]-E_{\mathrm{TF}}\left[\rho_{\mathrm{TF}}\right]\right)_{x=1} \equiv$ $\left.f(x)\right|_{x=1}$ and note that $f(1)=f(0)+f^{\prime}(0)+\frac{1}{2} f^{\prime \prime}(y)$ with $0 \leq y \leq 1$. Here, $f(0)=0$ by construction and $f^{\prime}(0)=0$ since $E_{\mathrm{TF}}[\rho]$ is stationary at ρ_{TF}, and we need to verify that $f^{\prime \prime}(y) \geq 0$. With $\Delta(\boldsymbol{r})=\rho(\boldsymbol{r})-\rho_{\mathrm{TF}}(\boldsymbol{r})$, we have

$$
\begin{aligned}
f^{\prime \prime}(y)= & \frac{\hbar^{2}}{10 \pi^{2} m} \int(\mathrm{~d} \boldsymbol{r})\left(3 \pi^{2}\right)^{5 / 3} \frac{5}{3} \frac{2}{3} \Delta(\boldsymbol{r})^{2}\left[\rho_{\mathrm{TF}}(\boldsymbol{r})+y \Delta(\boldsymbol{r})\right]^{-1 / 3} \\
& +\frac{e^{2}}{2} \int(\mathrm{~d} \boldsymbol{r})\left(\mathrm{d} \boldsymbol{r}^{\prime}\right) \frac{\Delta(\boldsymbol{r}) \Delta\left(\boldsymbol{r}^{\prime}\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|},
\end{aligned}
$$

where both terms are positive. It follows that $f^{\prime \prime}(y) \geq 0$.
(a) Proceeding from

$$
\begin{aligned}
E_{k} & =\sum_{j}\left\{\begin{array}{l}
+J \text { if } s_{j} s_{j+1}=-1 \\
-J_{+} \text {if } s_{j}=s_{j+1}=+1 \\
-J_{-} \text {if } s_{j}=s_{j+1}=-1
\end{array}\right\} \\
& =\sum_{j} \frac{1}{4}\left[\left(2 J-J_{+}-J_{-}\right)+\left(J_{-}-J_{+}\right)\left(s_{j}+s_{j+1}\right)-\left(2 J+J_{+}+J_{-}\right) s_{j} s_{j+1}\right] \\
& =\frac{1}{4} N\left(2 J-J_{+}-J_{-}\right)+\frac{1}{2}\left(J_{-}-J_{+}\right) \sum_{j} s_{j}-\frac{1}{4}\left(2 J+J_{+}+J_{-}\right) \sum_{j} s_{j} s_{j+1}
\end{aligned}
$$

we identify

$$
\mathcal{E}=\frac{1}{4}\left(2 J-J_{+}-J_{-}\right), \quad E_{0}^{\prime}=J_{-}-J_{+}, \quad J^{\prime}=\frac{1}{4}\left(2 J+J_{+}+J_{-}\right) .
$$

(b) The partition function is

$$
Q\left(\beta J, \beta J_{+}, \beta J_{-}, N\right)=\mathrm{e}^{-\beta N \mathcal{E}_{\lambda_{+}}\left(\beta E_{0}^{\prime}, \beta J^{\prime}\right)^{N}}
$$

with $\lambda_{+}\left(\beta E_{0}, \beta J\right)$ from (4.2.36) in (4.2.38), where the λ_{-}^{N} term is negligibly small.
(c) Here we have $\mathcal{E}=0, E_{0}^{\prime}=-2 \epsilon$, and $J^{\prime}=J . \ln F=N \mathcal{E}-\frac{N}{\beta} \log \lambda_{+}\left(\beta E_{0}^{\prime}, \beta J^{\prime}\right)$, we need $\lambda_{+}\left(\beta E_{0}, \beta J\right)$ to first-order in βE_{0}, which is $\lambda_{+}(0, \beta J)=2 \cosh (\beta J)$ as there are no first-order terms. Accordingly, we obtain

$$
F=-\frac{N}{\beta} \log (2 \cosh (\beta J))+\cdots
$$

where the ellipsis stands for terms of second and higher order in ϵ.

